本发明公开了一种石墨烯改性硬质合金的制备方法,该方法优选为:将氧化石墨烯均匀分散形成悬浮分散液,随后与纳米W粉、纳米Co和/或纳米Ni粉末以及Cr2O3粉末混合,经球磨、干燥、造粒、压制成型、烧结等工艺步骤,制得目标产物。本发明采用传统粉末冶金工艺,通过纳米高活性组分添加,一次完成碳化、烧结致密化过程,实现硬质合金产品的快速制备,大幅提升了硬质合金生产效率及硬质合金综合性能,适合工业化大生产,且与目前硬质合金产业制备方法相兼容接轨。
一种金属机筒及其制作方法,所述金属机筒以含铬钼的合金钢棒作为筒材(1),在筒材(1)的外周通过烧结法包覆有一层多元硼化物基金属陶瓷层(2):所述多元硼化物基金属陶瓷层(2)为Mo2FeB2-Fe基金属陶瓷层或Mo2NiB2-Ni基金属陶瓷层或WCoB-Co基金属陶瓷层。其制作方法为:将筒材放入包套中,并在筒材和包套的间隙内部填充配比好的原料粉末;将包套整体放入密封容器中并抽真空;在密封容器烧结,再对多元硼化物基金属陶瓷层经精加工制得金属机筒。本发明中多元硼化物基超硬双金属机筒或金属机筒具有综合成本较低、制作工艺简单、使用寿命长和适于产业化等优点,可替代目前广泛使用的经过渗氮、喷焊、浇铸等处理的机筒。
本发明公开了一种石墨烯改性的硬质合金、其制备工艺及应用。本发明通过将石墨烯材料,尤其是氧化石墨烯均匀分散于无机溶剂和/或有机溶剂形成石墨烯分散液之后,再与硬质合金粉末混合,并依次经球磨、干燥、造粒、压制成型、脱脂和烧结工序制得目标产品,由于氧化石墨烯在溶剂中具有良好的分散性,巨大的表面积使其能够很好的包裹在硬质合金粉末表面,在随后的成型工艺中实现与硬质合金的良好分散复合,同时,高活性氧化石墨烯的添加还可调节硬质合金的含碳量,并且可实现对硬质合金的力学增强。本发明能够与现有硬质合金工业制备路线相接轨,适合工业化大生产,显著改善硬质合金的综合性能。
本发明公开了一种用于燃料电池双极板的不锈钢纤维毡及其制造方法,属于燃料电池双极板流场技术领域。不锈钢纤维毡的制造方法主要可以分为切削法加工不锈钢纤维,不锈钢纤维预处理,纤维毡模压,高温固相烧结四个步骤。金属纤维经过烧结后,纤维间实现冶金结合,形成了大量的多尺度孔隙结构。所制造的不锈钢纤维毡具有高孔隙率、高比表面积、良好的传热传质性能、表面憎水性、制造工艺简单及成本低廉等优点。此方法可适用于制造多种金属多孔材料,且其孔隙尺寸、孔隙率可控制。
本发明专利公开了一种用于LED封装的热柱及其制造方法。该热柱由上端盖、管壳、吸液芯、下端盖、液体工质等部分构成,其中吸液芯具有三维毛细力强化及冷凝强化结构,下端盖具有沸腾强化结构及光学结构。用于LED封装的热柱的制造方法主要可以分为管壳及端盖加工,吸液芯制备及其精密封装三个步骤。本发明制造的用于LED封装的热柱及其制造方法,具有体积小,重量轻,节省材料;吸液芯复杂多样,孔隙率高且可控;接触热阻小,散热面积大,导热速度快,传热效率高;加工工艺简单可行,成本低廉等诸多优点。将其直接用于LED封装工艺,可有效降低LED工作温度,提高工作寿命。
一种制备复杂形状和高尺寸精度高铌钛铝合金零部件的方法,属于高铌钛铝金属间化合物材料成形技术领域。工艺是将氩气雾化高铌钛铝粉末与不同质量配比的石蜡PW,低密度聚乙烯LDPE,聚丙烯PP,硬脂酸SA组成的聚合物粘接剂以63~69%的装载量混炼、制粒,注射成形,随后采用溶剂脱脂和真空气氛中热脱脂脱除粘接剂,并在600~1000℃进行预烧结,最后在真空气氛中1460~1480℃进行烧结制得高NB-TIAL合金零部件。优点在于:可直接制备出具有复杂形状、高尺寸精度和性能优良的高NB-TIAL合金零部件,实现较低成本高NB-TIAL合金零部件的批量生产。
