一种管道气流干燥的方法,包括:1、用锅炉产生的蒸汽把鼓入换热器的空气通过一级换热器、二级换热器加热到65℃到85℃;2、用高压风机从二级换热器抽风,将已经加热的空气抽出,进入干燥管道;3、将氟化钠的物料从干燥管道进料口加入,带动湿物料顺利进入管道,氟化钠物料进行干燥。本发明在管道传输过程中不仅对物料干燥,而且对物料进行破碎,使氟化钠中的水分降低到≤0.2%,由于采用管道式气流干燥,不仅考虑对热能的充分利用,而且对一二级换热器的换热面积、风量、进料量、管道直径和长度、洪料温度等都有严格的限制,保证最终产品达到合格,以保证产品中的水分达到≤0.2%的要求。
本发明涉及一种在湿法浸出过程中气液固三相反应的充气方法,用于加强浸出效果。其特征在于是将浸出气体通过带有微孔的陶瓷膜气体分布器或钛管,使气体通过微孔分割为细小的气流后进入浸出料浆参与浸出反应的。本发明的方法,采用带有微孔的陶瓷或钛及钛合金管做为浸出过程中气体分布器,改善浸出效果,增强气液固三相混合,加强气体在浸出反应中的动力。
一种低品位高镁含镍矿的处理工艺,包括以下步骤:(1)高镁含镍矿破碎磨矿;(2)氧化焙烧;(3)高温硝酸浸出:采用硝酸作为浸出剂,在高温高压的条件下浸出原料中的镍、钴、铜有价金属元素,将铁抑制在渣中;(4)中和除杂:通过加入氧化镁,使杂质元素水解沉淀,达到净化除杂的目的;(5)硫化沉淀:将硫化氢气体通入净化后的溶液中,使镍、钴、铜有价金属离子形成硫化物沉淀,作为中间产品销售;(6)硝酸镁热解:最终产出尾液主要成分为硝酸镁,将蒸发浓缩后热解,得到氧化镁副产品,部分作为中和剂回用,其余外售。同时分解产出的氮氧化物烟气经烟气制酸后回用。
本发明涉及一种高酸条件下处理铜镍合金的方法,该方法包括以下步骤:⑴高酸溶解:将铜镍合金粉料与浓度为150~200g/l的硫酸溶液反应,分别得到浸出液和溶解渣;⑵一次结晶脱铜:浸出液经蒸发浓缩、降温结晶,分别得到结晶母液和粗硫酸铜结晶;⑶电积脱铜:结晶母液经电积脱铜,分别得到电积铜产品和电积液A;⑷电积深度脱铜:电积液A经深度电积脱铜,分别得到电积铜粉和电积液B;⑸二次结晶脱镍:电积液B经蒸发浓缩、降温结晶,分别得到粗硫酸镍结晶和高酸尾液;⑹溶解及净化除杂:粗硫酸镍结晶溶解后加入碳酸镍,分别得到中和渣和硫酸镍溶液。本发明可实现铜镍的高效分离,从而产出纯净的硫酸镍溶液产品、电积铜产品和粗硫酸铜副产品。
本发明涉及一种氯化钴溶液中深度净化除镍的方法,其特征为首先采用钴板电溶造液或氯化钴晶体配成溶液,其溶液浓度为100-160g/L;然后将氯化钴溶液通过装有D411螯合型离子交换树脂的离子交换柱深度净化除镍;为验证除镍效果,再将净化后的氯化钴溶液进行电积,得到杂质镍含量小于1ppm的99.999%的高纯钴。本发明的方法,工艺简单易行,产品质量高、稳定性好。最终得到的氯化钴溶液,钴镍比达到70000以上,满足制备高纯钴和其它行业的需求。
