本发明公开了一种负极极片及其制备方法,包括集流体、设置在集流体上的负极复合材料层以及通过脉冲激光法沉积在负极复合材料层上的包覆层,负极复合材料层由固态电解质和负极活性材料制得;负极活性材料为碳负极材料,包覆层的材料选自磷酸锂、硅酸锂或钒酸锂;其制备方法包括以下步骤:S1、将负极活性材料和固态电解质混合为负极复合材料,并进行机械球磨后,加入导电剂、粘结剂和有机分散溶剂制备为浆料,涂覆于集流体上,烘干,形成负极基材;S2、将磷酸锂或硅酸锂制成靶,在负极基材上沉积磷酸锂或硅酸锂,沉积完成后冷却得到1‑100nm厚度的包覆层,制得负极材料。本发明具有循环寿命长的同时提高了电池安全性能的优点。
本发明公开了一种高分散超细固态电解质粉体、制备方法及分散方法,粉体粒径为D50≤0.6μm,粒径分布呈单峰分布,比表面积S≥12m2/g。制备粉体包括以下步骤:称取固态电解质的原粗粉、分散剂、表面改性剂,制备混合浆料,然后对混合浆料进行球磨处理,获得预期粒度的均匀浆料;再对均匀浆料进行离心处理,最后将离心处理后的湿块状物料移至干燥处理设备进行干燥处理,获得高分散超细固态电解质粉体。解决了超细固态电解质浆料干燥后易团聚、不易分散的问题,适合工业化生产的自动化、规模化生产,而将制备得到的高分散超细固态电解质粉体在应用于超细固态电解质浆料制备过程中,具高分散性和稳定性,分散周期短,效率高。
本发明公开了一种电极极片及其制备方法和应用,其制备方法包括以下步骤:电极材料极片制备,将电极材料、导电剂、粘合剂、分散剂和造孔剂搅拌制得浆料,将浆料涂覆于集流体表面后干燥得到电极材料极片;电解质溶液制备:将固态电解质进行机械球磨获得电解质粉末后溶于有机溶剂中获得电解质溶液;电极极片的制备:将电极材料极片浸润于电解质溶液中,然后在真空条件下加热烘干,压片制得电极极片,固态锂离子电池的电极极片由上述制备方法制得,本发明中制备得到的电极极片应用于传统液态锂电池、聚合物锂电池、混合固液电解质锂蓄电池、固态电池中的任意一种。本发明具有制备过程低成本易于规模生产且制备的电极极片具备优异电化学性能的优点。
本发明提供了一种表面为非晶态物质的无机固体电解质的制备方法,包括以下步骤:A)采用熔融‑淬冷法或高能球磨法制备与固态电解质基体材料化学成分相同的非晶态物质;B)将所述非晶态物质、粘结剂和溶剂混合,得到复合材料浆料;C)将所述复合材料浆料涂覆于所述固态电解质基体材料的表面,去除溶剂和粘结剂并软化所述非晶态物质,得到表面为非晶态物质的无机固体电解质。
本发明公开了一种用于固态锂电池的补锂功能电解质膜的制备方法,步骤如下:S1、将含锂化合物和无机固态电解质分别分散在NMP中,制备含锂化合物分散液和无机固态电解质分散液;将粘结剂搅拌溶解于NMP中,制备粘结剂溶液;S2、将含锂化合物分散液和无机固态电解质分散液按质量比混合,并向其中加入导电剂,制备得到混合分散液;S3、向步骤S2中得到的混合分散液中加入步骤S1中得到的粘结剂溶液,球磨混合后得到均匀浆料;S4、将均匀浆料通过双放卷的模式同时涂覆在增强层和骨架层相对的一侧表面,并在涂布机的烘箱中进行烘干,进而于增强层和骨架层之间形成补锂电解质层,从而得到用于固态锂电池的补锂功能电解质膜。制备得到的电解质膜1C循环性能提升50%以上。
本发明公开了一种锂离子电池负极材料及其制备方法,本发明将钠盐、钡盐、锶盐、锂盐、钛盐按一定比例混合,经球磨、烘干、研磨、烧结合成制备新的锂离子电池负极材料,其化学式Na0.5Ba0.25Sr0.5Li2Ti6O14,并研究了其电化学性能和储锂性能。电化学实验证明本方法制备的复合材料具有优异的物理化学性能,作为锂离子电池负极材料具有广阔的应用前景。在整个制备过程中,合成方法简单,易于操作,材料制备成本低,设备投资少,适合批量生产。
