本发明提供了一种碳纳米管复合薄膜场发射阴极的制备方法,包括:S1、制备碳纳米管/TiC/Ti复合材料;S2、将碳纳米管/TiC/Ti复合材料和纳米填充颗粒按质量比5:1-1:5混合,混合物加入到有机溶剂中,并采用超声进行分散,形成第一浆料;S3、在银电极上移植第一浆料,形成碳纳米管复合薄膜;S4、在200°C-600°C的温度下,将碳纳米管复合薄膜放入烧结炉进行真空烧结或还原气氛烧结,其中,烧结时间在15分钟以上;S5、利用腐蚀剂腐蚀除去碳纳米管复合薄膜烧结后表面的Ti,露出碳纳米管/TiC发射尖端,并形成碳纳米管复合薄膜场发射阴极。该方法制备的碳纳米管复合薄膜场发射阴极结构增强了碳纳米管发射体与基体粘附力和电接触、改善了场发射性能。
本发明公开了一种四元系镁基储氢合金、其生产方法及应用,四元系镁基储氢合金由Mg1.5-2Al0.02-0.08Ni0.5-1.0A0.05-0.1组成,其中A为V、Ti、Fe、Nd、Pd,显微组织中分布有弥散的纳米晶团簇和非晶团簇。合金元素粉末经充分混合后压制成片状,然后在真空烧结炉内进行烧结,得到的合金样品进行粉碎、球磨、筛选,得到粒度<25μm以下的合金粉末;称取少量的微细Ni粉进行球磨,得到纳米晶Ni粉;把粒度<25μm以下的Mg1.5-2Al0.02-0.08Ni0.5-1.0A0.05-0.1合金粉末和纳米晶Ni粉及第二相活性粒子充分混合后进行高能球磨,得到具有纳米晶和非晶组织的活性储氢合金材料,经过活化后得成品。成品具有吸/解氢温度低、性能稳定、具有实用性,价格便宜的特点。
本发明涉及半渗透膜的生产,用于分离工艺的半透膜的专用制备方法。它通过模压或冷等静压,将Ti、Al元素粉末直接与Ti箔或Al箔复合成形片状或管状坯,或者先通过模压或冷等静压将Ti、Al元素粉末成形为片状坯或管状坯,然后通过Al液表面熔浸的方式制成复合成形坯;再通过低温预反应和高温短时反应两阶段真空烧结合成法,制备TiAl金属间化合物孔径梯度均质支撑体,随后,在其表面,采用化学或物理气相沉积(CVD或PVD)的方式,均匀镀上一层钯基合金膜,厚度为5~50μm。由此制得的膜具有良好的抗氧化性能、抗腐蚀性能和力学性能,提高了氢分离膜的渗透通量和使用寿命;其TiAl支撑体还可直接用作性能优异的微滤膜和纳滤膜。本发明制备过程不需要添加造孔剂,降低了能耗,几乎无污染。
本发明提出了一种非均匀硬质合金的制备方法。它是在配料时按重量比为Co11~12%,9.01~13μm的WC 44~48%,1.0~1.2μm的WC 41~44%配制混合料,混合料按球料比为4.8~5.3∶1,液固比为450~510ml/kg,在球磨机中进行湿磨,研磨时间为34~36h,再经干燥、压制成型,而后在真空度为10~300Pa,烧结温度为1400~1420℃的条件下进行真空烧结,制备出具有高强度和高硬度的非均匀结构硬质合金。用本发明方法制备的硬质合金铲雪片硬度达88.0HRA,抗弯强度达3000MPa以上,比现有技术制备的铲雪片使用使命提高20%以上。
