一种高碳铬铁合金的冶炼方法,包括以下步骤:按质量比(1~9):1将南非铬铁矿与土耳其铬铁矿加入混料机中,再加入膨润土和除尘灰得到混合料;向混合料中加水造粒成生料团;生料团经筛分后焙烧得到铬铁矿球团,控制焙烧温度1200~1350℃、焙烧时间12~15h;将铬铁矿球团与造渣剂、还原剂配料入炉,调整矿热炉冶炼参数:即极心圆直径2.4~2.6m;电极电流密度8~8.2A/cm2、二次电压170~173V、功率220kVA、冶炼温度1650℃~1750℃,冶炼4~5h后出铁来得到高碳铬铁合金。该方法使原料来源稳定以及配料过程中的碱比、镁铝比、渣型等易于调控,能降低能耗、生产成本和提高铬的综合回收率。
一种高铁矾土冶炼棕刚玉的技术,属于冶金技术领域。针对现在铝矾土资源日趋紧缺,价格步步上升,寻找可替代或部分替代铝矾土的资源。棕刚玉冶炼是利用铝矾土,配以无烟煤(或焦碳),铁屑,在电弧炉中高温熔炼,利用碳质原料中的碳将矾土中氧化铁,氧化钛和氧化硅还原成金属,从而形成铁合金与刚玉熔液分离,经冷却、破碎、分选,得成品棕刚玉。棕刚玉的抗破碎能力较强,抗氧化、抗腐蚀,具有良好的化学稳定性,是一种用途广泛的磨料。本发明用高铁矾土或高铁矾土与铝矾土混合,高铁矾土和铝矾土配料,根据铝硅比,铁硅比配料,铝硅比大于10,铁硅比小于9。用高铁矾土代替部分或全部铝矾土用来冶炼棕刚玉,因高铁矾土价格低于铝矾土,从而降低棕刚玉的生产成本。
本发明涉及矿热炉二次低压补偿装置系统的角连接方法。矿热炉是冶金工业的重要熔炼设备,电能消耗非常大,现有的矿热炉冶炼的电气系统主要由高压供电网络、变电站变压器、电炉一次侧供电网络、大功率的电炉变压器、低电压大电流的短网系统、水冷电缆、电极系统和炉膛等部分组成,其电炉的冶炼电流引起电压闪变、电流冲激现象,引起冶炼系统电压、电流波形畸变,增加了线损和电炉设备的损耗,降低了电能质量。本发明还包括电炉二次侧的短网的两端并联连接补偿电容。将补偿容量加在节点上,电容器交换无功,电弧产生的无功不再流经短网、电炉变压器和一次侧,路径简短,降低了损耗,实现就地补偿。因而可有效提高该装置的运行可靠性。
一种石墨筒体的制备方法,涉及一种石墨筒体的制备方法。本发明为了解决现有的石墨筒体制备过程中材料浪费、制造工期长、制造成本高、制造能源消耗大以及制备的石墨筒体稳定性差的问题。制备方法:步骤一、称取原料,按质量百分比为74%~78%干料和余量为沥青称取原料;步骤二、坯料成型,模具内震动成型;步骤三、石墨筒体坯料焙置于焙烧炉内进行焙烧;步骤四、石墨筒体坯料石墨化。本发明制备的石墨筒体材料结构设计合理,质量可靠,比传统生产工艺可节约焙烧时间、原料、节约燃煤、工时和粘结树脂,具备节能、环保的效果;采用振动成型技术,使石墨筒体结构致密,热稳定性高,化学稳定性好。本发明适用于制备石墨筒体。
一种碳微合金化Cu‑Fe系材料及制备方法,该方法通过在Cu‑Fe系材料中添加微量的碳元素起细化晶粒和促进Fe等元素从Cu基体中析出作用,从而有效提高材料的强度和导电导热性能。以Cu为基体,加入Fe以及其它合金化元素以及微量碳元素,通过熔炼、浇铸或连铸、热锻或热轧、固溶处理、冷轧或冷拔、时效等工艺,制备出高强高导电铜合金材料。本发明具有制备出的材料不仅强度高而且导电导热性好、制备工艺简单、成本低的优点,从而实现其在电子、信息、交通、能源、冶金、机电等领域广泛应用。
