本发明公开了一种废旧锂离子电池材料中有价金属组分回收的方法。首先,将废旧锂离子正极材料和负极材料充分混合,在800~1000℃进行热处理。其次,将烧结产物磨碎,并进行水浸‑气浮处理,回收上浮的石墨后,将剩余的固液混合物过滤、干燥。然后,采用沉淀或蒸发结晶的方法从滤液中回收碳酸锂。最后,将固体物质进行电化学溶解,提取镍、钴金属资源。该方法可充分利用废旧锂离子电池负极石墨作为还原剂,并回收负极材料中所含的锂资源,实现废料资源的最大化利用。且选择性提取镍、钴、锂等高价金属资源,分离过程简单。同时该方法不易产生大量的酸碱性废水,极具产业应用价值。
本发明公开了一种手机散热铝壳锂离子电池,涉及电池技术领域,包括锂离子电池本体、壳体、导热柱、正电极、负电极、正导电柱和负导电柱,壳体内设有开口向上的内腔,内腔的底部设有正导电柱和负导电柱,正导电柱的下端和负导电柱的下端均凸出壳体的下端面,锂离子电池本体卡接在内腔内,锂离子电池本体的下端设有正电极和负电极,壳体的对称两侧设有若干导热柱,导热柱的一端与锂离子电池本体的表面接触,导热柱的另一端凸出壳体的表面,在使用本发明时,锂离子电池本体在使用时产生的热量,通过导热柱引导到外部环境,保证了电池的使用性能,使电池本身使用寿命得到保证,同时也不会对手机及数码相机等正常使用产生影响,并且消除了安全隐患。
锂硫电池制片叠片一体机,包括锂带制片和叠片两大部分,锂带制片包括放卷装置、输送装置、压紧装置、冲切装置;叠片部分包括锂片吸附移片装置、隔膜放卷装置、叠片台、锂片定位台、电芯夹爪、正极片料盒以及隔膜切断装置。由输送装置拉动锂片,使卷料开卷输出锂片;冲切好的锂片由膜带输送,锂片通过吸盘转移到定位台定位,正极片料盒由人工放入指定位置;锂片从定位台转移到叠片台上进行叠片;然后由电芯夹爪将其取出,切断装置将隔膜切断,再进行下一轮叠片。本实用新型自动化程度高;可随电池极片大小进行适度调整和更换,适用性强,可生产不同规格型号的锂硫电池;同时减少劳动强度,解决了极片定位精度差的问题,提高了产品品质和生产效率。
本实用新型公开了一种智能安全锂电池,属于电池领域,所述智能安全锂电池包括:盖板以及外壳,所述盖板上开设了正极穿孔、第一螺孔以及负极穿孔;所述外壳是一个圆柱体,外壳前端从上往下依次安装了正极接线柱、第二螺孔以及负极接线柱;所述外壳内部中间从右往右依次设置了第一电池模块、第二电池模块、第三电池模块以及控制电路板,所述的一种智能安全锂电池结构设计合理,在智能安全锂电池运作时由于外壳内部发生短路现象造成外壳内部电流过大时,正极接线柱以及负极接线柱会发生断裂现象,使安全智能锂电池与负载发生断路现象,所述的一种智能安全锂电池散热效果好,实用性强,值得在电池领域推广与使用。
本实用新型提供一种锰酸锂电池组,它包括外壳、单体锂电池、正极板和负极板,所述单体锂电池设有两个或两个以上并分别放置于外壳内,且每个单体锂电池的正极片或负极片分别连接对应的正极板或负极板;所述正极片或负极片包括弯折呈L形的基材、以及基材其中一折弯边两侧表面的覆合层;它采用L形基材且其中一折弯边的两侧表面设有覆合层的结构从而克服现有技术焊接难度大的缺陷,能实现对应选择相同材料进行焊接,降低了加工成本,可确保大电流通过时不会产生熔断,提高了锂电池组的使用寿命,整体结构科学合理、简单紧凑,安装和使用方便;它广泛适用于锂电池组生产配套使用。
