本发明公开了一种用于不锈钢酸洗废混酸金属离子脱除及废酸和树脂再生装置及方法。在不锈钢酸洗废混酸处理过程中通过使用特别的装置,能够大大地提高不锈钢酸洗废混酸中金属离子的脱除率,缩短处理时间,降低生产成本,而且可以实现金属离子的回收利用,同时实现了树脂和废酸液的再生和循环利用,还提高了树脂的脱水效率,相比于传统的碱中和法,显著降低了运行成本,从根本上解决了不锈钢酸洗废液处理过程中反冲洗水处理困难、酸性气体和大量重金属污泥的产生排放等技术问题,达到了绿色、低碳、经济和循环利用的目标。
本发明提供了一种电解回收硫酸钠废液制备双氧水的方法,包括以下步骤:步骤1,净化;步骤2,混合升温;步骤3,电解硫酸钠;步骤4,电解制备双氧水。本发明的工艺采用循环供液的方式运行,生产效率高,生产成本低;电解硫酸钠废液的过程中采用阴离子、阳离子的双膜进行电解,得到的硫酸、氢氧化钠纯净无杂质,产品浓度高;且无任何废水、废气、废渣的排放,绿色环保;采用全新的电解工艺进行双氧水的生产,产出的双氧水产品纯度高,品相好,且生产过程中不会引起氢气和氧气的直接接触,几乎不会发生燃烧的危险;整个工艺过程中既能保证硫酸钠废液的有效处理,同时能产出双氧水以及硫酸和氢氧化钠溶液,收益高。
本发明公开了一种含吡啶基杯[4]芳烃衍生物及其制备方法和作为锰离子萃取剂的应用。含吡啶基杯[4]芳烃衍生物由烷基杯[4]芳烃和2‑(卤代甲基)吡啶盐酸盐在碱催化下进行亲核取代反应得到;该含吡啶基杯[4]芳烃衍生物的物理化学稳定性高,油溶性较好,不溶于水,且具有较好金属离子识别络合能力,将其与P204组成协合萃取体系,对硫酸盐溶液体系中的锰离子存在很强的正协同萃取效果,而对镍、钴、镁、锂等金属离子存在明显的反协同萃取效果,非常适用于复杂金属离子体系中锰离子的选择性萃取分离,具有良好的工业应用前景。
本发明公开了一种处理低品位黑白钨混合矿的方法,将低品位黑白钨混合矿进行酸洗得到酸洗液和酸洗渣;将酸洗渣加入到盐酸‑磷酸混酸中,在70~95℃下搅拌反应1~5h得到酸分解渣和酸分解液;将酸分解渣置于高压釜中,用氢氧化钠作为分解剂进行碱煮,得到碱浸出液和碱煮渣;将浓硫酸加入到酸分解液中反应得到高纯石膏渣和含钨溶液;用TBP萃取体系萃取含钨溶液中的钨,得到负载有机相和萃余液,用碱浸出液作为反萃剂对负载有机相进行反萃,得到的碱性钨酸盐溶液用于后续钨的提取。本发明通过酸碱联合的方式来处理低品位黑白钨混合矿,一方面可以实现钨资源的高效提取,另一方面,将钨矿中的钙转化为石膏,大幅减少碱煮渣的排放。
本发明公开了一种从含铜碲的复杂酸性溶液中分离碲的方法:将含铜碲的复杂酸性溶液置于电积设备中,向溶液中加入氧化剂并搅拌;将电积设备通电,在高电流密度下进行电积,同时拌以高强度搅拌,电积100‑200min后将电积设备断电,继续搅拌溶液使溶液中电积的铜粉与溶液中的碲反应完全,反应结束后收集阴极产物碲化亚铜。本发明电积过程中严格控制铜粉沉积量,并通过氧化使铜粉优先与碲反应,减少杂质离子的沉积,可处理含铜、碲以及砷、铅、锡、铋、硒、镍等的复杂溶液,实现碲的有效分离,碲回收率较高,电积过程副反应少,所得产品杂质含量低、碲含量高,有利于进一步提取单质碲。