本发明公开了一种防污涂料用抗菌填料及其制备方法与应用。所述的防污涂料用抗菌填料的制备方法包括:至少将含钛高炉渣与氧化锌混合进行高能球磨处理,之后再经后处理制得所述防污涂料用抗菌填料,其中所述含钛高炉渣中钛元素的含量大于5wt%,所述高能球磨处理采用的转速为100r/min~1500r/min,时间为5~30h。本发明实施例通过高能球磨法制备了氧化锌掺杂的含钛高炉渣抗菌材料,解决了固体废弃物中钛资源的大量浪费,将其作为填料加入到防污涂料中可以代替传统毒杀型防污剂对海洋生态环境的破坏,绿色环保、经济可行。
本发明公开了一种复合金属氧化物粉体的制备方法,该方法采用在固相混料过程中添加易溶有机物,球磨使其混合均匀,然后高温干燥、最后放入电炉在600℃~900℃进行热处理,得到复合金属氧化物粉体产物。该方法利用球磨的能量使易溶有机物与金属离子络合,从而降低产物成相难度,提高产物纯度,并且该易溶有机物在热处理过程中起到空间位阻的作用,从而抑制复合金属氧化物粉体产物的晶粒过度生长以及有效降低团聚的发生。与现有技术相比,该方法成本低,工艺简单,环境友好,适于工业化生产;制得的复合金属氧化物粉体晶粒小、物相纯、粒度均匀、团聚少,并且烧结活性好。
一种阳极集流层浆料及其制备方法、支撑体、固体氧化物燃料电池及其制备方法,涉及到蓄电单元组装的技术领域;包括以下步骤,步骤A:根据化合计量比称取相应金属单质或多元合金,聚丙烯酰胺,松油醇,质量比为10:2:5混合得到混合材料;步骤B:将混合材料倒入研磨罐中,加入锆球后放入球磨机研磨10h,得到电池阳极集流层浆料;其中,相应金属单质或多元合金的熔点在600‑1300℃,25‑900℃时膨胀系数在6‑25*10‑6/K,金属粉体粒径D50为2‑30um的。本发明采用多元合金材料替代钙钛矿阳极集流密封材料,保证阳极集流层的致密性,降低阳极侧的对密封的要求,同时提高集流密封层电导率,降低电池内阻,提高燃料电池的放电性能。
本发明公开一种沥青混合料抗车辙剂,其特征在于:该抗车辙剂由如下重量百分比的组分:钢渣微粉30%~50%、矿渣微粉10%~25%、煤矸石焚烧灰25%~45%混合后,以混合料与硅酸钠溶液按重量比为(1.5~3)∶(1~2)搅拌反应后固化养护、加热、保温、粉磨所得;所述的钢渣微粉为采用热闷钢渣与石灰混合加热至900~950℃,保温2.5~3小时,再急冷、球磨后的钢渣微粉;所述的煤矸石焚烧灰为在750~900℃,保温2.5~3小时处理后的煤矸石焚烧灰。本发明还公开了上述抗车辙剂的制备方法。本发明具有使沥青混合料高温不易软化,从而不出现车辙痕迹、能充分保障路面平整性和行车安全的优点。
本发明公开了一种沥青混合料稳定剂,按重量百分比计,由以下原料制备而成:原料1:铝渣粉1~3%,沸石粉5~10%,矿渣粉25~40%,水泥50~65%;所述的原料1中各组分的重量百分比之和为100%;原料2:水,所述的水的重量为原料1中各组分总重量的20~30%,制备方法:按上述的原料配比称取各原料后,将铝渣粉与水混合,再将混合后的铝渣浆体与水泥、沸石粉、矿渣粉混合搅匀,成型,在温度为20℃、湿度为95%的条件下养护28天后球磨至150目;本发明能有效提高沥青混合料高温稳定性。
本发明公开一种建筑垃圾微粉复合掺合料的制备方法,步骤包括:将建筑垃圾与石灰、脱硫石膏混合均匀,在室温下研磨至比表面积大于400m2/kg的微粉混合物料;其中建筑垃圾掺入量为微粉混合物料总重量的90%~98%,石灰掺入量为1%~5%,脱硫石膏掺入量为1%~5%;将研磨后的微粉混合物料与占微粉混合物料总重量1%~5%的外加剂混合,得到混合料;将混合料与矿渣1:1重量比混合后进行混合球磨,球磨至物料的比表面积满足大于450mm2/kg,得到建筑垃圾微粉复合掺合料。本发明具有可以补充混凝土的碱性,提高建筑垃圾微粉辅助胶凝材料在混凝土中掺量,并能提高混凝土抗碳化能力的优点。
