本发明针废弃印刷线路板中贵金属钯分散存在、传统回收方法存在钯流失严重、贵金属与贱金属分离困难、回收过程产生大量废液的缺点,提供一种利用超临界水氧化-超临界二氧化碳萃取联合工艺回收废弃印刷线路板中钯的方法,属于环境保护与资源综合利用领域的固体废弃物处理新技术。该方法具有效率高、成本低、易于操作、环境友好的特点,其核心是利用超临界水氧化降解废弃印刷线路板中的高分子聚合物,实现钯的富集,然后利用贵金属钯易被软碱阴离子络合的特点,采用共溶剂与络合剂修饰过的超临界二氧化碳流体萃取贵金属富集体中钯,再通过还原回收金属钯,从而实现钯的高效清洁回收。
本发明涉及一种超细高纯铪粉及其制备方法和应用,该超细高纯铪粉的粒度小于1μm,纯度高达99.99%以上,金属杂质总含量小于100ppm,氧含量小于0.2%。制备包括:a.将摩尔比为1∶1~1∶6的氧化铪粉末和还原剂粉末混合均匀,装入坩锅中;b.将坩锅放入反应罐中,盖好盖后抽真空、再充入氩气洗涤,加热还原,然后进行恒温保温还原;c.然后抽真空,之后再充入氩气,在氩气保护下冷却;d.洗涤:先采用酸洗,然后采用去离子水洗涤,将得到的产物进行筛分、烘干,即为超细高纯铪粉产品。本发明的方法生成的氧化物能够保护铪粉,防止爆炸,安全可控。
本发明涉及开发一种适于高SO2冶金烟气还原生产S的流化床反应器及工艺,包括其技术方案是:该流化床反应器主要包括原料气混合器、预热器、气体分布器、主反应塔体、颗粒沉降段、旋风除尘器、催化剂连续定量设备及废旧催化剂采出口,其中所述的主反应塔体反应温度在300~1200℃之间。本发明还提供了一种生产硫磺的工艺流程,主要包括流化床、硫磺收集、冷凝除水及尾气处理,其中收集罐外部控温在100~140℃,喷入罐内,硫磺瞬间结晶沉积,出口位置增设过滤装置。本发明有效地解决了硫磺生产过程中的飞温现象,具有生产能力大、操作弹性大、SO2转化率高、硫磺收集简单而且纯度较高、催化剂循环简单便捷及能量利用率高等优点,具有优越的工业应用前景。
本发明公开了一种从废弃锂离子电池中直接再生高纯度碳酸锂的方法,包括以下步骤:(1)粉碎处理废弃锂离子电池拆解后得到含锂正极材料颗粒;(2)将步骤(1)得到的含锂正极材料颗粒、固态干冰和氧化锆磨球放于氧化锆球磨罐中进行机械化学反应;(3)用去离子水作为溶剂进行溶解,然后蒸发结晶得到高纯度的碳酸锂产品。根据本发明的方法适应于不同来源、不同类型的废弃锂离子电池。工艺简单,利用廉价、可再生、无腐蚀性的固态干冰为共磨试剂,避免酸、碱等腐蚀性试剂的使用,碳酸锂的回收率可以达到90wt%以上。整个工艺实现了闭环循环生产,因此具有可观的经济效益,具有潜在的工业化应用价值。
本公开提供一种锂离子动力电池废弃正极极片的回收方法,包括如下步骤:S1,将锂离子动力电池废弃正极极片切割,得到切割后材料;S2,将切割后材料浸入剥离剂中进行剥离处理,然后在液面下进行筛分处理,分离出筛上物,得到液固混合物;S3,向步骤S2所得的液固混合物中加入浸出剂,进行第一次浸泡处理,得到第一混合体系;S4,向第一混合体系中加入浸出助剂,进行第二次浸泡处理,得到第二混合体系;S5、将第二混合体系过滤后,得到正极材料的金属盐溶液与浸出渣,分别回收。本公开能够通过简化的回收工艺实现废旧锂离子电池的正极极片或全组分回收,提供了一条流程短、回收率高的新工艺路线,且能适用于多种锂电池的回收。
一种粗锑无残极电解分离锑和金的方法。处理步骤依次包括:(1)将粗锑、毛锑或贵锑合金按比例配入还原剂、铸锭碱渣;(2)将步骤(1)的混合料熔化后铸块/板;(3)将步骤(2)浇铸的锑阳极板/块装入阳极框;(4)将步骤(3)的加锑阳极框在盐酸‑氯化钠、氯化钙体系电解精炼,产出阴极锑和富贵金属阳极泥;(5)将步骤(4)产出的阴极锑剥板后按比例配入覆盖剂,熔化铸锭,产出国标2#锑。本发明产品锑综合回收率大于99%;电解阳极泥金、银捕集率>99.5%;具有锑金分离效果好、辅料消耗少、能耗低、电解体系锑溶解度大、电解质稳定性好、环境友好、产品产值高等优点。