本发明公开了一种电解锰渣渗滤液深度处理与回用装置及方法;该装置包括依次连通的酸化调节池、铁屑微电解床、中间水池、吹脱塔、反应池、斜管沉淀池、pH终调池、微生物除锰池、消毒池和回用水池,还包括一进气管,进气管与酸化调节池、铁屑微电解床和微生物除锰池连通,斜管沉淀池底部与一污泥浓缩池连通,吹脱塔的气体出口与一排气筒连通,微生物除锰池与一培菌槽连通。该方法使用铁屑微电解床去除电解锰渣渗滤液中的铬,采用吹脱塔去除氨氮,反应池和斜管沉淀池去除重金属离子,微生物除锰池去除锰,功能明确、去除重金属污染物彻底,生态环保,无二次污染。经深度处理后的电解锰渣渗滤液可回用于填埋场内部的冲厕、扫除、绿化等。
本发明属于矿物冶炼技术领域,具体公开了一种黑白钨混合矿的冶炼方法,利用联合浸出剂对黑白钨混合矿进行浸出,随后经固液分离,得到黑钨矿渣和富集有钙和钨的浸出液;所述的联合浸出剂为含有磷源和具有式1结构有机化合物的溶液;
本发明公开了一种锌电积阳极的制备方法,其包括,配料混粉:将铅粉、银粉、二氧化铅粉进行配料,将配料后的粉体滚动混合至均匀;以质量百分数计,所述银粉0.1~1%、所述二氧化铅粉0.1~10%,其余为铅粉;压制烧结:将混合均匀的粉体压制、还原保护气氛下烧结;冷却:将烧结后材料自然冷却。本发明对设备要求低,易于阳极的制备。本发明制备的阳极有着析氧过电位低、机械强度高、耐腐蚀性好、使用寿命长等优点,可代替传统铸造Pb‑Ag阳极。
本发明公开了一种利用镍离子、硫代硫酸钙浸金的方法,向含金矿物中加入含镍离子和硫代硫酸钙的溶液将含金矿物中的金进行浸出。该方法消除了Cu(NH3)42+对S2O32‑的氧化分解,使硫代硫酸盐消耗量大幅降低;消除了Cu(S2O3)23‑/Cu(S2O3)35‑对树脂吸金的干扰,减弱了其在树脂表面对金的竞争吸附,有利于浸出液中金的树脂吸附法回收,而且载金树脂的解吸可采用简单的一段工艺;避免了氨水的加入,消除了NH3对大气和水体环境的威胁。该方法浸金率与传统的铜离子、氨、硫代硫酸盐浸金法相当,但其解决了传统硫代硫酸盐浸金法硫代硫酸盐消耗高、环境不友好、浸出液中金回收难的问题。
本发明提出一种利用两段电容去离子法选择性分离高铼酸根的方法,包括以下步骤:将含有高铼酸根的待吸附溶液通入第一段电容,在1.8~3.0V的槽电压下被阳极区内的活性炭吸附,再通入第二段电容中,在1.8~3.0V的槽电压下被阳极区内的活性炭吸附。本发明还提出利用两段电容去离子法选择性分离高铼酸根的装置。本发明提出的两段电容去离子法分离高铼酸根的方法选择性好,对ReO4‑的选择吸附率达到93%以上,而对SO42‑、Cl‑和NO3‑等其他离子的吸附均小于1%。本发明采用的吸附材料价格低廉,活性炭为常规碳材料,价格低廉制作简单,方便购买,相对于其他碳材料降低了本发明技术方案的实施成本。