本实用新型公开了一种锂电池壳的壳体结构,包括保护壳,所述保护壳内底部开设有滑动槽和限位槽,所述滑动槽内侧壁固定连接有滑动轴,所述滑动轴外侧壁滑动连接有滑动块,所述滑动块顶部固定连接有放置板,所述放置板底部与保护壳内底部贴合设置,所述放置板顶部固定连接有锂电池,所述保护壳侧壁开设有推动槽,所述推动槽内设有卡合机构,所述保护壳底部开设有限位口。本实用新型通过保护壳、滑动槽、滑动轴、推动槽、滑动弹簧、伸缩杆、推动板的配合使用,可以方便将锂电池从保护壳中取出,解决了现有的锂电池壳体在取出锂电池时操作不够方便,给工作人员对锂电池的检修带来麻烦的问题,提高了装置的实用性。
本实用新型公开了一种具有防盗功能的电动车用锂电池,涉及电动车技术领域。本实用新型包括锂电池本体,锂电池本体上固定有防护壳,且防护壳上对称位置分别固定有第一散热风扇和第二散热风扇,防护壳内部放置的干燥盒的内部放置有干燥剂,防护壳的上端固定有顶盖,且顶盖下端抵接的防护组件与锂电池本体的上端抵接连接,顶盖的下端中间位置固定有GPS定位器。通过GPS定位器可将锂电池的定位数据传到手机上,可实时跟踪,而通过第一散热风扇和第二散热风扇可将热快速地吹到外界空气中,便于散热,然后通过干燥剂能除去防护壳内部空气的水份,最后通过防护组件可防护锂电池本体的上端,本实用新型防盗、散热效果佳、防潮效果佳和防护效果佳。
本实用新型公开了一种锂电池生产用高效烘干装置,包括烘干箱本体,烘干箱本体内侧设有烘干桶,烘干桶内侧固定连接有环形框,环形框内侧设有烘干灯本体,烘干灯本体底部设有旋转轴,烘干箱本体内部一端固定嵌设有电机,烘干桶两侧均设有活动定位机构,两个活动定位机构均包括限位块和固定杆,两个限位块分别位于烘干桶两侧且与烘干桶固定连接。本实用新型结构合理简单,有利于对锂电池烘干的更加彻底,提升了该烘干装置的实用性,有利于工作人员更加方便的取出锂电池,减少了该烘干装置使用的不便,避免了现有的烘干装置在烘干过程中容易使得部分锂电池无法完全烘干,导致锂电池烘干的并不彻底易造成锂电池发生损坏的情况。
本发明公开了一种废旧锂离子电池正极材料再生方法包括以下步骤:(1)将锂盐与添加剂混合配成电解液,所述锂盐由锂盐LS1和锂盐LS2组成;所述添加剂由添加剂A1和添加剂A2组成;(2)以拆解获得的锂离子电池正极极片为阴极,所述阴极用强碱性阴离子交换膜包裹,惰性电极为阳极,在电压为(2.5‑4.5)V和步骤(1)的电解液存在的条件下进行电解;(3)将正极材料从电解后的极片上剥离,并将锂源和正极材料按质量比(1‑2):1混合进行热处理,冷却后经洗涤并烘干得到再生正极材料。本发明通过电解的方式实现了废旧正极材料充分均匀补锂,缩短了补锂时间,再结合热处理恢复材料结构,实现了废旧正极材料的有效再生。