本发明涉及一种强化废旧锂离子电池正极活性物质浸出的方法,所述方法为:利用浸出剂和还原剂对废旧锂离子电池正极活性物质进行浸出,所述浸出剂为酸,所述还原剂为氯盐或含氯溶液。本发明利用氯盐或含氯溶液作为还原剂对废旧锂离子电池正极活性物质进行回收,克服了现有还原剂处理过程中出现的各种问题,有价金属的浸出率全部在95%以上,且还原剂可循环再生,回收率达到98%以上,解决了氯气处理问题的同时回收了还原剂,所用还原剂可以由工业废盐、废水得到,是一种浸出指标高、环境友好、成本低的强化浸出新方法,适用于工业化应用。
本发明涉及一种低氧含量大尺寸金属锆粉及其制备方法和应用,该锆粉纯度为99wt%以上,氧含量小于0.3wt%,粒度大于1μm。其制备方法包括:a.将氧化锆粉末、还原剂和熔盐装入坩埚中;b.将坩埚放入反应罐中,装置密封后抽真空,再充入氩气洗涤,加热,然后进行恒温保温还原,还原结束冷却出炉;c.洗涤:先酸洗,然后采用去离子水洗涤,将得到的产物进行筛分、烘干,即为低氧含量大尺寸金属锆粉的产品。本发明的方法所采用的熔盐体系,能有效的除去金属锆粉中的氧含量,同时能控制锆粉的尺寸,防止锆粉摩擦自燃,安全可控。
本发明公开了一种含分子筛失活加氢催化剂的处理工艺,所述处理工艺首先将含分子筛失活加氢催化剂进行碳化处理和水热处理,处理后得到的催化剂粉碎后与碱性溶液混合进行处理,分离后得到的固体进一步在氢气气氛条件下进行高温热处理。所述处理工艺不需要先对失活催化剂进行脱油,可以省去现有工艺中的脱油处理步骤,大幅度降低处理装置能耗,缩短工艺流程,同时可以有效回收失活催化剂中的钨、钼、镍、铝、硅等高价值组分,实现含分子筛失活加氢催化剂的高效利用。
本发明公开一种废钴酸锂电池的处理方法及其产物,属于废旧电池处理技术领域。该方法包括:废钴酸锂电池充分放电,得到放电后的废钴酸锂电池;废钴酸锂电池经过破碎,得到废钴酸锂电池的破碎产物;废钴酸锂电池的破碎产物经过筛分,得到筛上物和筛下物;筛上物经过分选,得到隔膜产品、塑料产品、铁产品、铜箔产品和铝箔产品;筛下物进行机械活化,得到活化产物;活化产物经过可降解有机酸酸浸,得到包含活化产物与有机酸浸出液的混合物;过滤包含活化产物与有机酸浸出液的混合物,所得滤渣为石墨。进一步处理后,还能得到铜泥产品和LiNi0.85Co0.1Al0.05O2。其能够有效地回收废钴酸锂电池中的可回收资源,并且,能够减少重金属污染。
本发明公开了一种处理红土镍矿的系统和方法,该系统包括:预处理单元,具有红土镍矿入口和红土镍矿颗粒出口;混合造球装置,具有红土镍矿颗粒入口、还原剂入口、硫化剂入口和混合球团出口;预还原硫化装置,具有混合球团入口和焙砂出口;熔炼装置,具有焙砂入口、熔炼溶剂入口、可燃料入口、富氧空气入口、第一低镍锍出口和熔炼渣出口;吹炼装置,具有第一低镍锍入口、吹炼溶剂入口、高镍锍出口和吹炼渣出口。该系统用于处理红土镍矿效率高、能耗低且金属回收率高。
本发明涉及一种生物淋滤浸提废旧电池中有价金属离子的方法,属于废旧电池无害化和资源化处理技术领域。所述方法如下:从废旧锌锰电池、锂离子电池或镍氢电池中回收含有价金属离子的电极材料粉末;在生物淋滤培养基中摇床培养生物淋滤菌株得到生物淋滤液;当生物淋滤液pH值为0.5~2.0时,加入质量为生物淋滤液体积的2~10%的电极材料粉末;摇床培养并保持pH值为1.5~2.5;待有价金属离子的溶出浓度不再提高,生物淋滤结束。所述方法实现了2%或以上高固液比下废旧电池中有价金属离子的高效浸出,效果明显且简单易行。