本发明涉及一种含磁性杂质的氧化铜矿的选矿方法。所述氧化铜矿先经易选氧化铜浮选,获得易选氧化铜精矿和易选氧化铜浮选尾矿,易选氧化铜浮选尾矿再进行难选氧化铜浮选得到难选氧化铜浮选精矿;所述难选氧化铜浮选使用的捕收剂为组合捕收剂,所述组合捕收剂由戊黄药与4-二苯胺磺酸钠组成;对所述难选氧化铜浮选精矿依次进行弱磁选、高梯度磁选得到氧化铜磁选精矿;所述弱磁选的磁场强度为0.2~0.5T;高梯度磁选的背景磁场强度为0.7~1.2T。此氧化铜矿的选矿工艺流程简单,生产成本低,易于工业实施。
一种复合还原溶液中稀贵金属的方法,本发明采用复合还原剂从含有稀贵金属的溶液直接还原得到稀贵金属精矿。含有稀贵金属的溶液倒入带有搅拌装置的耐酸反应器中,通过控制溶液H+浓度和加卤素离子可溶性化合物,通入二氧化硫气体至反应溶液中二氧化硫达到饱和,加入水合肼和盐酸羟胺在一定反应温度下进行复合还原;或在反应溶液中加入盐酸羟胺和水合肼的复合还原剂在一定反应温度下进行复合还原。还原反应结束后,固液分离得到稀贵金属精矿。通过该方法可使溶液中的稀贵金属高效复合还原而得到富集,硒和碲还原率大于等于95%,金、铂、钯还原率达到100%,形成的稀贵金属精矿,可进一步分离回收各种稀贵金属。
本发明公开了一种处理氨与氮三乙酸协同配位浸锌溶液的方法,首先将锌配合浸出液在一定温度下进行蒸馏,使配合浸出液中的氨转变为较易挥发的氨蒸气,经冷凝后以氨水形式回收;其次,向蒸氨后液中加入硫酸锌溶液进行净化,使浸出液中少量的钙和铅以硫酸钙和硫酸铅的形式沉淀;最后向净化后液中加入稀硫酸,氮三乙酸以沉淀形式回收。本发明将配合浸出液中以混配型配合物ZnNTA(NH3)2‑存在的锌转化为ZnSO4溶液,有利于采用传统的溶剂萃取‑电积方法回收锌;实现了配合浸锌溶液中有机配体氮三乙酸的再生,有利于节约生产成本;实现了浸出溶液中主要杂质元素铅、钙的脱除,简化了后续净化工序。
一种还原水解共沉淀富集与回收金铂钯硒碲铋的方法。首先,在溶液中通入SO2进行还原反应后加入氢氧化钠进行水解沉淀,过滤得到还原沉淀渣,还原沉淀渣经酸浸出,过滤得到富集碲铋的酸浸液和富集金铂钯的精矿,酸浸液中碲、铋的浓度与沉金后液中碲、铋的浓度比较,碲、铋分别富集了6.7倍和11.2倍,金铂钯精矿中金、铂、钯的含量达到了3.34%、0.42%、1.4%,与还原沉淀渣中的金、铂、钯的含量比较,金、铂、钯富集了10倍。富集碲铋的酸浸液采用SO2还原后,得到碲粉和还原碲后液,在还原碲后液中加入氢氧化钠进行水解过滤得到氯氧铋。本发明各金属还原沉淀效率高,有价金属回收率高,提高设备利用率,减少设备投资。
从碱性粗钼酸钠溶液中萃取钼制取纯钼酸铵溶液的方法。该方法采用甲基三烷基铵的碳酸盐或甲基三烷基铵的碳酸氢盐为萃取剂直接从碱性粗钼酸钠溶液中萃取钼,杂质磷、砷、硅等留在萃余液中而与钼分离,负钼有机相用碳酸氢铵溶液或碳酸氢铵和碳酸铵的混合溶液为反萃剂反萃取得到纯钼酸铵溶液。本发明在实现钼酸钠溶液向钼酸铵溶液转型的同时除去了磷、砷、硅等杂质,萃余液经适当处理后可返回浸出使用,工艺流程短,化学试剂消耗小,废水排放量小,易于工业化实现。
高压氧氨浸从石煤矿中提取与分离镍钼的工艺,将原矿石磨成粉末,浸入到氨水溶液中,通入氧气使反应压力在1.5MPA~3.0MPA,反应后过滤,蒸氨以后的底液用酸溶解,然后通过萃取分离得到含钼的有机相,含镍的水相,直至分别纯化。与现有工艺相比,本工艺大大降低环境污染,提高矿产资源的综合利用率,有价金属回收率高,产品纯度高。经半工业试验,验证了钼镍回收率都达到90%以上。