本发明涉及锂电池技术领域,具体地说,涉及基于局部散热的锂电池组固定装置。其包括锂电池本体和锂电池本体外侧的锂电池组固定机构,锂电池组固定机构至少包括:存放壳,存放壳两侧内壁均开设有滑槽,滑槽内部等间距设置有多个分隔板,存放壳外壁开设有多个透气孔,存放壳顶部边缘处开设有四个插槽,夹紧装置,夹紧装置分别位于两个分隔板之间,夹紧装置包括夹紧板,夹紧板设置有相互对称的两个,两个夹紧板两侧壁均设置有移动板,移动板滑动设置在滑槽内部,局部散热装置,局部散热装置包括固定框,固定框内部中心处设置有散热扇,本发明可以有效的固定锂电池组,且可以对锂电池本体外侧进行局部散热,有利于保护锂电池的安全。
本实用新型公开了一种圆柱型聚合物锂子电池,包括圆形锂子电池和活动台,所述圆形锂子电池上设置有若干个电池连接条,所述电池连接条上设置有电池连接板,所述电池连接板上设置有电池连接线,所述活动台内设置有内部支撑台,所述内部支撑台上面设置有上部支撑柱,所述内部支撑台的下部位置设置有底部支撑柱,所述活动台的侧面位置设置有侧面折板,所述侧面折板上设置有侧面上部安装板。本实用新型所述的一种圆柱型聚合物锂子电池,属于电池加工设备领域,通过设置的活动台等结构,固定住圆形锂子电池,避免安装电池连接条和电池连接板时,圆形锂子电池发生散掉现象,避免工作人员重新排列,使得工作更为简单,更为方便。
本发明公开一种磁性复合固态电解质膜、制备方法及制备固态锂金属电池的方法,所述磁性复合固态电解质膜,包括三层膜结构:第一层膜结构由含氟聚合物和锂盐组成的,厚度为1-10μm;第二层膜结构由聚合物,纳米磁性粒子,氧化物固态电解质纳米粉末和锂盐组成,厚度为5-25μm;第三层膜结构由含氟聚合物和锂盐组成的,厚度为1-10μm。本发明的磁性复合固态电解质膜,在保证离子传输基础上,还可以调控锂离子扩散和锂沉积,从源头抑制锂枝晶生长,同时能与高电压正极和锂负极兼容,可用于锂金属电池以降低其安全风险。
本发明提供了一种含锂氧化物前驱体及其制备方法,其特征在于,包括以下步骤:S1,混料:将锂源与前驱体进行混合,得到混合物;其中,所述锂源中锂与前驱体中的总过渡金属元素摩尔比r为:0<r<1;S2,烧结:将S1得到的混合料在高温下进行烧结,得到含锂氧化物前驱体。本发明通过将锂源与前驱体混合物烧结,大幅度减少后续正极材料制备过程中前驱体和锂源分解形成的H2O和CO2等气体,减少废气带来的热量损失,同时有效解决后续正极材料烧结过程中炉内气氛难以控制的问题,大幅度降低成本。且制备的含锂氧化物前驱体形貌呈多孔状,有利于后续正极材料固相烧结过程中锂离子在材料内部的扩散,改善正极材料的电化学性能。
本发明属于净化除杂技术领域,具体涉及一种从含镍、钴、锰和锂的溶液中除钙、镁的方法。从含镍、钴、锰和锂的溶液中去除钙和镁的方法为两段法工艺,包括一段除钙镁步骤和二段除钙镁步骤;在二段除钙镁步骤加入氟化物作为钙和镁的沉淀剂,过滤后的二段钙镁渣作为一段除钙镁步骤的沉淀剂。利用相同的原理,可回收一段钙镁渣中的有价金属。本发明去除钙镁的氟化物消耗较低,同时通过复分解反应,释放了二段钙镁渣中的有价金属离子,提高了镍、钴、锰和锂的收率,显著提高了经济效益。
本发明公开了一种生物质废料协助下的废旧锂电池正极材料回收再生方法,属于资源循环利用技术领域。本发明以生物质废料为还原剂,将废旧动力锂电池的回收与三元正极材料的再生有机地结合起来,低成本实现了废旧动力锂电池的循环利用;工艺流程短、合成成本低、适合大规模生产,再生的镍钴锰三元正极材料性能优异,具有很好的经济效益和社会效益。