本发明公开了一种锰元素的浸出方法,用于软锰矿或阳极渣,将软锰矿或阳极渣制成粉状物,粉状物与含有还原剂的酸性溶液进行反应,反应后进行固液分离,得到浸出液和矿渣,实现锰元素的浸出,所述还原剂含有至少两个羟基,且其中的两个羟基须分别位于相邻的碳原子上;还公开了一种电池级硫酸锰的制备方法,包括矿石破碎、矿粉球磨、化合槽浸出、除重除杂、结晶、干燥诸步骤,其中加入了如前所述的还原剂。本发明使用的还原剂来源广,价格低廉,反应活性大,且对人体无毒无害;制备过程能耗低,产出废渣少,无废气、废水,有效获得锰元素的浸出和电池级硫酸锰产品。
本发明公开了一种降解含卤有机污染物的方法,其特征在于:将含卤有机物、过硫酸盐以及氧化钙混合后采用机械球磨的方法降解含卤有机污染物。本发明提供了一种以过硫酸盐为研磨剂,氧化钙为助磨剂,在机械球磨的过程中,氧化钙通过电子转移、碱激活、能量转移等途径,活化过硫酸盐,使过硫酸盐释放出羟基自由基、硫酸根自由基,从而对含卤有机污染物进行高效、彻底的降解。且机械球磨具有反应条件温和、操作简单、适用范围广、无二次污染等特点,尤其在对含卤有机污染物的脱卤和矿化中具有明显的优势。
本发明公开了一种煤矿安全报警系统及其制作方法,该报警系统由气体检测装置和报警装置组成,该气体检测模块基于有机电致发光的气体传感器,从传感器的组件材料,制作工艺,结构等多方面进行了创造性的优化设计,在多种因素的协同作用下,达到了出乎意料的灵敏度,具有很大的市场前景。
一种电场调控选择结晶合成钙钛矿KTaO3钾离子电池负极材料及其制备方法,其特征为:利用在高温固相反应时施加特定方向的电场改变具有晶格缺陷晶体的结晶特性,沿电场方向生长形成柱状外形颗粒;同时柱状外形颗粒表面的非均匀结晶而在表面曲率半径大部位不均匀地粘附烧结助剂而部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力,提高钾离子在晶格中的运动能力;形成连续的电子迁移网络,降低电子迁移阻力;增加与电解液的接触面积,加快电解液与晶格中的钾离子迁移能力及氧化还原反应的速率;这样的结构还具有一定的结构刚性,为充放电过程中的材料体积变化形成缓冲从而形成高性能的钾离子电池负极材料。
一种一步合成双钙钛矿钠离子电池负极材料及制备方法,其特征为:该材料组成为Na0.8Li0.2 Ce0.8Mg0.2Ni0.9Cu0.1Ta0.9Fe0.1O6;利用气流携带反应原料快速通过雾化的烧结助剂区域不均匀地粘附烧结助剂,然后在高温管式炉中一步连续获得产物并通过不均匀地粘附烧结助剂将产物颗部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力及电子迁移阻力;加快氧化还原反应的速率;还具有一定的结构刚性;进一步通过A位的Ce和Na共同占据及B位的Cu,Fe掺杂最终形成高性能的钠离子电池负极材料。
一种一步合成双钙钛矿锂离子电池负极材料及制备方法,其特征为:该负极材料组成为Ba0.8Mg0.2La0.9Li0.1Co0.9Zn0.1Ta0.9Fe0.1O6,制备过程中利用气流携带反应原料快速通过雾化的烧结助剂区域不均匀地粘附烧结助剂,然后在高温管式炉中一步连续获得产物并通过不均匀地粘附烧结助剂将产物颗粒部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力及电子迁移阻力;加快氧化还原反应的速率;还具有一定的结构刚性;进一步通过A位的Ba和La共同占据、Ba位置的Mg掺杂,La位置的Li掺杂;B位的Zn,Fe掺杂形成高性能的锂离子电池负极材料。
一种一步合成钙钛矿Li0.5Nd0.5MoO3锂电池负极材料及制备方法,其特征为:利用气流携带反应原料快速通过雾化的烧结助剂区域不均匀地粘附烧结助剂,然后在高温管式炉中一步连续获得产物并通过不均匀地粘附烧结助剂将产物颗粒部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力;形成连续的电子迁移网络;加快电解液与晶格中的锂离子迁移能力及氧化还原反应的速率;这样的结构还具有一定的结构刚性,为充放电过程中的材料体积变化形成缓冲;进一步通过A位的Nd掺杂提高锂离子扩散速率从而形成高性能的锂离子电池负极材料。