本发明涉及复合材料领域,特别是涉及一种抗腐蚀、耐磨损、抗冲刷、耐高温的硅晶体复合材料。纳米稀土硅晶体防腐耐磨材料,由骨料、粉料、结合剂、稀土、玻璃纤维混配加工制成,其重量配比依次为100:45~55:45~55:0.5~0.7:8~12;本发明选用经过高温熔炼的工厂废料为主料,材料成本低;以纳米粉料作辅料,颗粒级配合理,颗粒间紧密堆积,产品致密度高,界面结合强度高,稀土材料和无机材料的使用可有效提高材料的强度、硬度、耐温性、抗腐蚀性、耐火性和耐磨性;可广泛应用于火力发电、水泥建材、冶金、矿山、化工及国防等多个行业。
本发明提供一种超高强铝合金粉体材料及其制备方法。属于增材制造领域。所述粉末材料中主要合金元素的质量分数为:Zn 5.1‑6.1%,Mg 2.1‑2.9%,Cu 1.2‑2.0%,Ni 0.5‑1.5%,Zr 0.1‑0.2%,余量为铝。本发明采用惰性气体雾化法制备粉末,熔炼温度为780℃‑820℃,熔炼室、雾化室抽真空,真空度要求≤10Pa,保温与熔炼坩埚加热;通过高速氮气将材料的高温熔炼液破碎成小液滴后经冷却和球化成金属粉末;制得粉末在环境温度20℃,湿度60%以下筛分。材料优点在于适合工厂批量化生产;能够满足航空航天对于超高强粉末的要求,解决变形铝合金打印过程中的热裂行为。
本发明公开了一种首饰用抗变色银合金及其制备方法,属于合金材料领域。本发明的首饰用抗变色银合金由下述组分按重量百分比组成:Cu 1‑8%;Ni 0.5‑4%;Zr 0‑0.5%;Al 0.2‑2%;Mo 0.2‑1%,余量为Ag;本发明采用粉末冶金工艺制备上述银合金,通过预烧结和放电等离子烧结,有效改善了传统熔炼过程中元素烧蚀的缺陷,产品在烧结过程中氧化小,产品致密度高。在此工艺基础上,本发明制得的一种新配方的银合金在正常佩戴过程中具有较好的抗变色能力,银合金产品塑性良好,能保证首饰行业的加工要求。
一种再生铅无铁化冶炼生产方法,属于有色金属冶炼技术领域。配料:按重量百分比分别称取,铅烟尘为0‑15%,还原煤为3‑10%,其余为铅膏;混料:将称重的铅膏、铅烟尘和还原煤置于混料机中,进行混料,获得均匀混合料;熔炼:混合料通过皮带输送机送至熔炼炉炉顶加料箱,经加料箱下部的螺旋给料机将物料输送到熔炼炉内进行熔炼,烟气达标排放:熔炼过程中,烟气经余热系统、除尘系统、脱硫系统处理,达标后排入大气;生成金属铅:混合料经过熔炼产生金属铅、熔炼渣;金属铅通过放铅口排出;熔炼渣通过放渣口排出。优点:工艺流程短、不需要加铁屑或铁矿石及石灰石,产渣量低≤15%,铅回收率高、生产能力高、原料无需制粒、操作简单、高效节能、环境友好。
本发明公开了一种高温、高强钛合金及其加工方法,包括合金成分、制备方法、热变形和热处理等要素,所述合金成分为(重量百分比),Al:5.00%~6.70%,Sn:3.00%~5.00%,Zr:2.5%~7.50%,Mo:0.3~2.0%,Si:0.25%~1.5%,Nb:0.30%~1.00%,Ta:0.50%~2.00%,W:0.20%~1.60%,C:0.02~0.1%,B:0.1%~1.5%,余量为Ti和不可避免的杂质元素。本发明合金材料可通过熔炼法和粉末冶金烧结法获得,随后通过热变形和热处理工艺组合获得锻件产品,采用上述工艺制备得到的锻件为双态组织,材料在室温至700℃范围内均具有较高的强度和良好的塑性,可用于制作航空航天关键部件在600~700℃长时使用,也可用于航天飞行器等耐温结构件在700~750℃短时使用。
本发明涉及一种合金及其制备方法,尤其涉及一种镍钒中间合金及其制备方法,属于冶金技术领域。本发明的所述合金中含有如下质量百分比的元素:钒60%‑70%、镍30%‑40%、铝≤1.5%,其余总微量元素及杂质总量小于1%。本发明还公开了镍钒中间合金材料的制备方法。本发明镍钒中间合金可以大大降低熔炼含镍基合金的温度;制备镍钒中间合金采用了严格的原材料控制,产品纯度高,产品杂质含量低,可控性好,生产效率高,合金氮氧含量低,更加纯净。
