本发明公开了一种低碳含量的烧结钕铁硼磁体的制备方法,包括以下步骤:步骤一、将钕铁硼磁体原料进行真空熔炼得到钕铁硼磁体合金,钕铁硼磁体原料包括:Nd 35%、B 2.5%、Cu 1.8%、Si 1.8%、余量为Fe;步骤二、将钕铁硼磁体合金进行氢爆处理,磨制成钕铁硼粉末,压制成型得到钕铁硼生坯;步骤三、将钕铁硼生坯相对的两侧加载电压,通电,且整个通电过程中钕铁硼生坯处于充满氩气,温度保持在100℃的环境中进行;步骤四、将步骤三处理后的钕铁硼生坯进行真空烧结得到烧结钕铁硼磁体。本发明具有提高钕铁硼磁体的热稳定性,及降低烧结钕铁硼磁体中的碳含量提高耐磨性有益效果。
本发明公开了一种通过熔、溶脱盐造孔法制备镁金属通孔多孔材料的方法,涉及粉末冶金模压生产工艺技术领域。本发明以下工艺步骤:S1.配料,将镁金属粉末与粘合剂均匀混合;S2.压制成型,将混合好的镁金属粉末充填入粉末成型机的压制模具中进行常温下的压制成型,得到特定形状的镁金属件生坯;S3.烧结成型,将特定形状的镁金属件生坯放入真空烧结炉中的金属钼载体中进行真空烧结成型,烧结温度为1200℃~1350℃,烧结时间为2h~4h,得到高强度的镁金属件;S4.烧结成型之后,取出镁金属件,将镁金属件进行研磨表面处理。本发明生产工艺无切削加工工序,加工效率高、精度高、镁金属材料无变性、强度高、可直接制成多孔半致密或全致密材料和制品。
本发明公开了一种无磁硬质合金及其制作方法,该无磁硬质合金以碳化钨(WC)为主要成分,添加镍(Ni)、铬(Cr)、钼(Mo)所组成;其制作方法,包括配料、湿磨、过滤混合料料浆、烘干过筛、成型、真空烧结、检验等工序;按照本发明生产的无磁硬质合金与现有技术相比,具有硬度高、耐磨性好,摩擦系数小、抛光性能好、抗压强度高、刚性好等优点,从而不仅能有效保证加工件的表面光洁度,提高加工件的质量;而且可以有效地保证加工件的几何形状尺寸的精度。
本发明涉及一种用脱油沥青制备洋葱状内包金属镍碳微粒的方法,它是以脱油沥青、金属镍粉为原料,以金属镍粉为催化剂,以盐酸、去离子水为清洗剂,以氩气为保护气体,在管式高温炉中,在1000℃温度下,在氩气全程保护下,烧结脱油沥青粉末,在真空烧结炉中,在真空度为10-3Pa下,在温度为2000℃高温下,恒温保温烧结脱油沥青+金属镍粉末60min,获得洋葱状内包金属镍碳微粒产物粉末,产物粉末颗粒为黑色、圆球形,直径为10-30nm,表面包覆层碳壳厚度为5nm,金属镍内核直径为5-20nm,其颗粒横切面具有明显的洋葱状层叠包覆结构,碳壳、金属镍颗粒均匀,具有高纯特点,其化学、物理性能稳定,此方法工艺流程短、材料来源丰富、产收率高,可达66%。
本发明提供了一种直接水冷的粉末烧结多元合金镀膜靶及其制造方法,所要解决的问题是:粉末烧结的靶材其内部存在微细空隙,会漏水,只能采用间接水冷的方式。本发明的要点是在靶块的下面复合一个金属轧制的靶座。制造时采用真空烧结炉,将底座与靶材通过紫铜焊料烧结在一起。本发明的有益效果是:在合金靶材底面设置了不透水的靶材底座,可直接对镀膜靶的底座进行水冷,提高了冷却效果和成膜质量。节省约1/3的贵重多元粉体金属材料,降低靶材的制造成本。
