本发明涉及一种具有良好循环性和高安全性表面包覆磷酸铁锂的镍钴锰酸锂复合材料的制备方法。本方法采用水热法在镍钴锰酸锂颗粒表面生长磷酸铁锂对镍钴锰酸锂进行表面包覆修饰。磷酸铁锂是锂离子电池活性正极材料,比钴酸锂、镍钴锰酸锂、锰酸锂等具有更好的热稳定性能、化学稳定性能、循环性能和安全性能,有效解决了镍钴锰酸锂锂离子电池的高温、过充、针刺条件下的安全性问题。该材料能量密度高、循环性能好、安全性能好、制备工艺简单、易于实现产业化。
本发明公开了一种废旧钴酸锂电池回收聚偏氟乙烯及再生钴酸锂正极材料的方法,属于废旧锂离子电池回收技术领域,本发明通过将钴酸锂电池进行放电、拆解得到废旧钴酸锂正极极片,废旧钴酸锂正极极片用NMP处理分离正极废料、铝箔并回收PVDF,然后将正极废料与有机碳源混合后进行还原焙烧,接着水浸分离锂和钴,再分别通过蒸发结晶和煅烧处理得到碳酸锂和四氧化三钴,最后将得到的碳酸锂和四氧化三钴按计量比混合进行反应得到再生的钴酸锂,本发明对废旧锂离子电池材料进行高效回收并实现了对废旧电池材料的综合循环再生,而且得到的再生钴酸锂纯度高,具有优异的倍率性能和循环稳定性。
本发明属于锂离子电池回收再生技术领域,具体涉及一种磷酸铁锂废粉中锂铁磷组分回收再生的方法。本发明将磷酸铁锂废粉预除铝后采用磷酸和还原性有机酸浸出联合浸出,并通过抑制氧化,采用机械活化以不同铁的化合物配成前驱体浆料,协同净化后的富锂浆料以砂磨‑喷雾干燥制备磷酸铁锂前驱体。本发明技术流程契合主流磷酸铁锂生产过程,整个过程无废水产生,浸出试剂常规,无需添加任何额外的氧化还原剂,多种铁源的联合使用有利于改善前驱体浆料的黏度和粒径,提升回收再生产物的电化学性能。整个流程简单且具有原子经济性,实现了对高杂磷酸铁锂废粉中锂铁磷三种元素的高效回收再生,适合工业化生产。
本发明属于锂电池技术领域,尤其涉及一种锂一次电池,包括正极片、负极片、设置于所述正极片和所述负极片之间的隔膜、以及电解液,所述正极片包括正极集流体以及涂覆于所述正极集流体至少一个表面的正极活性物质层,所述正极活性物质层包括能脱嵌锂离子的正极活性材料,所述负极片包括光铜箔、镍箔、导电碳纸中的任意一种。本发明锂一次电池采用光铜箔、镍箔、导电碳纸或其他导电箔材做负极,取代传统的金属锂负极,作为常规锂一次电池的替代方案,对组装环境要求不高,在非干燥环境下即可组装生产,大大降低了组装过程中对环境的要求,提高了组装过程的安全性,同时也节省了干燥房的制造成本和运行成本。
本发明公开了一种从废旧锂电池中回收锂的方法,其包括如下工艺步骤:将废旧锂电池正极粉料与硫化剂混合煅烧后进行固液分离出含锂水溶液。本发明采用硫化煅烧的方法回收得到的含锂水溶液,单次过滤得到的含锂水溶液中锂的浓度在15g/L以上,锂的总回收率高达97.43%以上,同时锂和镍钴锰的分离效果良好。本发明适用于废旧电池的综合回收,适合大规模生产,无环境污染,具有可观的经济效益。