本发明公开了一种从难处理含钯废催化剂中高效富集贵金属的方法,包括:加热含钯废催化剂、铜泥加压渣、还原剂和助熔剂并保温;冷却分离渣和贵铅合金,磨碎,取样分析含量;贵铅合金真空熔融蒸馏分离,得到真空炉稀贵合金和铅铋合金,将贵金属与铅铋分离。本发明采用熔融低温碱性富集熔炼法处理高硅、铝载体型高、低品位含钯废催化剂与铜阳极泥加压渣,实现金银铂族贵金属与铅铋和稀散稀贵金属元素的梯级综合利用,流程最短、成本最低、效率最高;含钯废催化剂比率可大可小、处理能力灵活,实现富集熔炼处理,不影响铂族贵金属的富集熔炼;采用熔融低温碱性熔炼技术,熔炼温度远低于造锍熔炼,大幅度降低能耗,从而降低难处理废催化剂的加工成本。
本发明提供了一种铝钼铬锆硅中间合金及其制备方法,涉及金属材料技术领域。本发明提供的铝钼铬锆硅中间合金,按质量含量计,包括23.0~27.0%的钼,23.0~27.0%的铬,6.0~10.0%的锆、0.5~1.5%的硅和余量的铝。本发明通过成分和含量的控制,使铝钼铬锆硅中间合金成分均匀,偏析小,在熔炼钛合金时,有助于钛合金成分均匀化,能有效防止钛合金成分偏析等冶金缺陷。本发明提供了所述铝钼铬锆硅中间合金的制备方法,本发明提供的制备方法能够提高铝钼铬锆硅中间合金成分的均匀稳定性,并降低杂质含量,能更好的满足钛合金生产要求。
本发明一种太阳能级纯度硅的制备方法,提供一种杂质总含量低于10PPMA,B<2PPMA,P<6PPMA,电阻率>0.3Ω.CM的硅的制备方法。以工业硅粉作为原材料,经过简单的化学预处理后,将硅粉和复配造渣剂混匀装在感应熔炼炉内的石英坩埚内,在微真空或常压下,向熔炼炉内吹入保护性气体;感应加热,使炉内温度达1450℃-1700℃,将金属硅熔炼成硅熔体;进行造渣除杂,本方法能有效降低硅中B的含量,使B<2PPMA,能够满足新工艺制造低成本太阳能电池对硅原料的一般要求。本发明生产工艺简单,生产成本低,易于规模化生产,且投资少,建设周期短。
本发明公开了一种利用磁场调控高熵合金σ相的方法,包括:将熔炼制备得到的高熵合金块置于石英玻璃管内部,将装有所述高熵合金块的载样石英玻璃管放在励磁线圈的匀强磁场中;对所述载样石英玻璃管进行加热,在加热温度为所述高熵合金σ相的生成和消失的温度区间施加0‑30T磁场,保温一段时间后淬火,得到磁场处理后的高熵合金块体。本发明将磁场作用于高熵合金的相变过程,通过磁场处理调控了σ相的生成及消失,改变了合金的显微组织,力学性能及磁性能。这种方法简单易行,为高熵合金的组织形成,缺陷的控制及采用电磁场提高冶金质量开辟了一条新的道路。
本发明公开了一种纳米晶高熵合金粉末及其制备方法,涉及粉末冶金技术领域,包括纳米晶高熵合金粉末;纳米晶高熵合金粉末的制备方法;所述纳米晶高熵合金粉末包含钴粉、铬粉、铁粉、镍粉、锰粉、铝粉、钛粉;所述纳米晶高熵合金粉末的制备方法通过高能机械球磨法,直接将各金属元素粉末混合,按照具体步骤制成所述纳米晶高熵合金粉末。本发明通过研磨介质高速撞击与研磨,降低反应活化能,提高粉末活性,促进元素粉末之间的固态扩散,诱发低温化学反应,最后获得成分和组织分布均匀的合金粉末,从而解决了熔炼后制粉的元素挥发、成分不均匀的难题。该技术设备简单,相比于传统方法简化了工序,降低制造成本,适用于工业大规模的制备。