一种粉末冶金法制备准晶颗粒增强镁基复合材料的工艺,属于复合材料、冶金技术领域。本发明采用机械球磨或高压惰性气体雾化的方法制取准晶粉末,过筛后得到20-100μm的准晶粉末,采用-200~80目的镁合金粉末分别与准晶粉末进行混合后热压压制,然后在真空炉里进行烧结,制备出准晶颗粒增强镁基复合材料,具体工艺参数为:准晶颗粒质量百分数为5-25%,热压温度250-450℃,真空烧结温度580-650℃,烧结时间20-60分钟。本发明增强颗粒与合金粉末能充分混合均匀,所占质量分数可调,而且粉末冶金的烧结温度较低,避免了在液相工艺过程中基体熔融金属与准晶颗粒之间的反应,准晶增强颗粒与基体金属界面结合良好,且能弥散均匀分布在基体金属内。
本发明公开了一种氮化硼纳米管晶界相添加制备高强韧性磁体方法。其步骤为:1)主相合金采用铸造工艺制成钕铁硼铸锭合金,晶界相合金采用快淬工艺制成快淬带;2)将主相合金和晶界相合金分别制粉;3)将氮化硼纳米管添加到晶界相合金粉末中;4)混合后的主相合金和晶界相合金粉末在磁场中压制成型;5)在高真空烧结炉内制成烧结磁体。本发明制得的烧结钕铁硼强韧性高,可以用于大规模批量生产,通过本发明可以制备出高强韧性的烧结钕铁硼。
本发明一种微纳米碳化硅/氧化钙稳定氧化锆球形喂料及制备方法,包括:步骤1,配置ZrOCl2·8H2O/Ca(NO3)2·4H2O混合溶液;步骤2,将过量氨水滴加于混合溶液并持续搅拌生成白色沉淀,形成溶液A;步骤3,将聚碳硅烷溶于对二甲苯溶液中,形成溶液B;步骤4,将溶液B和PVA水溶液加入到溶液A,得到混合物;步骤5,将步骤4中的混合物于辊式球磨机进行球磨,得到球磨后的浆料;步骤6,将经过球磨的浆料在喷雾造粒机上进行造粒,去除水分后得到干燥的Zr(OH)4、Ca(OH)2和聚碳硅烷的球状混合粉体;步骤7,将造粒后得到的球状粉体放在刚玉坩埚中,并置于真空烧结炉中在高温条件下煅烧,使Zr(OH)4、Ca(OH)2和聚碳硅烷(PCS)经过高温分解形成均匀的SiC/CSZ球形喂料。
本发明提供了一种Nb?Si?Ti?W?Cr合金棒材,由以下质量百分比的成分组成:Si?2.4%~6.7%,Ti?5%~25%,W?5%~15%,Cr?2%~8%,余量为Nb和不可避免的杂质。本发明还提供了一种制备该棒材的方法,包括以下步骤:一、采用湿法球磨的方法将铌粉、硅粉、钛粉、钨粉和铬粉混合均匀,真空烘干后得到混合粉末;二、进行真空烧结,得到烧结体;三、电子束熔炼2~5次,得到铸锭;四、热挤压,得到半成品棒坯;五、热挤压,得到Nb?Si?Ti?W?Cr合金棒材。本发明Nb?Si?Ti?W?Cr合金棒材具有低密度以及良好的综合力学性能和抗氧化性能,能够在1400℃空气环境中使用。
本发明公开了一种铝青铜-不锈钢双金属复合材料的制备方法,首先将酸洗过的不锈钢经过表面沉积处理,然后将表面沉积处理过的不锈钢放置于刚玉坩埚中,再将铝青铜置于不锈钢之上,将刚玉坩埚放在真空烧结炉中进行熔浸处理,即得到铝青铜-不锈钢双金属复合材料。本发明铝青铜-不锈钢双金属复合材料的制备方法,利用铝青铜与不锈钢在熔点上的差别,保证高温条件下铝青铜熔化,不锈钢保持固态,经过液固扩散,实现两者冶金结合,形成的双金属复合材料除了具有铝青铜和不锈钢的各自优越性能外,同时还具有较高的结合强度,其界面结合强度可达600Mpa以上。
本发明涉及一种钕铁硼磁性体的制备方法,其包括如下步骤:步骤一:将速凝炉抽真空然后充入氩气,将钕铁硼原料放入速凝炉中加热至1450℃-1500℃,使钕铁硼原料熔化,然后浇铸并冷却;步骤二:将冷却后的钕铁硼材料与氢气反应至吸氢饱和,然后脱氢;步骤三:将脱氢后的钕铁硼材料制成粉体;步骤四:将钕铁硼粉体成型;步骤五:将成型后的钕铁硼粉体在真空烧结炉中烧结,烧结温度为1000℃-1090℃,得到钕铁硼磁性体。本发明提供的钕铁硼磁性体的制备方法较为简单,生产时间短,成本较低,而且生产出来的钕铁硼磁性体具有较高的磁能积和矫顽力,磁性性能较好,能满足绝大多数电子产品的需求。