一种电场调控选择结晶合成钙钛矿NaTaO3钠离子电池负极材料及其制备方法,其特征为:利用在高温固相反应时施加特定方向的电场改变具有晶格缺陷晶体的结晶特性,沿电场方向生长形成柱状外形颗粒;同时柱状外形颗粒表面的非均匀结晶而在表面曲率半径大部位不均匀地粘附烧结助剂而部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力,提高钠离子在晶格中的运动能力;形成连续的电子迁移网络,降低电子迁移阻力;增加与电解液的接触面积,加快电解液与晶格中的钠离子迁移能力及氧化还原反应的速率;这样的结构还具有一定的结构刚性,为充放电过程中的材料体积变化形成缓冲从而形成高性能的钠离子电池负极材料。
一种电场调控选择结晶合成钙钛矿锂电池负极材料及其制备方法,其特征为:该负极材料的组成为Ca0.3La0.3Li0.4Zr0.8Fe0.1Mn0.1O3,制备过程中利用在高温固相反应时施加特定方向的电场改变具有晶格缺陷晶体的结晶特性,沿电场方向生长形成柱状外形颗粒;同时柱状外形颗粒表面的非均匀结晶在表面曲率半径大部位不均匀地粘附烧结助剂而部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力;降低电子迁移阻力;增加与电解液的接触面积并具有一定的结构刚性;进一步通过A位及B位的掺杂形成高性能的锂电池负极材料。
一种一步合成钙钛矿锂离子电池负极材料及其制备方法,其特征为:该负极材料的组成为La0.6Li0.3K0.1Ti0.8Cu0.1Mn0.1O3,制备过程中利用气流携带反应原料快速通过雾化的烧结助剂区域不均匀地粘附烧结助剂,然后在高温管式炉中一步连续获得产物并通过不均匀地粘附烧结助剂将产物颗粒部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力;形成连续的电子迁移网络;加快电解液与晶格中的锂离子迁移能力及氧化还原反应的速率;这样的结构还具有一定的结构刚性,为充放电过程中的材料体积变化形成缓冲;进一步通过A位及B位的掺杂最终形成高性能的锂离子电池负极材料。
一种一步合成钙钛矿氧化物MgTaO3镁离子电池负极材料及其制备方法,其特征为:利用气流携带反应原料快速通过雾化的烧结助剂区域不均匀地粘附烧结助剂,然后在高温管式炉中一步连续获得产物并通过不均匀地粘附烧结助剂将产物颗粒部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力及电子迁移阻力;加快氧化还原反应的速率;还具有一定的结构刚性;从而形成高性能的镁离子电池负极材料。
一种一步合成双钙钛矿镁离子电池负极材料及制备方法,其特征为:该负极材料的组成为MgNd0.8Li0.2Fe0.9Cu0.1Nb0.9Zn0.1O6,制备过程中利用气流携带反应原料快速通过雾化的烧结助剂区域不均匀地粘附烧结助剂,然后在高温管式炉中一步连续获得产物并通过不均匀地粘附烧结助剂将产物颗粒部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力及电子迁移阻力;加快氧化还原反应的速率;还具有一定的结构刚性;进一步通过A位的Mg和Nd共同占据及B位的Zn,Cu掺杂最终形成高性能的镁离子电池负极材料。
一种电场调控选择结晶合成双钙钛矿钠离子电池负极材料及其制备方法,其特征为:该负极材料的组成为NaBa0.3La0.3K0.4Zr0.8Ni0.1Mn0.1MoO6,制备过程中利用在高温固相反应时施加特定方向的电场改变具有晶格缺陷晶体的结晶特性,沿电场方向生长形成柱状外形颗粒;同时柱状外形颗粒表面的非均匀结晶而在表面曲率半径大部位不均匀地粘附烧结助剂而部分粘结成为连续多孔形貌;该形貌有利于降低晶界阻力、电子迁移阻力;加快钠离子迁移能力及氧化还原反应的速率;还具有一定的结构刚性,为体积变化形成缓冲;进一步通过A位的Na和La共同占据、La位置的Ba、K掺杂及B位的Ni,Mn掺杂从而形成高性能的钠离子电池负极材料。