本发明公开了一种利用生物质木炭实现鲕状高磷铁矿除磷的方法。实现了利用直接还原联合高温渣铁分离直接制备低磷铁水。其方法包括:高气化性生物质木炭制备;矿料破碎;欠配碳含碳球团制备;直接还原;高温熔分。与现有的处理鲕状高磷铁矿的方法相比,本发明利用来源广泛且价格低廉的生物质木炭作为还原剂制备欠配碳含碳球团并进行CO/CO2混合气氛下的直接还原,利用生物质木炭在Na2CO3催化作用下良好的气化性能而获得低残碳高金属化的球团;高温渣铁分离阶段利用了由Na2CO3分解得到Na2O对铁水脱磷的强化作用。由于生物质木炭的灰分含量低,高温熔分过程渣量少。本发明且具有铁回收率高和脱磷效果好等特点。
本发明涉及废弃物回收领域,尤其涉及一种利用等离子体技术综合回收电子废弃物的方法。所述方法包括:将废弃物碎块在250~1000℃的弱氧化气氛下热解,得到热解渣、热解气以及热解油;将所述热解渣和热解油进行等离子体气化熔炼,得到熔渣、合金和烟气;在所述等离子体气化熔炼中,造渣剂添加量为所述废弃物重量的5%‑35%,氧化性气氛的分压为>5kPa、反应温度为800‑1500℃;将所述熔渣用于制备矿渣纤维和/或微晶玻璃。本发明的方法不仅高效提升了贵金属的回收率,而且可以将有机废物无害化处理。另外由于等离子体过程不需要提供氧气或空气助燃,因此增大了设备的单位处理能力,并且大幅较少了烟气处理量。
本发明提供一种从废铅酸蓄电池铅膏中回收铅的方法,属于湿法冶金技术领域。该方法先将还原剂(金属锌或金属铅或双氧水)、铅膏加入氯化锌溶液于搅拌磨中进行浸出,使其中的铅进入溶液,浸出液用金属锌置换铅,铅置换后,控制氯化锌溶液少量电积产出电锌,一部分电锌作为还原剂返回浸出用(用金属铅或双氧水作还原剂时该步骤可省略),剩余电锌作为置换剂返回置换铅,电积后液加入少量氯化钙脱除硫酸根后作为浸出剂返回铅膏浸出使用。本工艺具有流程短、工序少、能耗成本低等特点,并满足清洁生产的环保要求。
本发明提供了一种从电镀污泥中回收铜、锌、镍的方法。该方法包括:将电镀污泥进行硫酸浸出,然后依次进行Lix984萃取剂萃取、第一次洗涤、第一次反萃;对反萃硫酸铜溶液进行电积铜生产;将萃余液依次进行除铜、除铁、除铝铬;调节净化液的pH值至1.5~2,然后依次进行第一次P204萃取剂萃取、第二次洗涤、第二次反萃;将萃余液的pH值调节至4~5,然后依次进行第二次P204萃取剂萃取、第三次洗涤、第三次反萃,将萃余液依次进行P507萃取剂萃取、第四次洗涤、第四次反萃;对反萃硫酸镍溶液进行第二次蒸发结晶,得到硫酸镍产品。本发明解决了湿法工艺处理电镀污泥时存在的工序复杂、成本高、产品纯度低、回收率较低的问题。
本发明提供一种从含铅物料中回收铅的方法,属于湿法冶金技术领域。该方法先将铅膏或锌冶炼产生的硫酸铅渣加入氯化亚铁溶液于搅拌磨中进行浸出,使其中的铅进入溶液,浸出液通过电积获得金属铅,铅电积后液返回继续浸出含铅物料。本工艺具有流程短、工序少、能耗成本低等特点,并满足清洁生产的环保要求。
一种以滚筒法钢渣和直排粉煤灰制备的活性微粉及方法,原料包括钢渣、粉煤灰、煤矸石和工业性废石膏。钢渣是由液态钢渣倒入渣罐后,将渣罐吊运至滚筒装置内,液态钢渣在滚筒内同时完成冷却、固化、破碎及渣钢分离,在经过本申请的装置的筛选后分批送入研磨机研磨并合并。工业性废石膏为二水石膏、氟石膏或磷石膏。用优质粉煤灰等质量取代水泥,不仅降低混凝土的干体积密度和导热系数,而且在同条件下提高了的强度;而钢渣粉与粉煤灰复合取代水泥时可以得到良好的效果;同时增加煤矸石粉和石膏粉能够进一步增强混凝土的强度。因为钢渣尺寸不一影响研磨效果的问题,还为钢渣的粉碎特制了筛选用的辅助装置。