本发明涉及一种烧结钕铁硼磁性材料的加工方法,包括将原料清洗,配制原料,熔炼制备合金,将合金破碎制粉在磁场中成型,再经烧结和热处理即得,所述的合金分别为成分为接近正分Nd2Fe14B成分的主相;液相1:Re50-65Fe余B0-1.5M0-2,液相2:Re80-100Fe余M0-10;混合后成分Re28-38M余B1-1.5。Re为La或Ce或Pr或Nd或Eu或Gd或Tb或Dy或Ho或Er稀土元素中的一种或多种,M为Co、Fe、Ni、Al、Zr、Ga的金属合金。本发明加工方法能加工出高矫顽力、低温度系数、耐高温、高耐蚀的钕铁硼磁体。
一种以氧化镥和氧化钆固溶体为基质材料的透明陶瓷闪烁体材料及其制备方法,本发明包括粉体合成、成型、素烧、烧结以及退火处理等工艺步骤。本发明制备的以氧化镥一氧化钆固溶体为基质材料的透明陶瓷闪烁体材料,可见光直线透过率>60%、机械性能良好,可用作闪烁体基质材料,本发明不但可以进一步提高氧化钆基质对电离辐射的阻断能力,提高Gd2O3的闪烁性能,还可以降低Lu2O3的生产成本,在闪烁辐射探测等领域具有应用前景。
一种模压烧结石墨密封环,它由以下重量百分比的组分组成:煤沥青50%~92%,石墨粉3%~40%,碳黑1%~10%;及模压烧结石墨密封环的制备方法,它包括以下步骤:1)配料;2)造粒;3)粉碎;4)成型;5)烧结;6)浸渍;7)擦洗并烘干;8)固化处理。与现有技术相比,本发明的有益效果在于,通过煤沥青高温烧结时的碳化和真空浸渍处理,从而填补了密封环的气孔,提高了密封环的密度和强度,使得模压烧结密封环在实际使用过程中的表面温度从原来的<100℃提高至250℃,则模压烧结密封环的密封面不易起泡或变形,保证了密封效果;而煤沥青高温烧结时的碳化改善了密封环的自润滑性,同时也提高了密封环的硬度,并使其具有较好的耐腐蚀性和良好的干摩擦性能,比现有技术密封环的使用寿命提高了两倍以上。
一种Mo2FeB2基钢结硬质合金的制备方法,属于结构功能材料制备领域。本发明采用BN、羰基铁、Mo作为反应原料先制备出高纯度的Mo2FeB2三元复合硼化物粉。用所制备的Mo2FeB2粉作为硬质相,铁基合金粉作为粘结相,制备Mo2FeB2基钢结硬质合金。其优点在于:(1)制备出Mo2FeB2粉纯度高,无杂质相,易破碎或无需破碎。(2)Mo2FeB2硬度高,导电率高,具有良好的耐磨性、耐腐蚀性和耐高温性,且与钢基体的润湿性良好,其钢结硬质合金组织易控制,力学性能优异,性能稳定。(3)钢结硬质合金的烧结温度低,能耗低,适用于工业化需求。
一种高耐磨辊压机挤压辊及其制造工艺,属于挤压辊技术领域,在挤压辊的表面加工出圆形槽,槽的间距3-6mm,在槽内镶嵌硬质合金圆柱,硬质合金圆柱高于挤压辊表面2mm,然后通过钎焊的方法将硬质合金与挤压辊连接,硬质合金的成分为(重量百分比%):WC?66-92%;TiC?0-30%;Co?3.9-8%;Cr?0.1-0.3%。挤压辊上钎焊上硬质合金后,耐磨性比堆焊方法大大提高,使用寿命长,减少了挤压辊更换次数,提高了设备利用率。
本发明提出了一种耐磨、耐腐蚀、耐高温碳化硅陶瓷制造方法,通过制备碳化硅浆料、碳化硅陶瓷原始坯、碳化硅陶瓷再生坯,再将碳化硅陶瓷再生坯与硅粉在特定条件下进行加工得到碳化硅陶瓷毛坯,最后对毛坯进行机械加工。通过该方法得到的碳化硅陶瓷喷嘴产品结构密实、孔隙率小、硬度高,在1500℃~1700℃高温和150~200g/L的硝酸和40~60g/L的氢氟酸混合溶液介质工作环境下的工作寿命能够达到60天以上,大大超过了现有喷嘴。而且在常温下,碳化硅陶瓷喷嘴产品的耐磨性也是普通钢的500倍。