本发明公开了一种大容量、大尺寸的柱形锂离子电池盖板,它包括圆柱形盖体,盖体上设有包括正极内接头、正极外接头的正极接线柱,包括负极内接头、负极外接头的负极接线柱,其特征是所述盖体的直径大于等于35㎜,盖体上设有贯通盖体的防爆孔和补液螺孔,防爆孔上设有塞住防爆孔的防爆塞,补液螺孔上设有塞住补液螺孔的锁紧螺钉;一种柱形锂离子电池,它包括通过盖板密封封装于铝质外壳内的电芯本体,电芯本体的两端分别设有正极座、负极座;其生产方法包括电芯本体制备、烘烤、浸泡、组立、后处理步骤;本发明结构简单,方便连接使用,有效的防止了锂离子电池的爆炸,延长了锂离子电池的使用寿命,提高了散热效果和使用性能。
本发明公开了一种碳包覆磷酸铁锂材料、制备方法及锂离子电池正极材料,方法包括:将碳酸锂、草酸亚铁、二水合磷酸二氢铵以及蔗糖加入球磨罐中,再加入无水乙醇,密封后放入球磨机中球磨,得到浆料a;将浆料a过滤,再将过滤后的浆料干燥,得到块状产物b;将块状产物b研磨,得到白色粉体c;将白色粉体c转至第一坩埚中,排出空气用铝箔纸封住坩埚口,倒扣第二坩埚中,往第二坩埚填满还原性粉体;将第一坩埚以及第二坩埚整体放置于马沸炉内,加热一段时间,在第一坩埚内得到碳包覆磷酸铁锂材料。本方法使得整个工艺无需像传统的高温固相法一样需要还原性气体或是惰性气体,只需加入还原性粉体,大大降低了成本,并且也提高整个工艺的安全性。
本发明公开了一种使用硅碳材料作为负极的锂离子电池用的电解液及包含该电解液的锂离子电池。该电解液由锂盐,非水系有机溶剂和添加剂组成。其中添加剂为硼酸三(六氟异丙基)酯和三(2‑氰乙基)硼酸酯中的一种或两种。锂盐为LiPF6、LiBF4、LiClO4、LiTFSI和LiFSI中的至少一种,优选为LiPF6;浓度为0.8~1.5mol/L,优选为1.0~1.2mol/L。非水系有机溶剂为碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯中的至少两种,优选为碳酸乙烯酯和碳酸二甲酯的组合。
本发明提供一种制备磷酸铁锂锂电池正极材料的方法,包括:向原料中引入低熔点无机介质,将所得混合物料研磨混合均匀;对混合物料进行烧结,然后用水或酒精清洗烧结后的物料,以除去低熔点无机介质。由于低熔点无机介质的引入,使得磷酸铁锂的生成可以在低温下短时间生成,明显降低能耗,提高晶体生长完整性,并且生成的球形磷酸铁锂颗粒粒径均匀,提高了加工性能。本发明还涉及一种用于锂电池的磷酸铁锂颗粒,其为单晶形态。
本发明公开了一种锂离子电池锰酸锂正极材料的制备方法,该方法包括将锂源化合物与锰源化合物混合搅拌,将所得混合物置于回转窑中升温至400℃~650℃进行预处理,保温1h~8h后降至常温;然后将所得产物置于煅烧炉中升温至750℃~1000℃,煅烧10h~30h,煅烧完成后先以1℃/min~3℃/min的速度降温至550℃~650℃,再冷却至室温,将所得反应产物进行破碎并筛分处理,得到锂离子电池锰酸锂正极材料。本发明的方法工艺简单、成本低廉,该方法制得的锰酸锂正极材料所装配的电池具有优异的循环性能和高比容量,应用前景广阔。
