本发明涉及一种叔丁氧羰基‑3‑(羟甲基)‑[1,2,3]三氮唑[1,5‑a]哌啶‑6‑酰胺的合成方法,主要解决目前没有适合工业化合成方法的技术问题。本发明分七步,首先由(2‑氯‑5‑硝基吡啶)和丙二酸叔丁基乙酯于溶剂四氢呋喃中在NaH的作用下反应得到化合物2,化合物2在三氟乙酸的作用下得到化合物3,然后化合物3在钯碳催化下进行氢化反应得到化合物4,对化合物4进行叔丁氧羰基保护得到化合物5,化合物5在DBU的作用下与p‑ABSA作用得到化合物6,化合物6在四氢呋喃中被四氢锂铝还原得到化合物7,化合物7在湿钯碳催化下进行催化加氢得到最终化合物8。
本发明涉及一种长棒状硼化铪粉体及其制备方法。其技术方案是:将27~42wt%的氧化铪粉体、8~18wt%的碳化硼粉体、3~9wt%的碳黑粉体、10~27wt%的氯化锂粉体和22~34wt%的氯化钾粉体混合均匀,得到混合反应物。将装有混合反应物的坩埚放入匣钵内,再置于微波加热炉中,抽至真空度为10~50Pa,然后在流通氩气气氛和1100~1300°C条件下保温10~60min,自然冷却,用去离子水反复清洗,最后在65~80°C条件下干燥6~12h,即得长棒状硼化铪粉体。本发明具有成本低、工艺简单、反应温度低、反应速率高、适合工业化生产且绿色环保的特点,所制备的产品纯度高、具备均匀的棒状结构、尺寸可控、比表面积大和烧结性能良好。
本发明涉及电极材料合成技术领域,具体公开了一种3D结构的碳纳米管/导电聚合物双重修饰的复合硫正极材料的制备方法,该方法以碳纳米管、聚苯胺和硫为基材,通过水热法、液相合成法以及热处理等步骤,制备出了具有3D结构的硫复合正极材料,该电极材料结合了导电聚合物制备简便、化学限域以及碳纳米管3D导电网络骨架的优点对硫进行有效修饰,用于锂硫电池中具有循环性能好、倍率性能佳等优点,在移动通讯和便携数码产品、电动汽车、储能设备等相关领域具有广阔的应用前景。整个工艺方法流程较为简单,反应条件较为温和并且环境友好,易于工业化大规模生产。
本发明公开了一种基于倾角测量的自动吸尘黑板擦,包括毛刷层、吸尘储尘层、电路控制层和保护外壳,其中,电路控制层包括电能管理模块、可充电锂电池和电机控制模块,电机控制模块利用倾角测量电路和主控电路,检测黑板擦所处的位置状态,对倾角处理判断后做出正确的输出响应,实现电机的自动控制。本发明可实现最大程度地吸尘,减少粉尘对环境以及人体健康的危害,同时根据倾角测量,通过软件判断处理,对电机进行自动准确控制,避免出现硬件开关损耗、失灵以及损坏等问题。
一种微电子机械系统用微燃料电池,其特征是:它包括外膜(4、6)、燃料输送口(7)、空气输送口(8)、质子交换膜(5)、阴极多孔催化剂薄膜(3)、阳极多孔催化剂薄膜(1),在所述的质子交换膜(5)的一个表面上覆有所述的阳极多孔催化剂薄膜(1),形成阳极;在其另一个表面上覆有所述的阴极多孔催化剂薄膜(3),形成阴极;在所述的二多孔催化剂薄膜(1、3)的外表面各覆有一带有燃料输送口(7)的外膜(4),和一带有空气输送口(8)的外膜(6);本发明电池具有尺寸较小、能量密度较高,寿命较长的优点,并可作为电子机械系统中持续充电的微能源使用。可与微锂电池组装后,用作电子机械系统微能源。也可作为手机、笔记本电脑等供电的小型便携式电源。