公开了具有Co-Ni-Fe粘结剂的金属陶瓷,以及所述金属陶瓷的制造方法和用途。该Co-Ni-Fe粘结剂含有约40—90wt%钴,余下部分为Ni,Fe和附带杂质。所述粘结剂的特点是甚至在进行塑性变形时,其基本上仍保持面心立方的晶体结构不变,并且避免应力和/或应变诱发的相变发生。换言之,所述Co-Ni-Fe粘结剂加工硬化性较低。该金属陶瓷用作采矿业和建筑业的工具,用作机加工材料的工具,以及用作螺旋冲头。
本发明公开了一种电磁波吸波材料,其组分由重量百分比为20-60%的Ni3Al,1-6%的纳米氧化钛,3-10%纳米氧化硅和余量的不饱和聚酯组成。本发明还公开了所述电磁波吸波材料的制备方法,以不饱和聚酯为基体,充分混合入重量百分比为40-60%的吸波剂复合粉体制成;其中吸波剂复合粉体组分之一Ni3Al是用高能球磨结合热处理工艺制备的。本发明的吸波材料对0.4-5GHz的电磁波具有较强的吸波功能。可以应用于不同电磁场的环境下,防止电磁波辐射对人体的危害以及对设备的影响。
本发明属于梯度材料技术领域,具体提供了一种ZrB2‑Mo梯度材料及制备方法,其中ZrB2‑Mo梯度材料包括两端的富ZrB2陶瓷和富Mo金属层,中间为具有梯度渐变组分的ZrB2/Mo多层复合材料层,且采取一体成型的方法烧结制备;各所述ZrB2/Mo多层复合材料层中的梯度渐变组分采用函数进行组分的分布设计。该方案制备的ZrB2‑Mo梯度材料与均质ZrB2/Mo复合材料相比,在相同的烧蚀环境下,能够更好地保持完整性,避免灾难性损伤,有效地缓解了陶瓷材料和金属材料之间因热膨胀系数差异引起的热应力,抗热冲击烧蚀性能大大提高。
本发明公开了一种钨铜合金管及其制备方法,涉及钨铜合金管制备技术领域。该方法包括将50‑90%的钨粉和10‑50%的铜粉进行混合后得到混合物;将混合物与蜡基粘结剂在预设温度下密炼后依次进行造粒、增塑挤压、脱粘以及烧结作业;蜡基粘结剂包括按照质量百分含量计的以下原料:20‑35%的聚乙烯、40‑60%的石蜡、8‑15%的水杨酸以及3‑10%的乙烯‑醋酸乙烯共聚物。该方法一方面可有效地减少传统制备工艺加工过程中钨铜的消耗,节约材料成本,同时提高生产效率,保证原料的利用率和成品率。另一方面可使得钨铜合金喂料的流变性得到充分保障,生坯强度和均匀性得到提高,以进一步地保证钨铜合金管的生产效率和成品率。
本发明涉及镁合金生物医用材料,具体是在医用石墨烯‑镁合金基材表面制备二氧化钛涂层的方法,其包括制备石墨烯‑镁合金基体材料,并对其表面进行预处理;取纳米二氧化钛粉末和纳米铈粉末,混合配置成悬液;将上述悬液加入电泳沉积池,以上述预处理后的基体材料为阴极,碳电极为阳极进行电泳沉积,获得表面覆盖有二氧化钛涂层的石墨烯‑镁合金生物医用材料;将上述生物医用材料洗净、干燥,获得成品料。本发明采用石墨烯‑镁合金作为基体材料,其具有较佳的力学性能和耐磨性能,适合生物医用植入材料;且通过电泳沉积的方法在石墨烯‑镁合金基体材料上沉积二氧化钛涂层,无须使用高温,可避免二氧化钛涂层产生微裂纹,提高了材料的耐腐蚀性能。
一种碳化硅陶瓷球的制备方法,步骤:将碳化硅粉、碳化硼粉、一半的表面活性剂、烧结助剂、粘结剂经过喷雾造粒后得到碳化硅造粒粉;将上述碳化硅造粒粉与剩余的表面活性剂、高聚物粘结剂加热搅拌,混和并破碎,得到注射颗粒料;将注射颗粒料注射成型,所得的球形素坯经脱脂、烧结后,得到碳化硅陶瓷球。本发明采用陶瓷注射成型的方法进行,具有工艺简单、效率高、成本低的特点,制备的碳化硅陶瓷球的球形度高,后续磨削加工预料小,生产效率较高,可以较大程度节约生产加工成本,促进碳化硅陶瓷球的广泛应用。