本发明涉及一种含锂废铝电解质的提锂方法,包括如下步骤:将待处理的含锂废铝电解质破碎,获得电解质粉料;将所述电解质粉料与反应剂混合均匀,于600‑1400℃焙烧0.5‑5h后,冷却,研磨,获得混合物粉末;将所述混合物粉末与水混合,搅拌反应后,过滤,获得滤渣和滤液;将滤液用于沉锂,获得锂盐。发明的整个处理流程中不使用酸、碱,反应剂廉价易得,生产工艺环保,工况友好。本发明的焙烧‑水浸提锂工艺,工艺流程短,设备简单,工业化可行性高。
本发明涉及电池隔膜技术领域,尤其涉及一种锂电池隔膜及其制备方法以及锂电池。本发明提供的锂电池隔膜的制备方法,包括以下步骤:将改性无机粒子分散到溶剂中,得到分散浆料;将所述分散浆料涂覆到锂电池隔膜基材上,干燥后得到锂电池隔膜;所述改性无机粒子由无机粒子经硅烷偶联剂改性得到。本发明的无机粒子经硅烷偶联剂改性后具有良好的亲水性,在保持良好耐热性的前提下,能有效增强锂电池隔膜的吸液能力。实施例结果表明,本发明制备的锂电池隔膜的吸液率高达170~188%,闭孔温度为176~185℃,说明本发明制备的锂电池隔膜具有良好的耐热性和吸液能力。
本发明属于锂金属电池负极材料领域。具体公开了一种贵金属单质@掺氮碳空心球材料,包括内嵌均匀银纳米粒子的掺氮碳空心球。本发明还提供了双亲锂性负极活性材料、负极及其制备方法。本发明提供的材料具有巨大的比表面、良好的亲锂性和电子传导性能,能够有效地缓解体积变化,降低局部电流密度和锂沉积的形核过电位,实现该3D锂金属负极在大电流密度高锂载量下持续、稳定、均匀地沉积/溶解,有效抑制锂枝晶的生长,显著提升锂金属电池的库伦效率和循环寿命。
本发明公开了一种废三元锂电池生产三元前驱体和高纯碳酸锂的方法,包括“制备正极粉‑还原循环浸出‑过滤洗涤等”八个步骤。本发明的目的是提供一种废三元锂电池生产三元前驱体和高纯碳酸锂的方法,该方法环境友好、能耗低、生产成本低、排污量少、高效地实现资源综合化利用,满足工业化生产。
本发明公开了一种锂离子电池高电压电解液添加剂和含有该添加剂的高电压电解液及锂离子电池。所述的添加剂为如下结构式Ⅰ所示结构的苯多腈化合物:其中R1、R2分别独立选自氢、氰基、卤素、C1~C6的烃基、部分氢或全部氢被卤素取代的C1~C6的烃基、C1~C6的烷氧基、部分氢或全部氢被卤素取代的C1~C6的烷氧基团的一种或几种。该电解液添加剂可有效促进锂离子电池正极表面聚合形成稳定的CEI膜,抑制了正极与电解液的界面反应,减少了电解液在高电压环境下的氧化分解,从而有效提高锂离子电池常电压和高电压下的循环性能和使用寿命。同时,此种电解液制备工艺简单,适用于工业化生产,因而有广泛的应用前景。
本发明公开了一种湿法嵌锂合成磷酸铁锰锂正极材料的方法,以微米级粒径的三价磷酸铁锰前驱体作为原料,采用醇和水的混合液作为溶剂,采用回流法制备磷酸铁锰锂正极材料中,能够实现磷酸锰铁的均匀还原,从而获得结晶性良好、倍率佳的产品。本制备方法通过采用微米球结构的前驱体作为原料,能够对磷酸锰铁锂的结构和性能进行有效调控,获得质量稳定、振实密度高、倍率性能优良的产品,且操作流程简便、一致性高,原料来源广、无需高温烧结、能耗低、成本低、无需添加表面活性剂和生长抑制剂来控制形貌,工艺的可控性好,易于大规模推广。