本发明公开了一种从海绵铜浸出渣中富集贵金属的方法,包括:稀贵熔炼渣、海绵铜浸机械活化并磨矿作为原料;海绵铜浸出渣原料脱出贱金属镍铜;海绵铜浸出渣、稀贵熔炼渣与碳酸钠、还原煤粉和硼砂还原熔炼;熔炼渣和合金分离,脱出铅砷锑得到贵金属合金。本发明采用海绵铜浸出渣加压酸浸脱出贱金属后与稀贵合金熔炼渣—还原熔炼—真空冶金—贵金属合金的方法,此工艺在富集海绵铜浸出渣和稀贵合金熔炼渣中贵金属的过程中不产生高盐废水和有毒、有害气体,与传统处理方法相比,具有流程短、贵金属回收率高、清洁环保等优点,可提高资源的综合利用水平。
本发明公开了一种利用活性剂在氯化镍溶液中进行置换沉铜的方法,涉及除铜技术领域,用于解决现有技术中除铜的工艺方法中存在沉铜渣量大、贵金属损失多,制备条件苛刻的问题,本发明包括以下步骤:将镍精矿和水以1:3‑5的体积比浆化后加热至80‑85℃进行氯气浸出,同时在氧化还原电位480‑500mV的条件下选择性浸出镍、铜、铁和钴金属离子,经过滤后分离产出氯化镍溶液;将氯化镍溶液加热至60‑65℃后,按镍精矿和阳极泥质量比3‑4:1、镍精矿和氯化镍溶液中的铜含量3‑4:1的质量比例加入镍精矿和阳极泥,调节pH为0.5‑2后,搅拌均匀后将温度升至85‑90℃进行置换沉铜反应3‑4h。本发明通过该方法除铜可以直接进行针铁矿除铁,可以使得沉铜渣量更小、贵金属损失更少,制备条件更简便。
本发明公开了一种镍电解生产系统中补镍、脱铜的方法,将体系中含铜高、含酸高的废液与镍阳极液进行配制,控制一定的Cu2+、H+离子浓度,然后泵入以硫化镍为阳极、钛板为阴极的电解槽中进行反应,电解过程中阴极上的Cu2+、H+离子得到电子析出海绵铜或氢气,阳极中的镍失去电子以Ni2+的形式进入电解液。该方法通过将高铜、高酸、低镍的溶液根据铜、镍、酸在电解过程中的需求进行配制,配制后的溶液经电解工艺处理后产出低铜、低酸、高镍的溶液,如此可解决镍电解生产系统镍贫化的问题,可以将体系中为回收镍而产出的低镍溶液进行处理,同时可以将体系中的Cu2+以单质铜的形式开路,提高铜的回收价值。
本发明涉及一种使用高镍锍生产硫酸镍的方法,高镍锍的主要成份为Ni:65‑69%、Cu:4‑6.5%、Co:0.85‑1.5%、Fe:1.5‑2.2%、S:22‑25%,该方法包括氧化焙烧、硫酸浸出、置换除铜、中和除铁、萃取深度净化和浓缩结晶;本发明对高镍锍氧化焙烧后硫酸浸出,可使镍、铜、铁、钴的浸出率均大于95%;然后采用铁粉置换除铜、中和除铁、萃取除杂,在生产出硫酸镍产品的同时,产出粗铜粉、铁粉及硫酸钴副产品,实现了各有价金属元素的资源综合利用,镍的回收率均大于92%。本发明开辟了一种全新高效的高镍锍直接生产硫酸镍的工艺技术,具有广阔的应用价值和发展前景。
本发明公开了一种用于硝酸铜溶液喷雾热解的装置及其使用方法,属于冶金设备领域,解决了硝酸铜溶液综合利用难的问题。本发明包括雾化器、热解炉、加热器、收尘系统、进料系统和高压风机,进料系统包括相互连接的物料管路和供料泵,物料管路上设有物料阀门,供料泵的出料口与雾化器相连,雾化器位于热解炉上方,热解炉下端与收尘系统相连,高压风机的进风口与收尘系统相连、出风口与加热器相连,加热器与热解炉上端相连,高压风机的出风口设有外排管道,外排管道上设有烟气抽风机,高压风机与加热器之间的管道上设有烟气阀门。本发明能将硝酸铜溶液体系转化为铜氧化物和氮氧化物气体,整个热解过程不引入杂质、不产生废水废渣,清洁无污染。