本发明公开了一种层状镁‑镁基复合材料板材及其制备方法和应用,通过原位反应合成含纳米级TiB2陶瓷颗粒的Al‑TiB2中间合金,加入镁合金熔体中得到TiB2/Mg复合材料,然后热轧成薄板,与纯镁板交替堆叠后进行真空热压烧结,经多道次热轧就可制备出性能优异的层状镁/镁基复合材料板材。在宏观尺度,陶瓷颗粒呈层状非均匀分布,在微观尺度,镁基复合材料层内陶瓷颗粒均匀分布。通过调控层状复合材料中TiB2颗粒含量与层间距可以灵活、精准地调控层状复合材料板材的强度和塑韧性,有望解决复合材料强韧性失配的难题,具有广阔的应用前景。
本发明属于复合材料制备技术领域,具体涉及一种高强、高韧超高温陶瓷基复合材料及其制备方法。制备方法包括:在碳纤维材料的表面采用化学气相沉积方法交替沉积两类涂层获得多层CVD复合涂层的碳纤维材料;两类涂层为热解炭层或层状陶瓷涂层中的一种和超高温陶瓷涂层;采用酚醛树脂/环氧树脂溶液与陶瓷粉末组成陶瓷浆料涂覆在CVD复合涂层碳纤维材料上,并交替错位层叠、针刺获得层叠纤维毡,再经真空干燥后,进行温压固化、碳化处理后获得多孔预制体;最后进行增密处理获得陶瓷基复合材料,该材料具有高强度、高断裂韧性和抗氧化、抗烧蚀、抗腐蚀性能,可应用于高温、超高温结构材料,抗氧化抗腐蚀材料,航天耐烧蚀材料。
本发明公开了一种快进给加工用数控刀片,包括硬质合金基体和涂层,硬质合金基体采用Co、TNC6、金属添加剂和WC为原材料制备而成,将原材料与成型剂、球磨介质、表面活性剂混合后一起投入球磨机球磨后再进行喷雾干燥制粒、压制、高温烧结,得硬质合金基体,对硬质合金基体进行刃口钝化,干喷砂处理后涂覆PVD涂层,随后进行湿喷砂处理,得快进给加工用数控刀片。本发明提供的数控刀片兼顾了高韧性、高耐磨性和高涂层结合力的技术效果,同时具备良好的化学稳定性和表面光洁度,能满足快进给加工的需求。
本发明公开了一种抗CMAS腐蚀的多组分的高熵烧绿石结构热障涂层材料及其制备方法和应用。热障涂层材料的化学式为A2B2O7,A包括稀土元素、Al和Ba中的至少五种元素,B为Zr、Ti、Hf、Nb和Ce中的一种或多种。本发明提出通过五种以上多主元设计制备抗CMAS腐蚀的多组分的高熵烧绿石结构热障涂层材料。通过高熵效应获得降低的热导率、提高的热膨胀和断裂韧性,同时引入抗腐蚀元素如Al、Ba、Ti和Hf等能进一步提高其抗腐蚀性能,从而获得综合性能优异的热障涂层材料,在下一代高推重比发动机热障涂层领域具有广阔应用前景。
本发明公开了一种车用贴片式二极管封装结构及方法,包括引线框架、焊片、二极管芯片和连接片,用焊片依次固定引线框架,二极管芯片和连接片,框架基板设有闭环的凹槽;框架基板延伸出曲臂,曲臂连接框架引脚,框架引脚设有焊接座,焊接座上设有限位装置;连接引脚置于限位装置中通过焊片固定在焊接座上;设置环氧塑封体封装凹槽、二极管芯片、连接片和焊接座。通过设置限位装置使连接片与框架引脚定位准确,焊接工序一次即可完成;通过设置凹槽增加贴片式二极管的防水功能。