本发明公开了一种用不锈钢粉末生产高密度制品的方法,包括步骤一,将粘结剂与-400目~+500目不锈钢粉末按质量比10~12:100混合并制得粒度为-200目~+325目不锈钢粉末;步骤二,将-200目~+325目不锈钢粉末、-100目~+200目的不锈钢粉末和-325目~+400目的不锈钢粉末合批,并混合得原料粉;步骤三,将原料粉加入产品成型模具进行压制成毛坯,毛坯密度7.15~7.3g/cm3;步骤四,对毛坯进行真空烧结;之后经后处理工序生产出合格的产品。本发明能够改善不锈钢粉末的压缩性能、提高了不锈钢制品的生坯密度,而且能够在保证烧结尺寸和性能稳定下实现高密度烧结。
本发明提供了一种高品质铜铬合金致密化工艺,该工艺以铬粉、铜粉与石墨粉为原料,将原料依次经过配料、真空混料和真空压实,得到圆柱形坯料,圆柱形坯料的相对密度为80%~90%,然后将圆柱形坯料进行真空烧结得到CuCr烧结样品,最后将CuCr烧结样品进行旋锻致密化,得到高品质铜铬合金。本发明的工艺以铬粉、铜粉与石墨粉为原料,采用真空相对压实、真空烧结结合旋锻致密化的联合工艺,使合金组织全致密,且含氧量低,同时材料的利用率较高,解决了合金组织致密度和含氧量之间存在的矛盾;通过调整配料,可生产出不同Cr含量、不同Cr铬晶粒尺寸、不同直径规格的系列CuCr合金材料。
金属‑陶瓷复合衬底的制造方法及其制造的复合衬底,属于陶瓷金属化技术领域。包括如下步骤:在陶瓷基板的表面形成第一钎焊料层,第一钎焊料层为铜、银和活性金属钎焊料层。在第一钎焊料层的表面形成第二钎焊料层,第二钎焊料层为铜和银钎焊料层。在第二钎焊料层的表面形成铜层。真空烧结金属‑陶瓷复合衬底前体。此制造方法在真空烧结的时候,第一钎焊料层的活性金属与陶瓷发生反应,结合力高,耐热冲击性强。第二钎焊料层的铜和银与铜箔发生共晶反应,其与铜箔的结合紧密,同时,由于采用两层钎焊料,一方面降低了银含量,成本更低,另一方面降低了活性金属含量,降低了电气阻抗,金属‑陶瓷复合衬底的耐高压、耐大电流的性能更强。
一种去除纳米新金刚石粉体中的杂质铁的方法,按碳与铁的摩尔比为2~6:1的比例,将炭黑与氢氧化铁混合均匀;将上述混合物置于真空烧结炉中,并通入惰性保护气120mL/min,以10℃/min的升温速度加热至900~1300℃并保温30~120min后,关闭加热电源,继续通惰性气体至烧结炉冷却至室温;取出真空烧结炉中的黑色粉末,将其分散在无水乙醇中,超声分散30min(超声频率为40KHz),使得铁颗粒均匀的分散在无水乙醇中,再以磁铁为搅拌转子一边进行搅拌,一边继续超声分散30min,使分散在乙醇中的铁吸附在的磁铁上。重复以上操作5次,然后在50~100℃下烘干,获得高纯的新金刚石纳米粉体。
本发明公开了黑色陶瓷材料及其制备方法。上述黑色陶瓷材料的制备方法,包括如下步骤:S1、将陶瓷原料制成陶瓷生坯;S2、将所述陶瓷生坯置于排胶设备中进行排胶,所述排胶设备以0.1℃/min‑10℃/min的速度升温到900℃‑1200℃,保温0.5h‑3h,得到陶瓷素坯;S3、将所述陶瓷素坯与含碳材料共同置于真空烧结炉中进行烧结发黑,真空烧结炉抽真空,并以1℃/min‑10℃/min的速度升温到1400℃‑1550℃,保温0.5h‑8h,得到黑度高(L值2.5以下)、没有黑点且发色纯正的黑色氧化锆陶瓷材料。本发明所述黑色陶瓷材料的制备方法,制备出的黑色陶瓷黑度高且纯正,均匀无黑点、发色纯正。