本发明公开了一种具有耐腐蚀的合金青铜粉的制备工艺,将所述配料加入到熔炼设备中,首先将滚轮放入到弧形滑轨中,并通过锁紧机构将熔炼桶锁紧,然后将配料加入到熔炼桶中,并在氩气保护条件下进行熔炼得到熔液,驱动第二伺服电机,通过第一转轴带动锁紧机构转动,滚轮在弧形滑轨中滑动,从而带动熔炼桶倾斜,将熔液倒出,倒出后,第二伺服电机通过第一转轴带动锁紧机构转动,本发明制备的合金青铜粉材料金相组织细小,为一种高强度、高腐蚀性能的青铜合金,且具有极高的屈服强度与极限抗压强度和良好的耐腐蚀性能;屈服强度达到610MPa,极限强度达到1500MPa,耐腐蚀率为99%。
本实用新型公开了一体式不锈钢—碳钢复合管,主要解决了现有技术中的内衬管、粘接管、压合管的基层与复层之间的连接不牢固,易分层,且性能欠佳等问题。该一体式不锈钢—碳钢复合管包括四层结构,其由内至外依次为不锈钢层、不锈钢—碳钢混合层、碳钢层、涂覆层,其中,所述不锈钢—碳钢混合层由不锈钢与碳钢通过冶金熔炼为一体结构,且不锈钢层与不锈钢—碳钢混合层、碳钢层与不锈钢—碳钢混合层均为一体结构;所述不锈钢层与碳钢层的厚度之比为1∶10;在该一体式不锈钢—碳钢复合管端头还设有坡口,且该坡口的角度为30°至35°。本实用新型结构简单、价格低廉、性能优良,因此,适合推广应用。
本发明一种化学成分含量不断变化的合金样品高通量制备方法,该方法将坩埚以阵列形式排布在坩埚放置平台上,将所需的各种金属粉末/颗粒放入独立存料器中,利用PLC控制下料时各存料器的运动路径和运动速度,通过存料器出料口尺寸的选择和下料时运动速度的控制来调整进入坩埚内每种金属粉末/颗粒的含量,实现各坩埚内合金化学成分含量的连续变化;配料完成后对熔化腔体抽真空并通入保护气体,接着对阵列坩埚内的粉末/颗粒进行熔化;待熔体成分均匀,停止加热并通气冷却合金样品,凝固后取出以备后续表征使用。本发明工艺简单,控制方便,缩短了材料从成分设计、原料配比、多炉熔炼和制备的时间进程及冶金能耗,可快速筛选所需的合金成分。
本发明公开了一种电子废料的侧吹连续冶炼工艺及装置。该冶炼装置分熔炼区和吹炼区,两区之间设水冷隔墙,水冷隔墙下端超过渣和金属层的交界面,故黑铜通过水冷隔墙下部的开孔流入吹炼区。熔炼反应得到的弃渣在熔炼区端墙放渣口排出。炉底由熔炼区向吹炼区倾斜,吹炼反应得到粗铜在吹炼区端墙放铜口排出。隔墙下端熔体的流动高效的利用了熔融物的潜热,具有高效节能的特点,而且在炉体熔炼区、吹炼区的侧面炉壁上布置多个富氧供入口,通过分别搅动渣层及黑铜层进行反应,极大改善了反应的热力学、动力学条件,使反应高效地进行,操作时间缩短,可以实现连续加入电子废料及富含铜物料冶炼,产出粗铜,电子废料中所含稀贵金属被富集到粗铜中。
本发明涉及一种钛/铝固液复合铸造成型方法,属于材料加工工程领域。所述方法为固体钛合金置于铝合金熔体制备铝包钛铸件,实验室制备工艺的实施步骤如下:(1)加工制得直径3~30mm的钛合金棒材,经车削打磨得到理想的表面粗糙度;(2)对预制的钛棒表面进行化学清洗,去除表面的油污及氧化物;(3)采用井式电阻炉在刚玉坩埚中熔炼铝熔体;(4)在熔体中插入先前处理好的钛棒,铝熔体温度为670~840℃;(5)在井式炉中保温5min~15h后,取出空冷至室温。本发明通过固液复合铸造的方法实现纯钛和纯铝、钛合金和纯铝以及钛合金和铝合金的冶金结合,所得复合铸件集钛合金和铝合金二者轻质耐腐的特点,兼具钛合金的高强度、高韧性和铝合金的易传热、导电等性能。