本发明公开了一种用于浸出风化壳淋积型稀土的复合微生物菌剂及其制备方法,其含有的菌种为以下菌种中的多种:解脂耶氏酵母、鲁氏接合酵母、酿酒酵母、米曲霉,木醋杆菌、氧化葡糖杆菌、乳酸片球菌、植物乳杆菌、米根霉、土曲霉,纹膜醋杆菌、许氏醋酸菌、奥尔兰纹膜醋杆菌、胶膜纹膜醋杆菌、恶臭醋杆菌、巴氏醋酸菌、铜绿假单胞菌、维氏硝化杆菌。本发明用于风化壳淋积型稀土浸出的复合微生物菌剂制备所需的微生物均广泛存在于自然界中,且大都为可用于食品工业的工程菌株,具有环保安全、成本低和易获取的优点;本发明的用于风化壳淋积型稀土浸出的复合微生物菌剂制备方法,所用设备简单、操作简便,有利于实现工业化应用。
本发明公开了一种废旧锂离子电池正极材料再生方法包括以下步骤:(1)将锂盐与添加剂混合配成电解液,所述锂盐由锂盐LS1和锂盐LS2组成;所述添加剂由添加剂A1和添加剂A2组成;(2)以拆解获得的锂离子电池正极极片为阴极,所述阴极用强碱性阴离子交换膜包裹,惰性电极为阳极,在电压为(2.5‑4.5)V和步骤(1)的电解液存在的条件下进行电解;(3)将正极材料从电解后的极片上剥离,并将锂源和正极材料按质量比(1‑2):1混合进行热处理,冷却后经洗涤并烘干得到再生正极材料。本发明通过电解的方式实现了废旧正极材料充分均匀补锂,缩短了补锂时间,再结合热处理恢复材料结构,实现了废旧正极材料的有效再生。
本发明涉及一种硫化矿的臭氧‑铁离子协同浸出方法,将难浸出的硫化矿(原矿、尾矿或精矿)磨细至粒径在0.074mm以下占60%以上的矿粉,然后与pH值为0.1~4的含铁离子酸性溶液充分混合,持续通入臭氧气体,在设定的反应条件下进行协同氧化浸出。本发明可实现常压条件下硫化矿的清洁高效浸出。臭氧可通过空气直接制备,高铁氧化剂可通过臭氧和空气氧化亚铁再生,因而浸出剂和溶液闭路循环利用。本发明具有绿色环保、浸出效率高、浸出周期短、成本低、流程和操作简单等优点,可大规模工业应用。
本发明涉及一种利用镍钼矿制备高镍三元材料前驱体的方法,包括步骤:1)将镍钼矿、软锰矿和磷酸溶液混合并进行反应,固液分离后得到含钼、镍和锰的浸出液,萃取浸出液中的钼得到含钼的萃取液和第一萃余液;2)调整第一萃余液的pH≤1.5并进行萃取除杂得到第二萃余液,调整第二萃余液pH至5~7后再用P204萃取得到含镍和锰的萃取液,用硫酸反萃含得到含镍和锰的混合溶液;3)按照Ni:Co:Mn质量百分比8:1:1,将可溶性的锰盐和可溶性的镍盐中的一种或两种、以及可溶性的钴盐加入到含镍和锰的混合溶液中,调节溶液的pH至10~12得到高镍三元正极材料前驱体。通过镍钼矿制备得到高镍三元正极材料前驱体,为三元材料的制备提供一条低成本、短流程、清洁环保的新途径。