本发明公开了一种超细晶铜铬触头的制备方法,包括以下步骤:S1:混粉:将铜粉:铬粉按重量比配比得到混合粉,再进行球磨混粉;S2:制备电极:将混合好的混合粉采用冷等静压的方式压制,随后进行真空烧结;S3:电极感应气雾化制粉:对制备好的铜铬合金电极进行区域熔炼,通过紧耦合喷嘴将金属液体雾化破碎成液滴,凝固,筛分得到铜铬合金粉;S4:压制烧结:对铜铬合金粉采用模压方式进行压制,随后进行真空烧结;S5:机械加工:按照图纸要求进行机械加工。本发明的制备方法可使得铬相的尺寸远小于现有常规所制备的,同时保证了原材料的纯净度,所获得的超细晶的铜铬触头性能更为优良。
本发明提供了一种具有复合合金层的内衬套及其制备方法,包括以下步骤:首先在具有至少一个孔的衬套毛坯内放置与孔相匹配的内模,以使衬套毛坯的孔与内模之间形成一型腔;在型腔内填充复合合金粉末后,两端通过隔热保温板封挡,放置在真空烧结炉内烧结,真空烧结炉内的温度加热至900摄氏度,保温后降温至常温;对烧结后的衬套毛坯机械加工,得到具有“8”字型双圆孔的内衬套成品,双圆孔的内壁成型有耐磨耐腐蚀的复合合金层。本发明通过采用合金粉末原料通过粉末冶金工艺和烧结工艺烧制的具有一层复合合金层的内衬套,相比通过离心浇铸工艺的方式在一般金属材质的孔内壁上形成的复合合金层更均匀,致密度更好,耐磨耐腐蚀性能更高。
本发明涉及多孔铝碳复合材料及其制备方法。制备多孔铝碳复合材料的方法包括:将竹片真空烧结碳化,得到碳材料;将铝合金加工成铝屑;将一定比例的碳材料与铝屑混合,得到混合材料,并且对混合材料进行加压成型,得到铝碳复合材料;将加压成型后的铝碳复合材料进行真空烧结,得到多孔铝碳复合材料。本发明提供的方法操作简单,成本低,能够有效减轻铝基复合材料的重量,增强使用寿命等诸多优点。同时,多孔铝碳复合材料具有良好的保温性能、消音效果佳以及舒适度高等优点。
纳米正极材料LiFePO4的制备方法,其步骤为:(1)计算反应物原料的摩尔比为Fe : C=?4 : 1,取FePO4·2H2O、Li2CO3作为原料,C作为还原剂,KNO3作为助燃剂,其中KNO3的添加量为15%~60%;(2)将称量好的反应物料加入丙酮分散剂,在研钵中研细;(3)将混合均匀的物料置于模具中,在60~200MPa的压力下压制成直径为9~69mm,10~45mm圆柱形压坏,将压坯放入真空烧结炉中,抽真空至压力为0.015MPa,以30~300℃/min的升温速率将试样从20℃整体加热到850℃等温5min,使之完成热爆反应;(4)将热爆产物在800℃下进行等温处理,处理时间为30min~120min。
本发明公开了一种基于溶胶-凝胶法的Al2O3涂层硬质合金的制备方法,其特征是先用传统的粉末冶金方法制备硬质合金生坯,并将生坯在真空炉中450~650℃下保温0.5~3h以脱除成型剂;然后以AlCl3为Al源,以H2O和CH3CH2OH混合液为溶剂制备Al(OH)3溶胶,并采用浸渍提拉法将生坯在表面涂覆Al(OH)3溶胶涂层;最后将涂层后的生坯在1350~1500℃下保温1~3h进行真空烧结,在烧结过程中实现硬质合金生坯基体的致密化、Al2O3涂层的形成、涂层与基体之间协同收缩及表面冶金结合三方面的效果,最终制备出Al2O3涂层硬质合金。本发明的Al2O3涂层硬质合金制备方法将涂层与基体制备在一次烧结中完成,涂层与硬质合金基体形成冶金结合;工序简化,成本降低且基体无需反复加热;以价格相对低廉的AlCl3为Al源,避免对昂贵的金属醇盐的使用。