本发明公开了一种氧化铜洗水和硫酸镍淬余液混合废水的处理方法。本发明将硫酸镍淬余液经除油、中和初步沉淀镍离子,氧化铜洗水经中和初步沉淀铜离子后,将两种废水混合,经过一级反应除砷、镉并脱除部分镍、铜、锌重金属离子,将一级反应出水经压滤后的滤清液进行二级反应,二级硫化反应除去其中的结合态的金属,再经混凝、絮凝、压滤可实现重金属离子达标,滤清液达到《镍铜钴工业污染物排放标准》(GB25467‑2010)特别排放限值要求。本发明能够实现氧化铜洗水和硫酸镍淬余液混合液中污染物的高效分离,反应时间短,药剂成本低,工艺简单,操作性强,易工业化。
本发明涉及一种制备高纯钴的方法,其特征在于制备过程是首先采用盐酸体系,以电积钴为阳极,以耐腐蚀钛金属丝网为阴极,电溶制备CoCl2溶液;然后将电溶液能过阴离子交换树脂的离子交换柱进行深度净化;再将离子交换净化后的溶液进行电积得到高纯电积钴;最后高纯电积钴通过电子束熔炼制备高纯钴钴锭。本发明的方法,在电溶造液末期采用低电流造液并降低溶液含酸量,成功解决了电溶原液的高酸问题,降低了成本,防止了过程污染;采用不溶阳极电积产出5N以上品级的高纯钴。经过电子束熔炼后的高纯钴钴锭中的C在15ppm以下,O在10ppm以下。
本发明公开了一种低钠高杂质的硫酸镍溶液萃取除杂的方法,包括以下步骤:将P204萃取剂与磺化煤油混合后依次加入液碱溶液和镍皂前液,分相得到P204镍皂有机相;使用稀硫酸洗涤P204镍皂有机相,分相得到P204含镍负载有机相;将低钠高杂质的硫酸镍溶液加入到P204含镍负载有机相中并逆流萃取,分相得到P204萃余液;制备C272镍皂有机相;使用稀硫酸洗涤C272镍皂有机相,分相,得到C272含镍负载有机相;将P204萃余液加入到C272含镍负载有机相中并在40℃‑60℃逆流萃取,分相,得到杂质含量合格的硫酸镍溶液。本发明工艺优化升级、工艺流程缩短、硫酸镍产品整体生产成本降低。
一种氯压快速溶解复杂稀贵金属精矿的方法,其特征在于:其过程是将含有金及铂族金属的稀贵金属精矿与盐酸按一定液料比投入加压釜中,向加压釜中通入氯气进行氯化溶解,釜内氯气压力保持在0.2‑1MPa。本发明使釜中氯气的压力被提高至0.2‑1.0MPa,使用氯气压力浸出可以显著提高溶液电位,加速反应进程,缩短了稀贵金属元素的溶解时间,稀贵金属精矿的溶解时间从原来的36小时左右下降到现在的6小时,大大提高了生产效率。同时提高了氯气的使用率,节约了氯气与氢氧化钠的用量,降低了生产成本。
一种薄壁铜管的焊接方法,涉及一种材质为纯铜的冷凝器、蒸发器、冷却塔等热交换设备循环排管,特别是薄壁铜管的气焊维护修复时的焊接方法。其特征在于其焊接过程采用锡黄铜焊丝,选用加强型锡钎焊助溶剂,使用中性焰,温度控制在3000‑3200℃。本发明的一种薄壁铜管的焊接方法,采用锡黄铜焊丝,选用加强型锡钎焊助溶剂进行焊接;焊接时采用中性焰,采用强火焰、快速焊,严格控制金属熔池大小,使用左焊法进行焊接。能有效控制焊接过程中出现的焊缝开裂、焊渣、气孔、融和不良、氧化严重等焊接缺陷。