本发明涉及一种废旧锂离子动力电池无害化综合回收利用方法,包含如下步骤:将废旧电池包拆解,测量、收集良好的电池单体重新配组进行梯级利用;将不良的废旧锂离子动力电池单体充分放电,动力电池于隔氧环境中化拆解;将取出的芯包于加热炉进行热处理,采取冷凝方式将蒸出的溶剂进行收集;将溶剂已蒸干的芯包拆包得到隔膜材料、正极片和负极片;将正、负极片置于200-600℃下回转窑中热处理;将热处理后极片分别用粉碎机和粉末分选机进行分选,得到铝粉、铜粉、废旧正极粉和废旧负极粉;在分别对正极粉和负极粉进行修复。该方法采用全干法闭路回收工艺,实现动力电池无害化回收利用。
本发明公开了一种具有极高选择性的测定锌电解液中Co2+含量的络合物吸附波极谱法,包括将待测样品与检测体系反应,测定产生的Co2+络合物吸附极谱波,获得二阶导数波峰电流,计算待测样品中的Co2+浓度;所述检测体系包括底液氨?氯化铵缓冲液,掩蔽剂乙二胺四乙酸盐,络合剂丁二酮肟或者络合剂丁二酮肟和亚硝酸钠。本发明方法以乙二胺四乙酸盐为掩蔽剂,对钴具有极高的选择性,不仅可以完全掩蔽高浓度基体成分Zn2+,消除Zn2+波对Co2+测定的影响,而且也可掩蔽锌电解液中其他共存杂质金属离子的干扰,选择性极好,不需要对锌电解液进行任何预处理,没有沉淀生成,分析速度快,易实现自动化,适合在线分析检测使用。
一种从锡渣中回收锡锑铅并富集铟的方法,是将含锡、锑、铅、铟、砷氧化物的锡渣粉末,用盐酸、氯化钠、水合肼混合液作为浸出液,进行电位控制两段逆流还原浸出锑,一段浸出液中和水解产出粗锑白,二段浸出渣用氯化钠溶液浸出铅,浸铅后液冷却结晶得粗氯化铅,浸铅后渣洗钠得含锡49.52~55.69wt%、含铟1.04~1.2wt%的高铟锡精矿。粗锑白、粗氯化铅纯度分别为93.58wt%、99.67wt%,锡、锑、铅、铟直收率分别高达98.68wt%、84.616wt%、95.136wt%、95.3wt%,本发明具有流程短、分离效果好、工作环境好等优点。
本发明公开了一种从含镓和锗的高酸浸出液中选择性萃取镓和锗的方法,该方法是将含镓和锗的高酸浸出液用肟类螯合萃取剂进行液液萃取I,将液液萃取I所得的负载有机相用氢氧化钠溶液进行反萃I后得到锗酸钠溶液;在液液萃取I所得的萃余液中加入调节剂调节后,用磷酸酯或膦酸酯类萃取剂进行液液萃取II;将液液萃取II所得负载有机相用硫酸溶液进行反萃II得到硫酸镓溶液,或者将液液萃取II所得负载有机相先用盐酸洗涤后,再用硫酸溶液进行反萃II得到硫酸镓溶液;该方法依次使用肟类螯合萃取剂和磷酸酯或膦酸酯类萃取剂在含镓和锗的高酸浸出液中依次选择性高效萃取分离出锗和镓;锗的萃取回收率最高可达98%,镓的萃取回收率最高可达99%;本发明方法工艺简单,成本低,极易实现工业化。
本发明公开了一种从含银硫化锌精矿中提取银并提高锌精矿品质的方法,首先将含银硫化锌精矿与适量氧化铅烟尘、钠盐及还原剂混合后升温并充分反应;反应结束后,得到含银粗铅及冶炼渣。含银粗铅通过电解得到电铅及银粉。而冶炼渣则进行水浸反应;水浸反应结束后,进行液固分离,滤液进行蒸发浓缩结晶,得到可返回作为熔剂使用的钠盐;而浸出渣则为更高品质的脱银硫化锌精矿。采用本发明的方法可以实现含银锌精矿的高效脱银、脱砷、脱镉、脱氟氯,产出电铅、银粉及高品位硫化锌精矿产品,同时作为熔剂的钠盐在反应中不消耗,反应结束后通过蒸发浓缩结晶再生,实现熔剂的循环使用。本方法具有流程短、环保好、经济效益高等优点,适合工业化推广应用。