本发明涉及一种覆铜陶瓷基板,烧结前包括位于中间的陶瓷层、位于陶瓷层上下两面的焊料层、贴附在焊料层上的应力缓冲层以及贴附在应力缓冲层上的金属铜层。应力缓冲层为金属片,毛面朝向焊料层、光面朝向金属铜层。制备方法如下:1)将作为应力缓冲层的铜箔和作为金属铜层的铜片去除油污后,进行防氧化清洗;2)陶瓷层双面丝网印刷焊料层或双面贴敷活性金属焊片;3)在焊料层或活性金属焊片上贴敷铜箔,在铜箔上覆盖金属铜层;4)在待烧结件上下放置压头;5)依照AMB工艺进行真空活性钎焊烧结并提供分子扩散焊所需条件,温度控制在700℃‑940℃,真空度小于0.01,烧结时间60min‑540min,铜箔和金属铜层分子扩散焊后形成微孔区。
本公开涉及一种不锈钢材料及其制备方法。其中,所述不锈钢材料的各成分的质量百分比为:C:0.1~0.2,Cr:18.0~20.0,Mo:2.0~3.0,Si≤1.0,N:0.6~1.0,Mn>5.0,且Cr/(N+Mn)为1~1.5,余量为Fe和不可避免的成分。本公开实施例提供的不锈钢材料为高氮无镍的奥氏体不锈钢,其具有良好的抗电解性、耐腐蚀性及耐磨性,非常适合应用于制作充电触点。
本发明的一种B4C基双层陶瓷复合材料及其制备方法,属于材料技术领域,该复合材料的制备方法包括配料、混料、干燥、热压烧结或无压烧结等步骤,配料:按比例分别称取双层复合材料的碳化硼陶瓷层和增韧层的配料,其中碳化硼陶瓷层分别按比例称取B4C粉1、Ti粉和C粉;增韧层分别按比例称取B4C粉2,Ti3SiC2粉,Si粉和用于原位反应生成W2B5所需要的B4C粉3和WC粉;混料:分别将每层称好的原料,混料后干燥过筛;控制相应工艺过程,采用热压或无压烧结后,冷却至室温,制得B4C基双层陶瓷复合材料。本发明采用热压或无压层状复合的方法,通过宏观双层结构以及反应自生多相复合增韧机制,大幅改善B4C陶瓷材料的力学性能。
本发明公开的一种粉末冶金法制备Ti2AlNb合金的方法,具体按照以下步骤实施:步骤1、按合金成分配方Ti‑22Al‑(27‑x‑y)Nb‑xV‑yTa(其中0<x≤5,0<y≤5)称取Ti、Nb、V、Ta、Ti70Al30(at.%)中间合金和ZrO磨球,采用高能球磨法对称取的合金原料进行高能球磨制取纳米级合金粉体并退火处理;步骤2、将步骤1制得的纳米级合金粉体,在放电等离子热压烧结炉中进行反应烧结制取Ti2AlNb合金烧结试样;步骤3、对步骤2所得Ti2AlNb合金烧结试样进行固溶与时效处理后即可得到最终的Ti2AlNb合金试样。
本发明涉及一种耐等离子刻蚀陶瓷及其制备方法和等离子刻蚀设备。上述耐等离子刻蚀陶瓷的制备方法包括如下步骤:按质量百分比计,称取如下原料:纳米级氧化钇粉体64.7%~100%及纳米级氧化锆粉体0%~35.3%,纳米级氧化钇粉体的纯度不低于90.0%;将原料进行烧结,得到耐等离子刻蚀陶瓷,其中,烧结温度为1600℃~2000℃,烧结时间为1h~2h。上述耐等离子刻蚀陶瓷的制备方法能够使制备得到的陶瓷的耐刻蚀性较好,且致密度高、力学性能较好。
本发明涉及氟磷酸锶分体的合成技术领域,具体涉及一种钕离子掺杂氟磷酸锶透明陶瓷的制备方法,包括以下步骤:(1)制备纯相氟磷酸锶纳米粉末;(2)将所得混合粉末进行烧结;烧结预烧温度为900‑1100℃,保温3‑5小时,然后再升温至1200‑1350℃进行热处理,保温1‑3小时,烧结完毕后冷却至室温得到烧结后的样品;(3)将烧结后的样品进行粗磨和抛光,即得到钕离子掺杂氟磷酸锶透明陶瓷。本发明通过控制烧结条件,制备出氟磷酸锶透明陶瓷,本发明的制备方法与其他技术相比具有成本低廉,对设备要求低,产量大等优势。本发明的方法制备的钕离子掺杂氟磷酸锶透明陶瓷,其密度约为99%,近红外波段透过率大于40%。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!