本发明公开了一种含镍固危废物料生产镍块料的方法,包括:对多种镍铜冶炼产生的含镍固危废物料进行粉碎、过筛,得到预设粒径的含镍固危粉碎料;将多种含镍固危粉碎料取样化验分析,基于分析结果得到多种含镍固危粉碎料的配比;按照计算得到的配比,将多种含镍固危废粉碎料和水泥进行配料,得到满足所需指标的含镍固危混合料;将含镍固危混合料送入模具中,生产出镍块料。本发明将多种含镍固危废物料进行混合配料、精准控制金属主品位范围,并搭配凝固剂等生产出一种镍块料,为后续金属冶炼生产创造了有利条件,实现镍、铜、钴及贵金属等有价金属的冶炼回收。
本发明公开了一种氢氧化镍钴硫酸体系快速浸出的方法,包括以下步骤:将粗氢氧化镍钴用水洗涤后固液分离,将洗涤后的粗氢氧化镍钴用浓硫酸溶解,得到溶解后的反应物料,向溶解后的反应物料中加水稀释再进行固液分离,得到氢氧化镍钴溶解液和低镍钴溶解渣;向氢氧化镍钴溶解液中加入硫磺,向加入硫磺后的氢氧化镍钴溶解液中加入洗涤后的粗氢氧化镍钴,至加入硫磺后的氢氧化镍钴溶解液的pH值为4.0‑4.5,固液分离,得到低钠高镍浸出液和氢氧化镍钴溶解渣。本发明提高了氢氧化镍钴中钴的浸出率,而且不会额外引入钠离子进入浸出;采用浓硫酸溶解氢氧化镍钴可以进一步提高镍的收率,同时硫磺粉的加入可以改变浸出渣的渣型,有利于压滤。
本发明涉及一种回收稀贵熔炼炉渣中有价金属的方法,其特征在于其回收过程的步骤包括:(1)将熔炼炉渣加入氢氧化钠溶液中进行碱浸;(2)以硫酸为浸出剂,以双氧水为氧化剂,对碱浸渣进行酸浸;(3)将酸浸液加热,再将步骤(1)的碱浸液加入酸浸液中,直至溶液pH为5.0为添加终点,反应后过滤,得到滤渣和为中和液的滤液;(4)中和液加热,加入氢氧化钠,使其pH达到9,将溶液中的镍铜水解为氢氧化物,过滤分离便得到镍铜氢氧化物渣。本发明的一种回收稀贵熔炼炉渣中有价金属的方法,采用全湿法工艺,所用试剂价格便宜,操作方法简单,镍铜回收率高,过程无废水废渣废气排放,处理方法工艺简单,经济实用。
本发明提供了一种以红土镍矿产出的粗氢氧化镍为原料制备硝酸镍的方法,主要包括以下步骤:a.氯化镍溶液的制备:将红土镍矿产出的粗氢氧化镍经工业级盐酸溶解浸出;b.碳酸镍的制备:将氯化镍溶液加热至80℃以上后缓慢加入碳酸钠溶液并加匀速搅拌,将溶液反应2-3h后过滤,得到精制碳酸镍产品;c.硝酸镍的制备:将硝酸1:1稀释后加入碳酸镍,反应2h后进行精密过滤,将滤液升温蒸发,将蒸发后的硝酸镍溶液冷却结晶,过滤,将得到的硝酸镍结晶离心、干燥,即得硝酸镍产品。