本发明公开一种具有多孔星形形貌的锂离子电池正极材料LiFePO4及其制备方法。本发明的制备方法包括如下步骤:将锂盐、铁盐和磷酸盐混合成溶液,再加入形貌调控剂进行水热反应,然后进行预烧、煅烧得到本发明的LiFePO4。本发明采用一步水热法通过自组装制备具有多孔星形形貌的LiFePO4,它不仅有效提高活性粒子的比表面积,增大活性粒子的有效电化学接触面积,还提高活性粒子的电子电导率和离子传导率,同时克服了目前纳米级LiFePO4材料容易团聚的缺点,从而在保证LiFePO4具有高容量的同时,能有效地提高其振实密度和体积比容量,满足动力锂离子电池大倍率、快速充放电的使用要求。
本发明公开了一种锂锰电池三元系正极材料的制备方法。本发明分别采用球磨辅助高温合成法和共沉淀-高温合成法制备LiNi1/3Co1/3Mn1/3O2,并采用AlPO4表面包覆和阴阳离子复合掺杂等手段对LiNi1/3Co1/3Mn1/3O2进行改性研究,获得电化学性能优良的三元系正极材料,提高锂锰正极材料的性能,为三元系材料在动力型锂离子电池中的应用提供理论和技术支持。
本发明公开了一种硅胶垫,所述硅胶垫为L形板面结构,所述硅胶垫的两板面的面之间形成夹角,所述硅胶垫内设有密闭空心室。在制备锂离子电池的化成工艺中,采用本发明的硅胶垫扣设在电芯的深坑面上,使硅胶垫的长边板面中的空心室覆盖住电芯的主体部分,使硅胶垫的短边板面扣在电芯的头部,短边板面的底端抵住顶封边。电芯隔膜采用涂胶隔膜,结合高温夹具化成,能对电芯头部与电芯主体进行无压差的化成,化成后电芯头部的隔膜能与极片进行紧密的粘结。以此减小充放电过程中锂离子的传输路径,确保多次充放电后不会产生析锂。本发明的硅胶垫结构简单,应用方法简便可行,便于实现量产。本发明应用于电池技术领域。
本发明公开了一种锂离子电池硅@石墨烯/CVD碳复合负极材料及其制备方法和应用,硅@石墨烯/CVD碳复合负极材料由石墨烯增强CVD碳复合层包覆硅纳米颗粒构成,其制备方法是在硅纳米颗粒表面修饰氨基丙基三甲氧基硅烷后,与石墨烯分散液搅拌混合,再进行离心洗涤及冷冻干燥处理,得到硅@石墨烯复合材料;所述硅@石墨烯复合材料通过CVD沉积碳后,即得硅@石墨烯/CVD碳复合材料。该复合材料作为锂离子电池负极材料应用,不但大幅度提高锂离子电池充放电效率,且延长其使用寿命。
本发明实施例提供了锂电匣钵用莫来石制备工艺,该工艺首先选用铁、钾、钠含量较低的煤矸石为基础,根据所制作的莫来石加入合适的氧化铝,外稀土氧化物和氧化锆,经球磨、成型、干燥后高温烧成,再经破碎分级制作出锂电匣钵用莫来石,其所制备的锂电匣钵使用寿命(次数)提高达到25%。该工艺采用独特的二段式烧成方式,使莫来石相的生成率提高超过5%,气孔率下降超过10%,该制备工艺中,稀土氧化物可以采用含氧化钇、氧化镧、氧化铈的混合稀土,也可以采用单独的稀土氧化物和稀土废料,节约了成本。