本发明提供了一种含Ni低温钢配套的焊条,其药皮至少包括以下组分,各组分及各组分的质量百分比分别为:大理石40-50%,萤石18-25%,碳酸钡2-5%,硅微粉2-5%,碳酸锂0.5-1.0%,氟化稀土0.5-1.0%,硼砂0.5-1.0%,金属锰2-5%,雾化硅铁2-5%,稀土硅铁2-4%,钛铁3-6%,铝镁合金0.5-1.0%,镍粉9-11%,海藻酸钠0.4-1.0%。按上述配比混配成焊条药皮,配加钾钠混合水玻璃,经焊条压涂机涂覆于H04E焊芯,再经烘干机烘干定型制成电焊条,其熔敷金属扩散氢含量得到了有效的控制,熔敷金属扩散氢含量为3.5ml/100g,达到超低氢焊条标准要求。
本发明涉及一种高性能负极材料Li3VO4/C的制备方法,所述材料具体制备方法为:将纯度为99.9%的化学原料偏钒酸铵、氢氧化锂、六次甲基四胺按摩尔比为1-3:4-8:3-5投料,放置于烧杯中加适量去离子水搅拌,得到均匀溶液;将得到的液体放置于广口瓶中于70~100℃下反应4~10小时,得到前驱液体;向前驱液体中加入适量柠檬酸,搅拌均匀,在60~80℃烘干;将得到的产物在400~700℃,氮气条件下烧结2~10小时即得到平均尺寸约为100nm的Li3VO4/C复合材料。本发明合成方法简单,前驱体的反应可在低温、常压下进行;所制备样品中Li3VO4/C为均匀的纳米颗粒,尺寸在100nm左右;所制备Li3VO4/C可作为钠离子电池负极材料,具有较高充、放电容量和优异的循环性能。
本发明公开了一种LiIrSeO电极材料及其制备方法,其化学式为Li2Ir1‑xSexO3,其中x小于等于0.4。制备方法包括以下步骤:(1)将铱黑、硒掺杂材料、锂源按照比例进行混合,加入粘结剂中混合摇匀,在室温至60℃下进行干燥并收集沉淀物,随后对所得沉淀物进行压片处理得到样品片;(2)将样品片放入马弗炉中进行煅烧,然后在空气中空冷处理,然后将所得样品取出并充分研磨。本发明使用湿法反应制备的LiIrSeO电极材料是Li‑Ir‑Se混合物,硒均匀掺杂在晶格内,当掺杂比例小于等于0.4,可获得单一纯相物质,制备出的材料Ir和Se均为+4价。本发明的制备方法简单,获得的电极材料掺杂均匀,成本相较于纯相有明显降低。
本发明提供了一种电池热管理控制方法以及一种电池,属于动力电池安全性相关技术领域。该方法包括如下步骤:步骤一,获取电池当前的工作模式;步骤二,根据电池的当前工作模式,获得电池相应的最佳工作温度范围参数;步骤三,采用液冷或者液热方式对电池进行温度控制,并在温度控制过程中实时获得电池的当前温度以使得电池的当前温度始终处于相应的最佳工作温度范围内。本发明结合锂电池的电化学机理,由电池管理系统对监测到的电池实时温度进行数据分析,实现充电和放电模式下电池温度的全闭环热管理,彻底消除温度异常对充放电工作的影响,保持电池温度控制在一个可接受的范围之内,降低温度失控风险。
本发明提供了受体聚合物、光活性层、能量器件及制备方法与应用,制备的受体聚合物是以DAD稠环小分子为骨架,芳香环为连接基团,获得了兼具窄带隙和高消光系数的性能,将具有该性能的受体聚合物与中等带隙电子给体材料匹配,可以有效提高能量转换效率,因此能够广泛应用于锂离子电池、电化学器件、超级电容器、有机光伏器件、电致变色器件、场效应管晶体管和传感器中,具体地将该受体聚合物应用于全聚合物光伏器件中,能量转换效率可以达到13%以上。
本发明公开了一种溶解纤维素的方法,其步骤为:先将纤维素分散在8~14wt%LiOH水溶液中,预冷至0~5℃,搅拌均匀生成碱纤维素溶液,或者将8~14wt%LiOH水溶液预冷至0~8℃,再加入纤维素,搅拌均匀生成碱纤维素溶液,然后在得到的碱纤维素溶液中加入0~10℃的6~10wt%硫脲水溶液,在室温下搅拌均匀即得到透明的纤维素溶液,纤维素、LiOH、硫脲的用量根据制得的纤维素溶液中纤维素含量为2~9wt%、LiOH含量为3.6~7wt%、硫脲含量为2.7~5wt%而确定。本发明提供的方法特别适用于溶解分子量低于30×104的天然纤维素或II型纤维素。该方法以氢氧化锂和硫脲为原料,价格便宜,操作简单方便,对环境无污染,而且溶解和再生都是物理过程,未发生化学反应,废液容易回收循环使用,因此具有更广泛的应用前景。