本发明涉及一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法,按照所制备的陶瓷组分结构式:(Al1-xCrx)5CayY3-yO12(0.001≤x≤0.01,10x≤y≤40x)的化学计量比称量原料粉体,并加入烧结助剂和电荷补偿剂;球磨混合后得到浆料;然后将浆料经烘干、过筛后成型得到素坯,煅烧除去可挥发性杂质;再将素坯采用1730℃~1850℃真空烧结4~30h,接着置于空气中于1300℃~1550℃退火10~25h,即得致密Cr4+ : YAG透明陶瓷。本发明所制备的Cr4+ : YAG透明陶瓷致密度高、均匀性好,无偏析,晶粒级配分布合理,无异常晶粒长大,无晶内以及晶间气孔,透过率高,具备作为激光增益介质的条件。
本发明涉及一种硼化镁复合超导材料的制备方法,属超导材料制备工艺技术领域。本发明制备方法为:将B4C和Mg粉末充分研磨混合后,压成块状,放入陶瓷坩埚中,用陶瓷内盖盖好,并沿内盖边缘撤入适量B2O3粉,或者用金属管包套,以达到密封;然后将上述试样放入真空烧结炉进行烧结;烧结温度为700~900℃,保温60~120分钟,然后在真空下自然冷却至室温,即得到MgB2复合超导材料。该材料超导温度高达34K,临界电流密度在10K零场下高于0.5×106A/cm2,能满足超导强电应用要求。本发明制备工艺简单,对反应装置要求较低,并能极大地节约MgB2超导材料的制造成本。
钛基复合材料自反应-粉末冶金制备的方法属于 复合材料领域。该方法具体如下:称取适当化学计量的海绵钛、 碳化硼、石墨粉和合金化元素粉末;采用V型混合机、球磨机 等混合方法将粉末混合均匀;采用模压成型、冷等静压成型等 方法将获得的混合粉末制备出具有预定外形的生坯;将生坯放入真空烧结炉中烧结,真空度控制在1×10-1Pa-1×10-3Pa之间,烧结温度控制在1200℃-1400℃之间,烧结时间为2-18小时;随炉冷却即可得原位自生钛基复合材料。本发明能简捷、低成本制备高性能的钛基复合材料,并可通过调整不同增强体含量、摩尔比值及基体合金成分制备所需的复合材料,本发明制备不同摩尔比值TiB和TiC增强钛基复合材料具有近净成形的特点,尤其适合批量制备零件。
本发明公开了一种多孔内芯与致密外壳的连接方法,该方法为:选择-80~+500目范围内的金属A、B粉,按其原子比1∶1配料,配料后放入混料机中混匀,然后将A、B金属混合粉直接装入由金属A制成的致密管中,经过2.5-5.0MPA模压成型,于350-1200℃真空烧结1-2小时;其中金属B在金属A中的扩散速度大于金属A在金属B中的扩散速度,多孔材料为AB合金,致密材料为金属A。本发明通过粉末冶金方法,利用一些合金在烧结时发生KIRKENDALL效应和烧结膨胀现象,完成多孔材料与致密材料的烧结扩散焊,使二者连接成一体,不漏气,密封性好,可以实现多孔材料与致密材料的一体化成型,并且工艺简单,可以大大降低生产成本。