本发明提供了一种红色发光陶瓷及其制备方法与应用,属于发光材料技术领域。该红色发光陶瓷经反应原料真空烧结而得。反应原料为分子式为A2B1‑xF6:xMn4+的粉体,A包括Na或K,B包括Si、Ge和Ti中的任意一种,0.03≤x≤0.08。该红色发光陶瓷具有较高的导热性能。制备方法包括:将反应原料于真空烧结装置中,第一次升温至180‑220℃,第一次保温1‑5h,随后第二次升温至500‑700℃,第二次保温4‑12h。该方法工艺简单,成本较低,适合规模化生产。该红色发光陶瓷可用于大功率LED照明和显示以及激光照明和显示等领域。
本发明公开了一种钕铁硼稀土永磁体的自动成型方法,首先将装有钕铁硼稀土永磁合金粉末的料罐与氮气保护取向磁场自动压机的进料口对接,将料粉料导入称料器的料斗,称重后将粉料自动送入模具的模腔内,送粉装置离开后将压机上压缸下移,进入模腔后对粉末充磁取向,然后对粉末加压成型,然后将磁块取出放入氮气保护取向磁场自动压机内的料盒,料盒装满后将料盒盖上盖,再将料盒放到料盘上,在氮气保护下传送至传送密封箱,然后在氮气保护下将传送密封箱与真空烧结炉的保护进料箱对接,将装满料盒的料盘送入真空烧结炉的保护进料箱。
本发明提供一种粉末冶金法制备Ti-Nb-Zr-Sn合金的方法,属于粉末冶金技术领域,其包括以下步骤:a.将TiH2粉、Nb粉、Zr粉及Sn粉按质量比TiH2:Nb:Zr:Sn=66.1:24:4:7.9配置;b.将配置好的粉末干混5小时;c.将干混后的粉末在万能材料试验机中压制成形,其中压制压力为350Mpa,保压时间为7~8s;d.将压制成形的试样在真空烧结炉中烧结。相对现有技术,本发明所提供的制备方法具有烧结温度低、烧结时间短、所得产物致密度高、晶粒尺寸较细小均匀,杂质少,拉伸强度高,硬度大等优点。
本申请公开了一种用于烧结钕铁硼磁体的装炉装置,包括将装有钕铁硼坯体的料盒与外界空气进行隔离的隔离盒、用于放置隔离盒进行集料的过渡车、罩设在隔离盒外侧且内部填充氮气的过渡罩、与过渡罩的对接且内部设置有料架的入料车以及将料架搬运放置在真空烧结炉内部放料区的进料组件。本申请具有钕铁硼坯体在进入真空烧结炉的转运过程中,全程与外部空气隔离,从而提升了钕铁硼磁体最终质量的效果。
本发明公开了一种低压小型断路器触头,其特征在于:其各组分及其质量百分含量如下:镧:0.1~0.3%,氧化铝:0.02~0.7%,其余为无氧铜粉。还公开了一种制备上述触头的方法,其包括:(1)将镧、氧化铝、无氧铜粉按比例进行混滚(2)将混合粉倒入模具冷压成圆柱型(3)将冷压呈圆柱型材料经750~800℃真空烧结保温,冷却,再次冷压整型(4)将冷压整型好的材料经700℃真空烧结保温后挤压成板材型(5)将板材型材料经800℃退火处理并经冷却(6)将退火冷却后的板材型材料进行冷轧成型,对冷轧成型的材料进行热喷焊层处理(7)将经过热喷焊层处理的材料进行冲压成型,并对其进行抛光、烘干处理得到触头产品。