本发明提供了一种提高红土矿浸出液镍离子浓度的浸出方法,包括以下步骤:(1)将红土矿原料加水浆化,控制红土矿浆料液固比为3~4:1;(2)按照酸矿比为0.15~0.20:1将浓硫酸加入红土矿浆料中进行高温浸出,完成浸出后液固分离,得到浸出液和浸出渣;(3)将70~80%的浸出液返回步骤(1)中,并补入新水制备红土矿浆料,剩余20~30%的浸出液作为最终浸出液进入后续净化工序,浸出液如此往复循环。本发明相比现有高压酸浸工艺可将最终浸出液镍离子的浓度从3~5g/L,提高至8~10g/L,镍杂比从2~3:1提高至5~6:1,浸出液体积量缩小2~3倍。由于浸出液镍离子浓度高,镍杂比低,浸出液体积量小,为后续溶液净化工序创造了便利的条件,实现红土矿高效环保的浸出的目的。
本发明公开了一种含硅氢氧化镍钴的盐酸浸出方法,该方法包括如下步骤:(1)碱液预浸:将含硅氢氧化镍钴采用氢氧化钠溶液浆化、预浸、压滤,得到预浸滤液和脱硅后氢氧化镍钴;(2)工业水洗涤:将脱硅后氢氧化镍钴采用工业水洗、压滤,得到洗涤后氢氧化镍钴和洗涤滤液;(3)盐酸浸出:将洗涤后氢氧化镍钴采用盐酸溶液浆化、浸出、压滤,得到氯化镍溶液和氯浸渣,氯化镍溶液送电解镍生产系统,氯浸渣返火法处理。通过本发明浸出方法,含硅氢氧化镍钴中硅的脱除率可达到80%以上,镍的浸出率≥99.5%,氯化镍溶液中Ni≥80g/L,氯浸渣渣率≤0.5wt%,渣含镍≤8wt%;且除硅后保证了氯化镍溶液进入电解镍生产系统产出的电解镍产品的外观质量。
本发明公开了一种镍电解混酸体系中除砷的方法,该方法通过补铁合理控制电解阳极液的铁砷比,同时控制除铁工序的温度以及pH值,使得在除铁工序80%以上的砷以砷酸铁或吸附的形式脱出,然后在除钴阶段控制除钴氧化电位、反应时间及其除钴前液pH值,进一步将除铁、砷过滤后液中的剩余砷在除钴段与氢氧化钴共沉淀除去。另外,将净化产生的除铁、砷过滤后渣以及除钴、砷过滤后渣进行除镍处理后过滤,过滤后液返造液进行处理,会带有部分砷进入造液工序,在造液工序通过控制溶液铜离子和电流密度诱导脱砷。本发明的方法很好地解决了镍电解含砷超标问题,电解新液含砷小于0.0002g/l,电解镍含砷均小于0.0005%,整体系统溶液砷脱出率达到98%以上。
本发明涉及一种以电积镍为原料生产电镀氯化镍的方法,该方法是指将电积镍投入到盐酸介质中进行溶解,得到氯化镍溶液;然后在所述氯化镍溶液中加入双氧水和镍粉调节溶液的pH值至3.0~4.0,去除氯化镍溶液的杂质后,依次经过滤、蒸发浓缩、结晶,得到晶浆;最后,所述晶浆经固液分离、干燥,即得氯化镍晶体。本发明不但工艺流程短、生产成本低,而且制备的氯化镍纯度高,具有很高的应用价值。
本发明提供了一种用于制备高纯度碱性含铜溶液的浸出工艺,本发明舍弃传统酸浸出方式,利用铜始级片、碳酸氢铵和氨水为原料,进行低温低压浸出,得到的含铜溶液纯度高,金属杂质含量符合高纯度含铜溶液的要求,同时,本发明能够在低温、常压下完成,便于操作,缩短了工艺流程,降低了生产成本。