本发明涉及一种AlN与MgB2颗粒增强镁基复合材料及其制备方法。该镁基复合材料基体上均匀分布原位生成的纳米级AlN与亚微米级MgB2;AlN的质量百分比为5.0~30.0,尺寸为10~100nm;MgB2的质量百分比为2.0~20.0,尺寸为0.2~0.8μm。其制备方法是:按比例配制原料,在氩气氛围下,先将镁粉和铝粉低速球磨12~48h,再将其同氮化硼粉和石墨烯一起高速球磨0.5~8h,然后将两步球磨后的物料除气包套,在冷/热等静压机中压制成预制体,并利用真空烧结炉在450~680℃保温10~180min,即可获得AlN与MgB2颗粒增强镁基复合材料。本发明的制备方法安全可靠。
本发明涉及一种陶瓷颗粒增强复合耐磨件及其制造方法,将陶瓷颗粒与金属粉混合均匀,填充于特定的模具中,将陶瓷颗粒和金属粉连同模具一起放入真空烧结炉内进行烧结,金属粉将陶瓷颗粒粘结在一起形成预制体;冷却后打开模具,取出预制体放入铸型型腔的端面侧;采用中频感应电炉熔炼金属母体材料形成金属液,铸造时浇入金属液,在金属液热量的作用下,预制体内的金属粉熔化成液体形成铸渗通路,使得金属液更容易渗透陶瓷颗粒,在原位形成颗粒增强复合材料;耐磨件的表层由母体金属与复合材料共同组成,采用本方法制备的复合材料耐磨件既保证了耐磨件的耐磨损性能,又具有高的抗冲击能力。
一种碳化硅陶瓷材料的压注成型工艺,按重量百分比取细度为W10的碳化硅微粉80~90%、碳墨10~20%作为配料;经球磨、过筛、和蜡搅拌后在热压注机中一次成型为蜡坯,然后坯装入匣钵内,以生氧化铝粉作吸附剂,放入低温排蜡炉内缓慢升温进行排蜡,当坯体中的石蜡排出70%~85%时,将匣钵卸下冷却至室温,把坯体取出;接着,将排蜡后的碳化硅毛坯与硅片均匀地放置在坩埚内,装入真空烧结炉进行烧结,开始以每小时300℃的升温速度均匀升温,升至1200℃时,升温速度改为每小时200℃,当温度升至1600℃时,保温3~4小时。与现有技术相比,本发明配方简单而成品的理化性能好,由于采用金属模具,效率极高,且模具磨损小,使用寿命长,与干压工艺相比能使产量增加10倍左右,成型合格率提高5%左右,同类产品的价格与干压产品相比,可降低20%左右。
本发明属于纳米复合陶瓷材料技术领域,具体的说是一种SiC/CNTs复合陶瓷的的制备工艺,其特征在于:选取如下重量份原料:碳纳米管10-28份、SiC颗粒64~82份、酚醛树脂8份;再加入无水乙醇,在酚醛树脂内衬球磨罐中进行湿混球磨;热风中烘干;粉碎后过100目筛;70~100MPa模压成型得到压坯;在N2气氛中将压坯升温至800℃保温30~60min进行酚醛树脂脱除,得到预烧坯;上述预烧坯上放置硅片上进行真空烧结熔渗,烧结熔渗温度为1450~1550℃;冷却得SiC/CNTs复合陶瓷成品。本发明同现有技术相比,工艺简单,所得碳化硅烧结坯致密度高,无游离硅残留,强度与韧度较高。
本发明公开了一种钕铁硼磁铁的烧结方法,属于磁铁制备技术领域,其技术方案要点包括包括以下步骤:S1:准备好生坯,待用;S2:清洗、调整好真空烧结炉,待用;S3:将所述生坯投入到真空烧结炉,在惰性气体的保护下,升温到初温段,保温;S4:继续升温到中温段,保温;S5:继续升温到次中温段,进行保温;S6:再继续升温到高温段,进行保温;本发明提供钕铁硼磁铁的烧结方法,通过加入二氧化碳气体进行保护及在高温段进行循环保温,有效提高了钕铁硼磁铁毛坯各方面的性能。