本发明属于锂金属电池领域,具体公开了一种复合平面锂金属阳极,其特征在于,包括平面金属集流体、复合在平面金属集流体平面的金属锂层以及覆盖所述金属锂层的刚性/柔性复合界面层;所述的刚性/柔性复合界面层包括柔性聚合物以及分散在柔性聚合物中的刚性材料;所述的刚性材料包含硫化锂;还包含金属粒子和/或锂‑金属合金粒子。本发明还公开了所述的锂金属阳极的制备以及应用。其优势在于,柔性又兼具强度的复合平面锂金属阳极避免金属锂生长过程中应力的集中。同时,复合平面锂金属阳极又可以有效防止电解液与金属锂直接接触,避免界面副反应的反生,显著提高锂金属负极的循环寿命。
本发明属于锂离子电池材料领域,具体公开了一种掺Mn高铁酸锂的应用,作为补锂添加剂添加至正极活性材料中,用于制得锂离子电池的补锂正极材料;所述的掺Mn高铁酸锂的化学式为Li5Fe1‑xMnxO4;其中,x为0.05~0.1。本发明还提供了所述应用方法中采用的掺Mn高铁酸锂的制备方法,将化学计量比的铁源、锰源、锂源在表面活性剂溶液中球磨,随后经喷雾干燥得到前驱体;将所述的前驱体在保护气氛、600~900℃下烧结,制得所述的掺Mn高铁酸锂。本发明还提供了所述应用所述的补锂正极材料、该正极材料在锂离子电池中的应用。本发明发现所述的补锂添加剂和正极活性材料有协同性,此外,本发明还提出了一种操作简单、制备周期短,产物活性高的制备方法。
钙循环固相转化法从低镁锂比盐湖卤水中提取锂盐的方法,以低镁锂比盐湖卤 水为原料,采用卤水浓缩、石灰乳脱镁脱硫、碳酸锂分离钙、碳酸钠提锂、碳酸钙 热分解、生石灰水化成乳等工艺流程来提取碳酸锂产品。主要技术要点是基于阴离 子(OH-、CO32-)的固相转化原理,通过Ca(OH)2→Mg(OH)2、Li2CO3→Ca(OH)2 及CaCO3→CaO→Ca(OH)2的固相转化,实现卤水的脱镁、除钙净化锂盐以及钙闭 路循环。 本发明综合利用盐湖镁、锂资源,具有脱镁效率高、锂盐净化效果好、锂镁回 收率高、能耗少、成本低、钙闭路循环以及项目工程投资少等特点。整个工艺简要、 清洁,对环境友好。本发明尤其适应大规模工业生产。
磷酸锆锂快离子导体包覆镍钴铝酸锂正极材料及制备方法,所述磷酸锆锂快离子导体的质量为0.1~10wt%,所述磷酸锆锂快离子导体形成厚度为5~30nm的包覆层包覆在镍钴铝酸锂上;所述正极材料为粒径5~15μm的球形颗粒。制备方法包括以下步骤:(1)配制含有磷源和锆源的溶液,在有机溶剂或水中加入锆源溶液,再加入磷源溶液,搅拌,再加入镍钴铝酸锂,进行加热搅拌反应后,缓慢蒸干,所得粉末放入烘箱烘干;(2)将步骤(1)所得的粉末,置于管式炉中,进行低温快速烧结,即可。本发明正极材料具有较好的循环稳定性和倍率放电性能;本发明方法能有效降低常规包覆时表面残锂和三元材料循环稳定性低问题,工艺过程成本低,工艺简单,适宜于大工业生产。