本发明公开了一种高硬度垫圈的制备方法,该方法先将部分原料加入真空气雾化炉中进行熔炼、雾化并筛分粉末,再与其它剩余原料一起倒入双锥混料机中,混料筒不断回转使物料翻动,粉末颗粒在混料筒中分散;将混合均匀的混合料放入模具中,脱模定型,模压温度170‑350℃,压力300‑600MPa,保温保压20‑30min,即可。本发明利用粉末冶金技术把铁基和钛基摩擦材料的优点结合起来,垫圈不仅具有较高的强度和硬度,又保持良好的抗疲劳和耐磨性,合金的质量稳定均一,原料来源安全方便、价格合适、操作简单,效率较高,适合规模化生产。
本发明属于不锈钢表面改性技术领域,具体的说是一种高耐腐蚀不锈钢及其制备方法,包括以下步骤:S1:将不锈钢锭置于高温熔炼炉中升温至1600℃进行高温熔炼30‑40min后升温至1700℃保温熔炼10‑15min,熔炼过程中持续进行扒渣处理,熔炼完成后制得精制钢材;S2:将S1中经过精炼后钢材表面使用500目细砂纸进行精细打磨,打磨处理后将钢材依次经除油、一次水洗、酸洗、超声波震荡水洗后通入烘干机中,在进行烘干处理的过程中将钢材预热至50‑60℃;S3:将稀土合金材料置于乙醇溶液中通入行星球磨机中,控制行星球磨机转速500‑600r/min进行高速碾磨,碾磨过后通入分子筛中进行过滤,控制分子筛孔径为350‑500目,过滤后的得催化剂粉料。
本发明属于冶金技术领域,特别涉及一种镍铁合金制造方法。本发明所要解决的技术问题是提供一种生产效率高、流程短、能耗低、以普通煤为还原剂、炉料不易结块的镍铁合金制造方法。本发明的技术方案包括以下步骤:A、含氧化镍原料、煤粉和熔剂混合后,压制成球团;B、球团还原得到金属化球团;C、金属化球团熔炼得到粗镍铁合金;D、粗镍铁合金经过精炼得到精制镍铁合金。本发明在原料内配煤粉造球,反应面积增大,动力学条件改善,有利于还原过程进行。还原时间短,能耗低;并且球团炉料不粘结炉衬,粉尘少、有用元素回收率高。
本发明涉及一种生物可降解纳米羟基磷灰石-镁金属基复合材料,属于生物医用材料领域,所述材料由金属镁和纳米羟基磷灰石颗粒的混合物组成,其中金属镁为纯镁,羟基磷灰石和镁的质量比为0.01~50∶100。本发明的纳米羟基磷灰石-镁金属基复合材料可采用高洁净度的熔炼技术或粉末冶金技术制造。本发明材料基体与增强纳米颗粒之间的结合紧密,纳米颗粒分布均匀。本发明降解速度可控,生物相容性和力学性能良好,在骨组织工程支架、骨内固定紧固件及骨承重部位缺损修复等医用材料领域有广泛的应用前景。
本发明公开了一种攀西钛精矿制备富钛料的方法,本方法主要包括钛精矿选矿、冶炼、筛分、氧化焙烧、还原焙烧、碱浸、加压酸浸、煅烧等步骤。本发明公开了制备合格沸腾氯化原料低硅钙钛精矿中的CaO和SiO2最高含量,为选矿工序提供了生产目标,确保钛的综合利用;在氧化-还原工序之后加了碱浸除硅,得到的产品中的CaO和SiO2含量更低,更利于大型沸腾氯化进行;本发明将钛铁矿中的铁元素制成生铁,价值较高并且减少其二次污染;冶炼破碎产生的小颗粒酸渣可直接作为产品销售或用做硫酸法钛白原料,减少再回炉的能耗,合理地利用了钛资源;本发明酸浸过程中酸的浓度和液固比都较低,浸后母液可完全实现循环利用,减少废液处理。
本发明公开了一种多芯粉层叠复合包芯线,属于冶金铸造技术领域。该复合球化包芯线的内芯由两种或者两种以上的粉料层沿包芯线的径向方向层叠铺设而成,每种粉料层通过相应粉料沿包芯线的轴向方向均匀铺设而成。本发明还公开了该多芯粉层叠复合包芯线的加工方法。本发明多芯粉层叠复合包芯线绿色节能,减少了熔炼、人工、环境污染等问题,提高了生产和使用企业的效益,是未来包芯线的一种发展趋势。
中冶有色为您提供最新的有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!