一种TiAl基合金气门的粉末冶金制备方法,采用元素Ti粉、Al粉为主要原料,按照传统的粉末冶金工艺,经冷压、真空烧结、扩散联结,热等静压、机加工制备粉末冶金TiAl基合金的气门零件。采用本发明所提供的方法制备的TiAl基合金气门,与准等静压方法相比,可以降低制造成本,而且本发明的工艺简单,适于规模化生产。与普通不锈钢气门相比,由于气门质量减轻,使得柴油机的高温工作性能得到了提高。
本发明公开了一种多孔半致密或全致密镍金属材料和制品制备方法,涉及粉末冶金模压生产工艺技术领域。本发明以下工艺步骤:S1.配料,将镍金属粉末与粘合剂均匀混合;S2.压制成型,将混合好的镍金属粉末充填入粉末成型机的压制模具中进行常温下的压制成型,得到特定形状的镍金属件生坯;S3.烧结成型,将特定形状的镍金属件生坯放入真空烧结炉中的金属钼载体中进行真空烧结成型,烧结温度为1200℃~1350℃,烧结时间为2h~4h,得到高强度的镍金属件;S4.烧结成型之后,取出镍金属件,将镍金属件进行研磨表面处理。本发明生产工艺无切削加工工序,加工效率高、精度高、镍金属材料无变性、强度高、可直接制成多孔半致密或全致密材料和制品。
本申请提供了一种涂覆有抗氧化抗冲击涂层的碳纤维保温材料的制备方法,包括依次进行的打底喷涂酚醛树脂、干燥处理、改性喷涂偶联剂、干燥处理、抗氧化喷涂抗氧化涂料、干燥处理、真空烧结处理、自然冷却;抗氧化抗冲击涂层将碳纤维丝给封闭包裹起来,将碳纤维丝与氧隔绝开来避免其与氧接触,从而提高了抗氧化性能;抗氧化抗冲击涂层的主要原料是酚醛树脂,酚醛树脂固化后会提高碳纤维保温材料表面的硬度,经过高温真空烧结处理后该表面硬度也不会有明显降低,从而增强了抗冲击性;最终使得碳纤维保温材料的使用寿命提高了50%以上;抗氧化抗冲击涂层封堵了碳纤维保温材料表面的孔洞,从而有效地控制了碳纤维保温材料的发尘量。
本发明涉及螺纹加工技术领域,具体是一种通过半成品加工方式加工硬质合金螺纹的方法,包括以下步骤:取80‑90份碳化钨粉、5‑15份钴粉、5份铬粉和石蜡颗粒混合,加入球磨机中进行球磨,球磨后浆料过筛网后取浆料,将浆料加入双螺旋混合器中进行干燥,干燥完毕后通入冷冻水进行冷却,冷却完毕后通过振动筛,往混合料内添加粘合剂,混合30‑50分钟后,在1000‑1300Mpa的压力下等静压成型,得到硬质合金毛坯,将毛坯放到真空烧结炉进行预烧结,炉冷后通过电镀金刚石合金钻头加工,加工后在真空烧结炉进行成品烧结,烧结完成后直接获得成品硬质合金螺纹。本发明制造的硬质合金螺纹具有尺寸精确,耗费工时少,成本低的优点。
一种制备高抗酸蚀的含单质稀土Y的TiAl基合金,其特征是它由高能球磨—冷压成形—无压真空烧结组成。其中,该材料主要由Ti、Al、V、Nb、Y五种粉末组成,其名义成分为Ti?45Al?5V?4Nb?0.3Y(at.%)。本发明制备的TiAl基合金腐蚀100?h后,合金的质量损失为0.00487?g/cm2,抗酸蚀性能优异。本发明作为TiAl基合金的一种制备方法,拓宽了TiAl基合金的应用范围,在汽车、航天、航海等领域中作为耐蚀材料具有广泛的应用前景。
本发明公开了一种防止大块烧结钕铁硼开裂的烧结工艺,涉及烧结钕铁硼技术领域,本发明制成的坯料进行装匣钵:先在匣钵底部洒上高熔点金属粉末钼,将坯料放入匣钵内,在用高熔点金属粉末将坯料掩埋,然后放入真空烧结炉中,进行真空烧结。本发明坯料从外向内加热;通过高熔点金属传导热量,热量均匀传导给材料,材料内应力小,晶粒大小均匀,在冷却过程中避免了冲入的氩气与坯料直接接触,避免了坯料内外冷却速率过快导致产品隐裂,解决了烧结大产品时容易开裂的问题,可显著降低烧结温度、大幅降低能耗、缩短烧结时间、显著提高组织致密度、细化晶粒、改善材料性能。