从低品位复杂混合铜钴矿中分离提取铜、钴镍的方法,以低品位复杂混合铜钴矿(硫化物与氧化物)为原料,采用矿石粉碎磨浆、湿法酸性氯盐浸出、还原置换提取铜粉、硫化沉淀镍(钴)、沉淀母液浓缩—干燥—低温焙烧水解等工艺流程来提取铜、钴镍中间产品。主要技术要点是对混合铜钴矿中的金属元素先用常压酸性氯盐溶解浸出,用还原剂还原沉淀浸出液中铜,用硫化剂沉淀钴镍得到中间产品,沉镍钴后母液经过浓缩—干燥—低温焙烧水解得到含铁、镁等的金属氧化物、金属氯氧化物和氯化氢;并回收氯化氢得到盐酸,水浸焙烧固体得氯化物溶液;回收盐酸和氯化物溶液用于矿浆的浸出。本发明综合回收铜、镍钴等,具有铜、钴镍浸出率高、能耗少、成本低、氯(盐酸)闭路循环以及项目工程投资少等特点。整个工艺简要、清洁,对环境友好。本发明尤其适应大规模工业生产。
本发明公开了一种有机化合物及其制备方法和应用,该有机化合物具有式Ⅰ所示的结构:
本发明提供一种矿浆电池,包括反应槽、隔膜、阳极、阴极、阳极浆料、阴极电解液和导线,隔膜将反应槽分成阴极反应槽和阳极反应槽;阴极的一端设于阴极反应槽中,阳极的一端设于阳极反应槽中,阴极的另一端与阳极的另一端通过导线连接,形成闭合回路;隔膜为阴离子交换膜;阴极电解液置于所述阴极反应槽中,阴极电解液包括酸性金属盐溶液,金属为锰、锌、铁、钴、镍中的至少一种;阳极浆料置于阳极反应槽中,阳极浆料包括矿物、导电碳和酸溶液,pH为0‑7;矿物包括铜矿和/或铁矿。本发明提供的矿浆电池,可以同时实现金属提取与能源储存/转换且有效解决传统金属冶炼过程中能耗高、环境污染严重、条件苛刻等问题。
本发明涉及一种从钨矿物中酸碱联合提取钨的方法。该方法包括:步骤一、酸分解:将钨矿与盐酸溶液混合,并加入H2O2进行搅拌反应,得到固体钨酸和酸分解母液;步骤二、固体钨酸的碳酸钠溶解:将所述固体钨酸与碳酸钠溶液混合进行搅拌反应,反应完成后过滤得溶解渣和钨酸钠溶液;步骤三、钨酸钠溶液的树脂离子交换处理:将步骤二得到的所述钨酸钠溶液用硫酸中和至pH为3‑6以作为交前液,所述交前液用大孔弱碱性阴离子交换树脂对其中的钨进行吸附,并用去离子水洗涤吸附钨的大孔弱碱性阴离子交换树脂;洗涤完成后,用氨水作为解吸剂进行解吸得到钨酸铵解吸液,经进一步除杂后蒸发结晶,得仲钨酸铵。该方法在简化工艺流程的同时确保了钨的回收率。
本发明涉及一种连续分解白钨矿的方法,包括如下步骤:1)将白钨矿与母液连续加入反应1区,充分搅拌混合,所得浆料进入反应2区;2)向反应2区中连续补加磷酸,充分搅拌混合,所得浆料进入反应3区;3)向反应3区中连续补加硫酸,充分搅拌混合,所得浆料以此进入反应4区、反应5区、反应6区;4)在反应6区中浆料进行分流,一部分浆料回流至反应1区,另一部分浆料进入反应7区;5)将反应7区中所得浆料过滤,浸出液提钨,所得母液返回反应1区继续与白钨矿混合。采用本发明所述方法可避免白钨矿浸出条件的波动,简化了操作,改善了效果,从而实现了大规模稳定生产。
中冶有色为您提供最新的湖南长沙有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!