本发明公开的利用钒钛磁铁矿真空碳热原位反应烧结制备铁基摩擦材料的方法是先将钒钛磁铁精矿粉和还原剂石墨粉球磨混合均匀后进行真空碳热预还原,然后再与铁粉、润滑剂石墨粉、铜粉、锡粉、铅粉和硬脂酸锌粉进行二次球磨,混合均匀后经冷压制制成压坯,并将压坯置于真空烧结炉中进行烧结。由于本发明采用的是真空预还原+冷压+真空无压烧结的技术方案,因而可在不具备热压烧结条件下,用天然钒钛磁铁精矿粉制备出了铁基摩擦材料,填补了在没有热压烧结条件下利用真空碳热原位反应烧结法来制备铁基摩擦材料的空白,使获得的材料具有原位合成和粉末冶金技术的优点,而且基于真空烧结炉就可以实现材料制备,大大节约了设备的投资成本。
本发明公开一种高电化学性能的溴掺杂磷酸钒锂正极材料的制备方法。(1)取锂源、钒源、磷酸盐、溴离子掺杂源和碳源混合,加入去离子水,用分析纯氨水调节ph值为7,室温下磁力搅拌,加热至60~90℃水浴蒸干得到凝胶;(2)将凝胶置于真空干燥箱中,温度60~120℃,干燥6~12小时得到干凝胶;(3)将干凝胶研成粉末,氩气保护下真空烧结,自然冷却至室温,取出研磨;再次氩气保护下真空烧结炉,自然冷却至室温,得到溴离子掺杂磷酸钒锂正极材料即Li3V2(PO4)3-X/3BrX,其中:x=0.03~0.12。本发明工艺简单、安全性好、成本低廉、构象稳定,制得的Li3V2(PO4)3-X/3BrX正极材料结晶良好、颗粒细小、分布均匀,能明显提高材料的放电比容量和循环效率。
本发明涉及一种稀土永磁合金的烧结合成工艺,本发明方法是将上述永磁合金的毛坯置于有添加剂:NH4F、NH4N3、NH2NH2,一种或两种、三种。吸气剂Zr84Al16和稀土元素La、Ce、Pr等十几种稀土元素中的一种或二种以上,加入量占烧结物量1-4%。微波0.1-500GHz频率的微波烧结炉中燃烧合成,其烧结温度550-1135℃,保温0.1-1.5小时,再将置入真空烧结电炉中时效,冷却到室温,后加工、磁化得到稀土永磁合金。本发明和常规工艺相比,得到的永磁合金具有性能高、均匀性、一致性好的优点,是节省能源、降低成本的工艺技术。
本发明公开了一种内嵌式碳纳米管/二硅化钼复合材料的制备方法,包括如下步骤:(1)合成碳纳米管/钼复合粉体;(2)碳纳米管/钼复合粉体与硅粉混合;(3)合成内嵌式碳纳米管/二硅化钼复合粉末;(4)真空烧结:将碳纳米管/二硅化钼复合粉末压制成型,置于真空烧结炉中在1400-1500℃下保温2-4h烧结制备出内嵌式的碳纳米管/二硅化钼复合材料。本发明实现了碳纳米管在二硅化钼材料中的纳米层次的均匀分散,使碳纳米管的强韧化作用得到充分发挥。
本发明公开了一种La2O3改性超细硬质合金的制备方法,通过合金原料混料、湿磨、干燥、造粒、压制成型和真空烧结制备稀土改性超细硬质合金:将0.2wt.%的La2O3、0.8wt.%的Cr3C2和余量为WC-10%wt.Co纳米复合粉的原料混合,在红外干燥箱中湿磨,干燥后按混合料的3-7wt.%加入预先配置好的聚乙烯醇溶液进行造粒,过筛后在压制压力为200-400Mpa的电动压片机上进行压制,成型后在1430-1450℃下真空烧结并保温30-90min,最后随炉冷却得到La2O3改性超细硬质合金产品。本发明制备的La2O3改性超细硬质合金孔隙率低、抗弯强度高和硬度高,具有优良稳定的综合力学性能。