本发明涉及氢氧化锂生产技术领域,特别是一种环保型用锂辉石和盐湖矿石混合生产单水氢氧化锂的工艺包括以下步骤:将锂辉石依次经过回转窑高温煅烧,煅烧过程中产生的烟尘经尾气处理系统,将粉尘回收到双轴加湿搅拌器进行加湿处理,再次进行煅烧、冷却、细磨、加酸反应、冷却、调浆、浸出,压滤机压榨分离,加入盐湖矿石,净化、过滤、苛化,再冷冻分离硫酸钠,蒸发、低温重结晶、干燥等工艺步骤而得。本发明采用锂辉石和盐湖矿石混合生产单水氢氧化锂的工艺是以锂辉石和盐湖矿石为原料,将锂辉石和盐湖矿石混合生产单水氢氧化锂,解决了当锂矿石资源不足的困境,增加生产线抵抗资源不足的风险,同时解决了盐湖矿石资源生产氢氧化锂品质低的问题。
本发明公开了一种锂离子电池镍钴锰酸锂三元系正极材料的制备方法。本发明采用Ni、Co、Mn的硫酸盐为原料,将这三种硫酸盐按一定的摩尔比溶于水中制成溶液,然后在搅拌的条件下将溶液蒸干,将蒸干得到的粉末于加热分解得到LiNi1-x-yCoxMnyO2前躯体复合氧化物,然后将前躯体复合氧化物与碳酸锂或氢氧化锂按一定的摩尔比混合后高温加热得到LiNi1-x-yCoxMnyO2。本发明克服了固相法难以使Li+与Co2+、Ni2+、Mn2+均匀混合的不足,同时避开了共沉淀法在制备前驱体过程中溶液的pH、浓度、温度、搅拌速度等条件控制要求苛刻的弊端。高温加热产生的气体用二氧化锰与碳酸锰混合浆液吸收,又得到合成原料之一的硫酸锰。
本申请涉及一种磷酸锂包覆镍钴锰酸锂复合材料的制备方法,包括以下步骤:将磷源溶于第一溶剂中,得到磷源溶液;将锂源溶于第二溶剂中,得到锂源溶液;将镍钴锰酸锂分散在锂源溶液中,得到悬浊液;在70℃~100℃,搅拌条件下,向悬浊液中滴加所述磷源溶液,滴加完后继续反应至溶剂完全去除,得到预烧物;将预烧物在含氧气氛中烧结,得到磷酸锂包覆镍钴锰酸锂复合材料。上述方法制备的磷酸锂包覆镍钴锰酸锂复合材料具有均匀的包覆层且包覆效果一致。
本发明涉及锂离子电池领域,公开了一种锂离子电池电解液用添加剂及电解液及锂离子电池,添加剂包括添加物a,添加物b以及添加物c;所述添加物a结构式如结构式1所示,所述添加物b为二氟磷酸锂、二氟草酸硼酸锂以及双氟磺酰亚胺锂中的至少一种;所述添加物c为碳酸亚乙烯酯、1,3‑丙烷磺酸内酯、氟代碳酸乙烯酯、乙烯基碳酸亚乙烯酯、亚硫酸乙烯酯、乙烯基亚硫酸乙烯酯、亚硫酸丙烯酯、硫酸二甲酯、硫酸丙烯酯中的至少一种。添加剂通过几种混合物混合,将其应用于锂离子电池电解液中,电解液具有非常优异的过充性能,同时该电解液阻燃性能优异;且使用该电解液的锂离子电池具有较小的内阻以及K值,较好的常温循环性能和高温存储性能。
本发明公开一种磷酸锰锂/氟磷酸钒锂/碳复合正极材料及其制备方法,以提高磷酸锰锂的离子电导率和循环稳定性,从而改善磷酸锰锂正极材料的倍率性能不好和循环稳定性差的缺点。本发明的复合材料的名义分子式为(1‑x)LiMnPO4·xLiVPO4F/C,其中0<x≤0.3。合成的复合材料一次颗粒为60~100nm大小,在颗粒表面包覆了一层均匀的碳源。本发明提出的制备方法工艺过程简单,易于控制,制备的(1‑x)LiMnPO4·xLiVPO4F/C复合正极材料通过组分之间协同作用,具有能量密度高、循环稳定、倍率性能好的特点。