本发明公开了一种特殊形貌微纳结构富锂锰基正极材料的制备方法,属于新能源材料储能材料制备工艺技术领域。将锰盐和镍盐按比例溶解在蒸馏水中,得到A液;将按比例称取的均相沉淀剂溶解在蒸馏水中得到B液,将一定比例的离子液体导入B液,充分搅拌,混匀;将A液与混合后的B液混合,充分搅拌;再将混合后的液体转移到水热反应釜中进行水热反应,待冷却至室温后,离心分离,洗涤,干燥,得到锰基前驱体材料;最终将前驱体与一定比例的碳酸锂,研磨混合均匀,依次进行预烧、煅烧得到富锂锰基正极材料。本发明解决现有技术中存在的制备过程能耗高、耗时长且难以控制产物形貌特征的问题。
本发明提供了一种简单、高效、环保地从废旧锂离子电池正极材料中回收有价金属的方法,包括以下步骤:盐溶液放电;拆解分离出正极片;正极片破碎分离正极材料和铝箔;正极材料与焙烧剂硫酸铵和/或硫酸氢铵混合低温焙烧;焙烧料水浸,分离得到碳和浸出液;向浸出液中加入沉淀剂,并使用含NH3烟气调节pH,沉淀除Li以外的其他金属,固液分离;使用含NH3烟气调节滤液的pH,加入碳酸铵或碳酸氢铵或者鼓入CO2气体,沉锂,得到碳酸锂产品。本发明制备过程简单、工艺条件温和、流程所需时间短、不需消耗大量酸和碱、成本低,而且能有效实现正极材料中的有价金属和碳的回收,绿色环保,不会产生大量固废和废水。
本发明属于锂硫电池电极材料领域,具体涉及一种锂硫电池正极材料,包含正极活性材料、稳定剂、导电剂和粘结剂,所述正极活性材料为不溶性硫磺;所述的稳定剂是能与正极活性材料两端的硫原子形成共有电子对的化合物,优选为卤素、有机卤化物和噻唑类化合物中的至少一种。本发明所述的正极活性材料极大的减少了多硫化物的溶出,搭配使用的不溶性硫磺稳定剂,可有效抑制了电极反应过程中“死硫”产生和“穿梭效应”。由本发明提供制备的正极组装的锂硫电池首次放电比容量高、循环性能好,另外,本发明提供的硫正极制备方法成本低廉、操作简易、易于实现大规模商业化制造。
本发明涉及一种磷酸铁锂动力电池组新能源轨道车,包括:车体、车厢、走行部、制动系统、牵引传动系统及电池组;所述电池组采用磷酸铁锂动力电池,采用模块化设计、设置在车厢内两侧,增大了轨道车下部距轨面间隙,提高了运行安全性能;车厢设置有天窗,电池模块能够通过天窗吊装进出车厢,大大缩短了电池组进行更换、充电或检修所需要的时间,提高了新能源轨道车的利用率;采用冷却加热一体机来保证电池模块的工作温度保持在合适的范围内,提高了电池组的有效电容量,扩大了电池组的环境温度适应范围。本发明的磷酸铁锂动力电池组新能源轨道车充电速度快、容量大、使用寿命长、安全性好、高温性能好、续航里程长,路面适应性和运行安全性好。
一种铝锂合金双级连续时效处理方法。本发明属于铝合金加工技术领域,涉及铝锂合金的双级连续时效热处理方法。所述铝锂合金的时效工艺的主要特点是在温度连续变化的过程中对铝合金进行时效处理,在这一过程中,该工艺包含在2个连续变温区间进行不同的升温速率,通过时效析出的特点与温度区间和升温速率的合理控制,以及减弱位错回复的影响,显著的提高了合金的拉伸性能。该双级连续时效工艺在提高铝锂合金性能的同时,缩短了时效工艺时间、降低能源消耗,提高了生产效率,能有效满足目前对高综合性能铝锂合金的需求。