本发明特别涉及一种安全性能高的隔膜及其涂覆层、制备方法和应用,属于锂电池技术领域,涂覆层的原料以质量份数计包括:无机陶瓷粉体20‑40份、溶剂60‑80份、粘结剂2‑5份、分散剂0.2‑0.5份、增稠剂0.2‑0.5份和高温封堵剂3‑5份,所述高温封堵剂的熔点为120℃‑140℃,用以在高温时熔化实现隔膜基底层的封堵;高温封堵剂在高温时发生熔解,熔解后堵住隔膜基层的通孔,自行闭孔阻断正负极,使电池停止工作,达到高温自闭合的效果,避免高温热失控,提高电池安全。
本发明公开了一种电化学材料的制备方法及其应用,将亚铁盐溶液和草酸溶液滴加到纳米氧化铝悬浊液中,并在滴加过程同步对反应物料进行研磨,滴液结束后,将反应物料静置沉淀,固液分离得到沉淀物,将沉淀物在氧气气氛下进行烧结,得到多孔氧化铁,将多孔氧化铁、碳源和锂源进行混合,所得混合物质在惰性气氛下进行烧结,即得电化学材料。本发明添加剂纳米氧化铝的作用则是在后续的烧结中,氧化铝能与金属物质形成共熔物,降低熔点,使得在较低的烧结温度下能得到电性能较好的目标产物,多孔氧化铁可增强材料与碳源的结合效果,改善材料的导电性能。
本发明公开了一种带电解槽的船舶气电混合动力系统。该系统包括天然气发动机、第一离合器、第二离合器、齿轮箱、可逆电机、发电驱动器、直流母线、磷酸铁锂电池、氢燃料电池、电解槽和天然气存储罐,通过天然气发动机作为机械动力系统,与电力动力系统进行结合,解决了发动机功率不足,续航里程短的问题。不仅如此,本发明一方面通过电解槽向天然气发动机提供氢气,改善了天然气燃烧速度慢、热值低等缺点,另一方面,采用了直流组网的方式,省去了配电板和部分变压器,使得动力系统的体积和重量大大降低。本发明可广泛应用于新能源技术领域内。
本发明提供一种高安全性生物质硅合成SiOx@C材料的制备方法,该方法包括以下几个步骤:将稻壳灰酸洗,取适量在惰性气氛中碳化,将碳化后产物与金属粉,熔融盐混合球磨均匀,置于炉中,通入惰性气体,高温反应,酸洗洗净副产物,得到产物为SiOx@C材料。该发明工艺简单易行,原料丰富廉价,较镁热还原安全性更高,得到SiOx@C颗粒具有多孔结构,碳包覆均匀,倍率性能良好,可以应用到锂电池负极材料领域。
本发明涉及一种车用动力电池一致性差异的潜在风险诊断系统,系统数据采集模块用于采集电池实时运行的原始数据,对系统原始数据进行清洗后,按照电池的工作状态将系统原始数据分类为各个数据集;对系统数据集进行分段处理后得到各个数据段,对系统数据段进行特征提取得到各个特征参数;判断系统特征参数的值是否超过设定范围,是则基于信息熵进行锂电池组不一致性计算,否则将根据信息否则输出电池正常的判断结果;构建模型分析最大最小单体电压的频率频数来做初步判断,频率超出限制范围时,进一步采用信息熵与Z分数结合的方法,信息熵持续超过一定阈值并且极值稳定在固定单体,则认为一致性较差,从而诊断车用动力电池存在的一致性潜在风险。
本发明涉及一种掺铝碳酸锰及其制备方法与应用,所述制备方法包括如下步骤:反应底液中并流加入混合盐溶液、有机酸溶液与沉淀剂溶液进行反应,反应过程中控制产物粒径直至反应完全,依次经洗涤与烘干,得到所述掺铝碳酸锰;所述混合盐溶液中包括锰盐与铝盐;所述反应底液中包括络合剂与分散剂。本发明通过在反应底液中加入络合剂和分散剂,使铝元素在碳酸锰中均匀分布,不易聚集,且提高了碳酸锰的粒度分布均匀性和球形度,进而提高了富锰锂基电极材料的结构稳定性,减少了其充放电过程中的体积膨胀,提高了电池的使用寿命和安全性;且制备方法能够实现批量生产。