本发明公开了一种平板显示器触摸屏用铝稀土合金旋转溅射靶材的制备方法及其制备靶材,其制备方法包括以下步骤:粉末制备,冷等静压,真空烧结,热等静压,机械加工,铟绑定。该方法工艺简单,操作方便,在热等静压时,不需要常规的包套及氩弧焊,减少后续工序,可大靶管直接进行热等静压,降低生产成本。本方法制备的铝稀土合金旋转溅射靶材成分均匀,长度可达到4000mm或更长,靶管厚度可达到25mm,靶材相对密度≥99.9%,纯度≥99.99%,晶粒尺寸小于30微米,所制备的旋转靶材属于高端旋转靶材,可以运用到更为广泛的领域。
一种高耐蚀性烧结钕铁硼永磁材料的生产工艺,其特征在于:依次包括如下工艺步骤:将准备好的材料在熔炼炉中进行熔炼;熔炼后的材料制成0.3~0.5MM厚度的甩带或铸锭;再将甩带或铸锭通过氢破碎制成粒度为2.5~3.5UM粉体状;将粉体进入氧含量在200~500PPM浓度中的气流磨中再进行制粉;经制粉后粉体在模具中进行磁场取向压型;将压型成磁块的磁体在真空烧结炉中进行烧结;然后再进行回火、机械加工及表面等处理成成品。本发明的优点在于:调整了熔炼铸造的甩带技术参数,从源头减少了穿晶断裂出现的几率;改变钕铁硼永磁合金现机械破碎方式,通过氢气在合金不同相间有选择的吸放,减少了穿晶断裂的比例;在气流磨制粉过程中有意引入微量氧气200~500PPM,以增加合金粉体中氧化物含量且分布均匀。
本发明提供了一种低氧粉末冶金TiAl合金制件及其制备方法,该制备方法包括以下步骤:原料准备,选取块体TiH2、Al‑Ti中间合金以及Al与其他合金元素的中间合金为原料;破碎处理,将所述原料混合后进行低温机械破碎处理,得到破碎后粉末;将所述破碎后粉末依次进行成形、真空烧结及无包套热等静压处理,得到TiAl合金制件。本发明通过对改进原料种类、破碎方式及优化制备流程实现了低氧含量高致密度的TiAl合金,制备得到的TiAl合金致密度大于99%,氧含量低于0.15wt.%。
本发明公开了一种高性能粉末冶金不锈钢,以重量百分比计的组成成分为:316L奥氏体不锈钢92.5-97.0%、FeB0.5-1.5%、FeMo601-3%、TiC1-3%,制备方法为将原料进行混料、球磨、压制成型、脱脂、真空烧结,得到高性能粉末冶金不锈钢。通过上述方式,本发明的高性能粉末冶金不锈钢及其制备方法,加入烧结助剂和强化相,使致密度得到极大的提高,具有极佳的耐腐蚀性、抗氧化性、较佳的综合力学性能,能用于制造承受一定负荷及对耐腐蚀性和抗氧化性有较高要求的设备或部件,在机械、化工、石油、海洋、轻工等多种领域广泛应用。
本发明提供了一种抗粉化块体吸气剂的制备方法,步骤为:将吸气合金中的原料按一定比例进行配制,通过熔炼的方法制备成合金,然后对合金在保护气氛下进行破碎和球磨;将吸气合金粉末与一定比例的钛及钛合金纤维均匀混合形成合金混合物;将上述合金混合物在钢性模具中进行压制形成压坯;在真空度为3~5×10‑3Pa的真空环境下,对压坯进行真空烧结,即可得到抗粉化能力强的块体吸气剂。本发明产生的块体吸气剂产品,在MEMS晶元级封装中具有较好的韧性,克服了产品使用过程中掉粉掉渣的现象,能够维持晶元封装后在振动环境下较好的真空度,有利于延长使用寿命,并且结构设计简单,适合大批量生产,可以有效地满足用户的需求。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!