本发明公开了一种活性炭硅化法制备多孔碳化硅陶瓷的方法,包括以下步骤:首先,将活性炭和碳化硅粉末按质量比为0.5~3:1混合均匀,并模压成型,获得生坯;然后,将生坯放入真空烧结炉中,并在500-800℃的条件下预烧结0.5-2hr,获得预烧结坯;最后,将预烧结坯放入真空烧结炉中,在预烧结坯坯料周围撒上硅粉,所述硅粉为预烧结坯坯料质量的2~9%,并在1300-1700℃的条件下烧结0.5~3hr,获得遗传有活性炭微孔的多孔碳化硅陶瓷。本发明利用活性炭硅化法制备的多孔碳化硅陶瓷具有较高的结合强度,属于低温原位反应的方法,工艺简单,成本低,可规模化生产。
一种高强度高耐磨硬质合金及其制造方法和应用,采用碳化钨作硬质相,以铁、钴、镍作粘结相,外加钛或钒的碳化物或硼化物或氮化物、并外加碳化钽或碳化铌,还外加碳,经湿磨、压制、真空烧结而成,可应用于制作混凝土输送泵S管阀上的眼镜板和切割环及其他领域。本发明抗弯强度和硬度高,抗冲击性能优越、易焊接,具有与钢套易匹配的线膨胀系数和适用的抗疲劳强度、刃口锋利、耐磨性好,综合性能优良,应用广泛。
一种用于暖白光照明的复合荧光陶瓷的制备方法。本发明涉及一种流延成型、温等静压复合工艺以及高温真空烧结技术制备全光谱暖白光照明用复合荧光陶瓷的方法,将红光透明陶瓷作为复合陶瓷底层,在其上面依次叠有绿光陶瓷LuAG:Ce3+和黄光陶瓷YAG:Ce3+层,实现陶瓷在蓝光芯片激发下获得全光谱的暖白光照明。首先通过行星球磨工艺分别制备YAG:Ce3+,LuAG:Ce3+,LuAG:Mn4+等三种不同组分的陶瓷浆料,然后将三种浆料进行流延成型分别获得具有一定厚度和韧性的薄片坯体材料,以LuAG:Mn4+陶瓷坯体作为底层,然后按照LuAG:Ce3+/YAG:Ce3+顺序依次叠层坯体,最后经过温等静压复合成型、低温脱脂排胶以及高温真空烧结等工艺获得高质量的复合荧光陶瓷体材料。将该陶瓷材料置于蓝光芯片下激发可以获得高质量的全光谱暖白光。该方法制备简单,条件可控,易于操作推广。
本发明公开了一种碲化铋基块体热电材料的制备方法,该方法将磁场辅助区熔工艺、逐层覆盖加压且振动辅助取向工艺、冷等静压工艺、真空烧结工艺以及热等静压工艺相结合,以高纯碲、铋、锑、硒等为原料,首先采用区熔法制备碲化铋晶锭,然后将晶锭粉碎、研磨、过筛,再利用逐层覆盖加压且振动辅助取向工艺将过筛粉料压制成块体材料,最后采用冷等静压工艺、真空烧结工艺和热等静压工艺相结合,制备具有良好取向性且接近完全致密的织构化块体热电材料;本发明可显著提高碲化铋晶粒取向性,获得的碲化铋基块体材料兼具良好的热电性能和机械加工性能,是一种材料利用率高、简单易行、制备效率高,具有良好应用前景的制备方法。
一种高速压制成形制备钛合金的方法。其步骤为:混合含钛金属粉末、润滑模壁、高速压制成形制备压坯和真空烧结。本发明通过高速压制成形和真空烧结制备出高致密钛合金,工艺简单,实现了短流程、低成本制备高性能钛合金。制备的钛合金的致密度≥98.08%,硬度HV为374~394,弯曲强度为1439~2170MPa。本发明还可适用于以钛为基体的其它钛合金、钛基复合材料的制备。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!