本发明属于锂离子电池技术领域,涉及一种表面包覆的二氧化锰负极材料的制备方法。本发明公布了一种表面包覆的二氧化锰负极材料的制备方法,将硫酸锰和高锰酸钾溶解于去离子水中,再将溶液全部转入聚四氟乙烯内衬的高压釜,经过高温水热反应,反应后的沉淀洗涤烘干,得到产物MnO2,将制备的MnO2重新分散到去离子水中,并加入乙酸铜、(NH4)6Mo7O24•4H2O;在上述分散液中加入叶酸乙醇溶液,室温搅拌几小时后,分离洗涤沉淀物,沉淀物干燥后在管式炉中氩气氛围中煅烧,得到包覆的二氧化锰负极材料。本发明二氧化锰负极材料表面包覆层为氧化钼、铜和氮掺杂碳,包覆层中三组分通过协同效应增强了复合材料的电化学性质。
本发明提供了一种氮化物修饰集流体及其制备方法和应用,所述方法包括,获得负载金属氧化物纳米阵列的泡沫金属;所述泡沫金属中的金属元素与所述金属氧化物中的金属元素相同;将所述负载金属氧化物的泡沫金属和碱金属氨基盐在惰性气体保护作用下,加热至290‑390℃,保温4‑24h,发生氧化还原反应,获得氮化物修饰的集流体。本发明提供的氮化物修饰集流体采用泡沫金属为骨架,结构稳固,且氮化过程不产生有毒气体,安全环保。本发明在低成本的条件下获得了具有更长使用寿命的集流体材料,在半电池测试中,其循环寿命为220‑390圈,寿命长;且可实现锂的均匀沉积。
本发明公开了一种抗冲击高耐候水性工业涂料及其制备方法,属于工业涂料技术领域,采用石墨烯气凝胶2‑10份;有机硅乳液20‑30份;铜铁发黑剂二氧化硒1‑10份;弹性丙烯酸乳液9‑15份;蛭石7‑15份;去离子水5‑20份;硅酸镁锂1‑5份;珍珠岩2‑5份;辅助用剂2.1‑6.5份,提高了工业涂料的抗冲击力,使其船体等使用寿命更加长久,不用总是补涂料,以及提高了耐候水性能,使其船体更加不容易被腐蚀,另外通过本发明的工艺流程在生产的时候进一步提高了涂料的抗冲击力性能。
本发明涉及一种炼钢炉用热态修补料及其制备方法,所述制备方法具体包括以下步骤:S1:制备预混料:先将35wt%的镁橄榄石、3~5wt%的金属铬、10~20wt%的氧化钙、2~10wt%的氧化锂、5~15wt%的氧化锆与5~8wt%的新戊二醇在120℃~150℃条件下混合搅拌均匀,冷却后得到预混料;S2:制备修补料:将S1中制备得到的预混料与5~40wt%镁橄榄石、5~10wt%的镁砂及0.1~0.5wt%的聚羧酸增塑剂混合,搅拌均匀,制得炼钢炉用热态修补料。本发明提出的一种炼钢炉用热态修补料及其制备方法,所制备的修补料具有高温自流性好、粘附性好、烧结时间短、强度高、耐炉渣侵蚀、寿命长、低导热和环境友好的特点。
本发明涉及原位固化的电极微界面处理工艺,将聚氨酯预聚体和交联剂在溶剂中混合,添加一定量催化剂,得到凝胶聚合物电解质溶液;将凝胶聚合物电解质溶液、锂盐和增塑剂混合,得到混合凝胶电解液;将混合凝胶电解液注入到有极片以及固态电解质层或隔膜层的电芯中,充分浸润极片以及固态电解质层或隔膜层,并进行电催化聚合,使混合凝胶电解液在电芯中的极片和固态电解质层或隔膜层以及层间原位聚合固化。极大地提高了电池界面的兼容性,还使得固态电池同时具备了凝胶聚合物电池的高离子电导率特性。