本发明公开了一种降低尼尔森重选贵金属精矿中氧化镁含量的选矿方法,包括以下步骤:通过球磨机将尼尔森重选贵金属精矿磨至‑0.074mm占60‑75%,磨矿过程中添加硫酸铜且硫酸铜的添加量为80‑100g/t尼尔森重选贵金属精矿;磨矿后在尼尔森重选贵金属精矿中加入浮选药剂,控制浮选浓度为28‑35%,在高转速搅拌条件下对矿浆进行快速浮选,浮选后即可得到氧化镁含量≤6.6%的精矿。本发明对尼尔森重选贵金属精矿进行磨矿和浮选工艺回收有价金属,大大提高了贵金属的回收率,金、铂回收率分别可达97‑99%、91‑99%,可抛除约90%的氧化镁,能将尼尔森重选贵金属精矿中的氧化镁降至6.6%以内。本发明全过程涉及设备少,工艺流程简单,大大降低了处理成本,且现场工业化生产易实施。
本发明涉及一种从磁钢废料中提取镍钴的方法,该方法包括以下步骤:⑴加压浸出:在盐酸中加入磁钢废料进行加压浸出,分别得到铁渣和浸出液;⑵中和除铜:在浸出液中加入氢氧化钠,经中和反应、沉淀分离后,分别得到pH=5.0~5.5的反应液A和氢氧化铜渣;⑶氧化除钴:反应液A中加入氢氧化钠,经氧化反应、沉淀分离后,分别得到pH=4.5~5.0且钴离子浓度为0.01~0.02g/l的反应液B和钴沉淀渣;⑷中和沉镍:反应液B中加入氢氧化钠,经中和反应、沉淀分离后,分别得到pH=7.5~8.0的氯化钠尾液和氢氧化镍沉淀物;⑸氢氧化镍沉淀物煅烧,产出含镍大于76%的氧化镍产品;⑹电解:氯化钠尾液经电解,分别产出氢氧化钠、氯气和氢气。本发明效率高,不产生废渣和废水,符合现代环保利用。
本发明提供了一种镍精炼系统中除锑的方法,该方法利用双氧水进行氧化沉淀并通过常压除锑和加压除锑两段除锑反应,达到在镍精炼系统中高效除锑目的,全系统除锑率达到89%,电积镍中含锑稳定控制在≤0.0003%的范围之内。本发明采用氧化沉淀法除锑的工艺手段,操作简单,无污染,在不对现有流程进行技术改造的情况下,能够实现镍精炼系统锑杂质元素的有效去除,且具有流程短、除锑率高的特点。
一种从硫化铜砷渣中常压选择性浸出铼的处理方法,其处理过程的步骤包括:(1)将含铜砷铼的硫化渣先一段空气氧化浸出,控制浸出pH值为2-5;(2)再将一段浸出渣进行二段浸出,浸出过程中加入双氧水强化铼的浸出,过程控制浸出pH值为2-5。通过控制浸出条件,可将渣中铼选择性浸出,铼浸出率大于90%,砷的浸出率控制在15%以内,铜几乎不浸出,得到含铼0.3g/l、含铜砷铋总量小于1g/l的溶液,该溶液可通过萃取直接得到铼盐粗产品。工艺简单、远低于现有生产成本、易于实施。
本发明涉及铜镍精矿的氯气浸出设备技术领域,公开了一种浸出铜镍精矿的三相反应槽,包括槽体、槽盖、搅拌装置和气提装置;槽体上端侧面设有出液口;槽盖上安装有进液管、氯气加入管、冷却水管、排风管、温度检测仪、OPR测试仪和位于槽盖中央处的通孔;搅拌装置包括传动机构和搅拌机构;搅拌机构包括转轴和搅拌桨,转轴上端与传动机构的输出端驱动连接;气提装置包括压缩空气管和导流管,压缩空气管下端伸入导流管底部,导流管上端通过侧向设置的出液管与出液口连通;其中,出液管、进液管、氯气加入管、冷却水管和排风管上均设有自动调节阀门。本发明解决了现有镍精矿浸出设备浸出率低,氯气利用率低的问题。
中冶有色为您提供最新的甘肃金昌有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!