本发明公开了一种从锂离子电池回收物制备电池级碳酸锂的方法,包括以下步骤,(1)制备含锂氟渣;(2)将含锂氟渣与水制浆后,加入浸出剂,使含锂氟渣中的锂溶入水中,过滤,得到粗制锂溶液;(3)用碱试剂调节pH值去除粗制锂溶液中的镁、镍、钴等杂质,得到精制锂溶液;(4)在精制锂溶液中加入碳酸盐进行沉淀,得到粗制碳酸锂;(5)洗涤所得的粗制碳酸锂,烘干后得到电池级碳酸锂产品。本发明的方法可以同时回收利用锂电池中的锂及钴镍锰等贵金属,且制备的碳酸锂为电池级产品,可以直接用于锂电池的生产制造,产品价值高,提高了资源的综合回收率。
用粗制氟化锂高效制备氯化锂溶液的方法,涉及一种用粗制氟化锂制备氯化锂溶液的方法。包括制浆:先将粗制氟化锂搅拌成浆状,加酸制成粗制氟化锂浆料;其特殊之处在于:先调制氯化钙溶液,并加热至沸腾待用,然后将制浆步骤制得的粗制氟化锂浆料,加入到沸腾的氯化钙溶液中,当钙离子达到0.5‑3g/L时,停止加入粗制氟化锂浆料,再加入碱性物质,保温反应0.5‑5.0小时,过滤、洗涤,滤液为氯化锂溶液。它彻底解决了现有技术新生氟化钙沉积在氟化锂表面,包络了氟化锂,使锂无法有效溶解的技术难题。使锂的收率提高30%以上,总收率达93.77。
本发明提供一种改进的用于制备磷酸铁锂的方法,以提高其振实密度和锂电池的储存稳定性。该方法包括:磷酸铁锂前驱体的制备:将锂盐、金属氧化物和碳源物质加入到磷酸的水溶液中,经过反应得到LiH2PO4混合溶液,然后加入纳米级铁化合物,在球磨机中球磨,再经过喷雾干燥;烧结:在惰性气体保护下在600~800℃的烧结炉中烧结;以及水洗:用水清洗磷酸铁锂粉末,然后在100~200℃干燥。
本发明涉及高价值废弃资源的回收利用技术领域,具体为一种以含锂氟化渣为原料的氢氧化锂制备方法,步骤一、含锂氟化渣加水制浆;步骤二、将制好的浆加入反应器内,使浆与反应器内的转化剂反应1‑5小时;步骤三、过滤得氢氧化锂溶液和滤渣;步骤四、用活性炭除去氢氧化锂溶液中的有机物;步骤五、对氢氧化锂溶解进行浓缩结晶得氢氧化锂;其通过第一搅拌装置对含锂氟化渣和水进行搅拌,提高制浆的速率,通过第二搅拌装置能够对浆和转化剂进行搅拌,提高其融合的速率,提高其反应的时间,提高反应的效率,通过活性炭能够去除氢氧化锂溶液中的有机物,提高氢氧化锂制备的纯度。
本申请提供一种磷酸铁锂电池提锂后磷铁渣的除铝、铜杂质的方法,涉及锂离子电池材料回收处理技术领域。本申请的技术方案包括如下步骤:将磷酸铁锂电池提锂后的磷铁渣与氟盐混合,进行焙烧,得到含铝、铜氟化物的焙烧渣;将所述焙烧渣与水混合,在一定pH值条件下进行浸出反应,固液分离,得到含铝、铜络合物的浸出液和除杂后的磷铁渣。本申请通过该方法实现了Al、Cu杂质的深度去除,除杂后的磷铁渣满足再制备电池级磷酸铁的要求,可用于再制备电池级磷酸铁;而且工艺简单、除杂效果好、适应性强,解决了废旧磷酸铁锂电池回收过程产生的磷铁渣再制备电池级磷酸铁时Al、Cu杂质含量高、影响产品性能的问题。
中冶有色为您提供最新的湖南有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!