一种磷酸铁废料的回收方法,包括以下步骤:收集磷酸铁废料,向磷酸铁废料中加入酸液并进行搅拌,过滤,得到酸性浸出液;向酸性浸出液中加入氧化剂及表面活性剂,得到氧化浸出液;将氧化浸出液的pH调节至1.0~1.5,过滤后,得到磷酸铁滤渣;对磷酸铁滤渣进行洗涤,再向洗涤后的磷酸铁滤渣中加入稀磷酸并搅拌,进行陈化操作,过滤后,得到磷酸铁结晶;对磷酸铁结晶进行洗涤,再对洗涤后的磷酸铁结晶进行煅烧操作,得到电池级磷酸铁。对磷酸铁废料进行浸出,通过氧化、沉淀得到磷酸铁滤渣,再通过陈化操作,使结晶更加彻底,且可以调整铁锂比,通过煅烧得到电池级磷酸铁,成品品质高,对磷酸铁废料进行回收利用,减少危险废弃物。
本发明公开了一种液态金属电池及其制备方法,包括:S1、在惰性气体保护下,将一定质量的锑粒,盛于导电坩埚中;S2、在惰性气体保护下,将上述导电坩埚加热使锑粒熔化;随后冷却至室温,并将导电坩埚置于与之大小匹配的电池壳体中;S3、在惰性气体保护下,将一定质量的电解质盐加热熔化,得到熔盐电解质,并倒入上述导电坩埚中;S4、在惰性气体保护下,将吸附有一定质量金属锂的负极集流体及电池顶盖组装至已加入熔盐的壳体上,并使熔盐电解质淹没负极集流体的上表面,随后冷却至室温;S5、将壳体与顶盖进行焊接,并接入引线,得到液态金属电池。该方法大大提高了电池的能量密度,可以得到一种高比能液态金属电池。
本发明涉及一种高活性微纳孔结构聚合物纳米纤维材料的制备方法,属于纤维材料技术领域。所述制备方法采用将无机纳米粒子/乙烯-乙烯醇共聚物/乙酸丁酸纤维素熔融共混挤出,经丙酮萃取得到无机纳米粒子/乙烯-乙烯醇共聚物纳米纤维,再通过反应剂去除无机纳米粒子得到乙烯-乙烯醇共聚物的微纳孔纳米纤维,再制备成悬浮液,均匀喷涂于无纺布的两面,干燥后得到乙烯-乙烯醇共聚物的微纳孔纤维膜,该膜具有高孔隙率、高吸液率、高活性和耐热性好等优点,可作为空气及水过滤材料、催化剂、锂电池及超级电容器的隔膜材料、药物载体和反应合成模板。本发明工艺简单、生产成本低、效率高,可满足工业化生产要求。
本发明公开了一种过渡金属氨配合物功能化聚多巴胺及制备方法与应用。过渡金属氨配合物功能化的聚多巴胺由过渡金属氨配合物离子与多巴胺反应得到;过渡金属镶嵌的氮掺杂石墨碳复合材料为过渡金属氨配合物功能化的聚多巴胺经过热处理得到。本发明提供的过渡金属氨配合物功能化的聚多巴胺,具有强力均匀包覆能力,在纳米涂层领域有良好的应用前景。本发明提供的过渡金属镶嵌的氮掺杂石墨碳复合材料,活性金属均匀镶嵌,纳米孔结构丰富,比表面积大,活性位点丰富,导电性好,在导电材料、锂电池负极材料、金属‑空气电池正极材料、氧还原反应催化剂、氢析出反应催化剂及氧析出反应催化剂等领域具有很好的应用前景。
本发明公开了一种多孔中空氧化物纳米微球及其制备方法与应用,属于纳米材料技术领域。制备方法包括先制备胶体氧化物纳米晶溶液,将该胶体氧化物纳米晶溶液作为静电喷雾溶液,进行静电喷雾,得到多孔中空氧化物纳米微球。本发明以胶体氧化物纳米晶作为静电喷雾溶液,制备多孔中空微球,制备工艺简单,条件温和,在气体传感器,太阳能电池,催化剂和锂离子电池等领域具有良好的应用前景。
本发明公开了一种大孔‑介孔‑微孔氧化锌材料,它为由粒径为25‑30nm的氧化锌颗粒组装成而成的薄膜材料,厚度为100‑2000nm;它具有微孔‑介孔‑大孔结构,其中微孔孔径为0.5‑2nm,介孔孔径为2‑50nm,大孔孔径为50‑2000nm。本发明采用纳米颗粒合成和自组装方法,涉及的反应条件温和,并可在常温和大气压条件下实现纳米多孔氧化锌材料的制备,更具节能优势,且无污染物排放;所得产物在光催化﹑气敏和锂电池领域相对于传统材料都具有大幅提高的性能,适合推广应用。
中冶有色为您提供最新的湖北有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!