本发明提供了一种废旧锂离子电池正极回收及再利用的方法,具体包括以下步骤:将废旧锂离子电池正极煅烧,煅烧产物进行磁选分离,分离出的磁性组分进行氧化烧结制得三元金属氧化物,将其配成三元NiCoMn氧化物,加入锂源后进行锂化煅烧,得到正极活性材料。本发明采用铝热法对正极片进行直接热处理,利用正极集流体铝箔充当铝源,直接对极片上的活性材料进行原位还原,这不仅减少了回收工艺流程,还一定程度的降低了回收成本。磁选分离得到非磁性组分经过后续结晶处理可作为锂源,直接用于正极材料的合成,不溶性含铝成分经过净化处理后可以用于正极集流体铝箔的制备,实现了零添加、零污染的回收工艺过程。
本实用新型属于锂离子电池技术领域,尤其涉及一种可低温充电的锂离子电池,包括:正极片;第一负极片,设置于所述正极片的一侧,所述第一负极片包括第一负极集流体以及设置于所述第一负极集流体表面的第一负极材料层,所述第一负极材料层为钛酸锂材料层;第二负极片,设置于所述正极片的另一侧,所述第二负极片包括第二负极集流体以及设置于所述第二负极集流体表面的第二负极材料层,所述第二负极材料层的嵌锂电位小于钛酸锂材料层的嵌锂电位;隔膜,设置于所述第一负极片与所述正极片之间以及所述第二负极片与所述正极片之间。相比于现有技术,本实用新型的锂离子电池改善低温条件下的充电性能,特别是超低温条件下的大倍率充电性能。
本实用新型公开了一种具有防水防潮功能的锂电池保护机构,包括壳体、安装组件和限位组件,所述壳体的表面通过铰链活动安装有门体,所述壳体的内部固定安装有限位组件,所述壳体内部的顶端贯穿安装有风扇,所述壳体的两侧皆固定安装有把手。本实用新型通过在壳体的表面通过铰链活动安装有门体,能够利用壳体对锂电池进行保护,接着采用聚氨酯防水层对锂电池进行防水,然后利用橡胶绝缘层对锂电池受到外接干扰,接着利用观察窗对壳体内部的情况进行观察,然后利用钥匙打开门锁,便于工作人员对壳体内部的锂电池进行检修与维护,接着利用散热孔与风扇对壳体内部锂电池进行快速降温,提高锂电池的使用寿命。
本实用新型属于锂电池技术领域,具体涉及无线电信号充电式锂电池系统,包括锂电池和无线电充电装置,所述无线电充电装置包括导电线圈和电磁信号整合器,所述导电线圈包括导电引出线,所述无线电充电装置通过所述导电引出线与所述锂电池电连接。所述无线电充电装置收集周围无线电信号的电磁波,所述电磁信号整合器的作用是将无线电信号进行谐波处理,将波长相近的电磁波进行组合达到增强的效果,收集并增强后的电磁波作用于所述导电线圈上,在所述导电线圈上发生电磁感应现象,从而在所述导电线圈上产生感应电流,该导电线圈通过导电引出线对所述锂电池进行充电,充分利用了周围环境中的电磁信号,使锂电池系统能够及时对锂电池进行电量的补充。
本实用新型公开了一种软包动力锂离子电池模组,包括模组框架、若干条形锂离子电芯、若干硅胶条、面板和汇流排组,其中,所述各锂离子电芯间夹设硅胶条,所述锂离子电芯沿模组框架长度及宽度方向分别并排布置于模组框架内,所述锂离子电芯的极耳线性排列成极耳串并通过汇流排组连接成软包动力锂离子电池模组正负极,所述模组框架一端装有面板,所述汇流排组布置于面板上。与现有技术相比,本实用新型提供的软包动力锂离子电池模组具有较高的比强度,整体体积较小,具有优良的耐热性能、耐磨蚀性能、高抗冲击性能,加工方便简单,便于安装,生产成本低,经济环保等特点。
中冶有色为您提供最新的湖南有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!