一种电场调控选择结晶合成双钙钛矿锂离子电池负极材料及其制备方法,其特征为:该负极材料的组成为Na0.8Ba0.2Y0.9Li0.1Co0.9Zn0.1Nb0.9Mn0.1O6,制备过程中利用在高温固相反应时施加特定方向的电场改变具有晶格缺陷晶体的结晶特性,沿电场方向生长形成柱状外形颗粒;同时柱状外形颗粒表面的非均匀结晶而在表面曲率半径大部位不均匀地粘附烧结助剂而部分粘结成为连续多孔形貌;该形貌有利于降低晶界阻力、电子迁移阻力;加快锂离子迁移能力及氧化还原反应速率;还具有一定的结构刚性,为体积变化形成缓冲;进一步通过A位的Na和Y共同占据、Na位Ba掺杂、Y位Li掺杂及B位Zn,Mn掺杂而形成高性能的锂离子电池负极材料。
本发明涉及热电材料领域,是一种具有黄铜矿结构的Cu-Ga-Sb-Te四元热电半导体及其制备工艺。其设计要点在于所述Cu-Ga-Sb-Te四元热电半导体中的部分Cu元素等摩尔替换为Sb元素,所述Sb元素在所述Cu-Ga-Sb-Te四元热电半导体中的摩尔分数为0~0.025,Cu元素在所述Cu-Ga-Sb-Te四元热电半导体中的摩尔分数为0.225~0.25。所述Cu-Ga-Sb-Te四元热电半导体的化学式为Cu1-xGaSbxTe2,其中0≤x≤0.1。本发明采用常规的粉末冶金法制备,工艺简单;采用金属元素Sb等摩尔替换Cu-Ga-Sb-Te四元热电合金中Cu元素,成本较低;材料具有环保特性,无噪音,适合作为一种绿色能源材料使用。
本发明涉及一种采煤采矿用截齿的制造工艺,所述的截齿包括齿身和齿尖,其特征在于:其制造工艺包括如下步骤:(1)齿身的预制造;(2)齿尖的预制造;(3)齿尖和齿身的装配;(4)对装配好的截齿的齿身表面进行熔覆耐磨层;(5)将上述步骤(4)的产品进行盐浴处理和淬火处理;(6)对淬火后的产品进行低温回火处理;(7)对回火后的产品进行后期处理,便可得到截齿成品。本发明的截齿经过本发明的处理工艺处理后截齿的变形和热影响极小,使用寿命提高5-6倍,齿身表面的耐磨层,与传统截齿相比,其维氏硬度大大提高,据检测,硬度可达1800以上,远远大于传统截齿的维氏硬度,由于硬度较高,也大大提高了截齿的使用寿命。
一种一步合成双钙钛矿钾离子电池负极材料及其制备方法,其特征为:该负极材料的组成为KNaTa0.8Zn0.1Ag0.1ZrO6,制备过程中利用气流携带反应原料快速通过雾化的烧结助剂区域不均匀地粘附烧结助剂,然后在高温管式炉中一步连续获得产物并通过不均匀地粘附烧结助剂将产物颗粒部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力及电子迁移阻力;加快氧化还原反应的速率;还具有一定的结构刚性;进一步通过A位的K和Na共同占据及B位的Zn,Ag掺杂最终形成高性能的钾离子电池负极材料。
一种电场调控选择结晶合成双钙钛矿钾离子电池负极材料及其制备方法,其特征为:该负极材料的组成为KSc0.8La0.1Ba0.1ZrNbO6,制备过程中利用在高温固相反应时施加特定方向的电场改变具有晶格缺陷晶体的结晶特性,沿电场方向生长形成柱状外形颗粒;同时柱状外形颗粒表面的非均匀结晶而在表面曲率半径大部位不均匀地粘附烧结助剂而部分粘结成为连续多孔形貌;这样的形貌有利于降低晶界阻力及电子迁移阻力;加快电解液与晶格中的钾离子迁移能力及氧化还原反应的速率;这样的结构还具有一定的结构刚性,为充放电过程中的材料体积变化形成缓冲;进一步通过A位的K和Sc共同占据及Sc位置的La、Ba掺杂而形成高性能的钾离子电池负极材料。
中冶有色为您提供最新的浙江宁波有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!