本发明公开了一种锂离子电池正极材料回收再生工艺,该工艺不对浸取液中的有价金属进行分离提纯,而是直接补充元素,调整元素的比例再生为正极材料,省去了繁琐的分离步骤,降低了工艺成本,不仅可以规避镍、钴、锰、锂混合溶液体系元素分离繁琐的难题,同时,减少了锂损失,而且能显著提升再生产品的附加值,提高回收效率和经济性,同时实现了废旧锂离子电池材料的闭式循环;再生炉产生的高温烟气被输送至退火炉、焙烧炉、雾化室多级充分利用,整个烟气循环过程中实现了高温烟气‑中温烟气‑低温烟气‑废气多级利用,节约了过程能耗,减少了体系的热损失。
用工业固废制备高填充聚氯乙烯或聚烯烃复合材料的方法,属化工材料制备领域。本发明以工业固废和聚氯乙烯或聚烯烃为主要原料,通过对工业固废表面改性,提高与聚氯乙烯或聚烯烃相容性,利用复合增塑剂改善复合材料的流动性和加工性能,然后在适量助剂共同作用下进行混炼和造粒,制备出高填充聚氯乙烯或聚烯烃复合材料。本发明工艺简单,成本低廉,产品附加值高。本发明的复合材料具有工业固废填充量大、强度与韧性足够、绿色环保、性能稳定等特点,可广泛于国民经济的众多领域,制备绿色建材及先进工程制品。
一种高风温旋流喷射扰动熔融还原和预还原联合装置及方法,属于熔融还原技术领域。装置包括:原料系统、炉顶装料及布料系统、熔融还原炉、炉顶高温煤气系统、预还原炉、半焦煤气回收利用系统、煤粉制备及喷煤系统、铁水脱硫剂制备及喷吹装置、氧气和氮气供应系统、渣铁处理系统、高风温热风炉、熔融还原炉鼓风机、炉顶煤气除尘与回收系统、煤气热电联产装置。并采用高风温旋流喷射扰动熔融还原炉产生的高温煤气引入到预还原炉内,将含铁原料在固相状态下直接还原成为具有一定金属化率的预还原炉料,经过冷却后与半焦分别作为炉料和燃料加入到熔融还原炉内,终还原生产出铁水。优点在于,具有生产效率高、能耗低、易于操作和实现工业化。
本发明公开了一种废旧锂离子电池混合材料除杂及正负极分离的方法,它是将废旧锂离子电池进行机械粉碎、分级,得到含有正极材料、负极材料、粘结剂、电解液和金属杂质的混合物料;再对该混合物料依次进行磁选处理、焙烧处理、碱浸除铝、氨浸除铜和浮选,从而得到精矿和尾矿;所述精矿为负极材料,所述尾矿为正极材料。本发明能在酸浸前有效实现正负极分离以及有效回收金属杂质,提高了资源利用率,而且降低了耗酸量和萃取剂成本,极大地简化了后续萃取流程,工艺流程简单易行,环境污染小,同时实现了石墨高效回收。
本发明涉及一种从含镍、钴的红土矿经济、有效、节能而有选择性地提取金属的方法,所述方法包括:(1)将磨好的红土矿与含硫物质混合,并拌入硫酸或不拌硫酸,所得的混合物然后进行焙烧,使其中的非铁金属选择性转化为各自的硫酸盐,铁转化为氧化物;(2)用水浸出上述焙烧的物料,将其中的镍、钴与铜提取到浸出液中;及(3)将所述浸出液与浸出渣分离,并用选自沉淀法、溶剂萃取法或离子交换法的方法从浸出液中提取镍、钴和铜。
本发明公开了一种硫系多元合金靶材及其制造方法,所述靶材包括的化学元素及其质量分数为:锗10‑30%,砷20‑40%,硒30‑50%,硅0‑10%,碲0‑10%;所述靶材的相对密度≥99.5%,氧含量低于150ppm。所述制造方法首先在真空条件下合成高纯度合金,再采用高速喷嘴气雾化制球形粉末,合金快速凝固成玻璃态,同时增氧很小,最后采用真空热压或者放电等离子体烧结实现高致密烧结成形,烧结过程中不存在污染问题。采用本发明制备的硫系多元合金靶材的综合性能好,组织性能优异,密度高,氧含量低。
本发明针对机械法处理线路板过程中存在的不同组分混杂、分离不彻底、能耗高、破碎设备磨损大的缺点,提供一种线路板水热处理分离方法,其核心是使处理后线路板中环氧树脂脆化,失去粘接能力,经破碎后获得颗粒状或片状的铜箔与丝状的玻璃纤维。铜箔可以进一步用于回收贵金属,玻璃纤维可以用于回收阻燃剂,然后可以作为建材增强材料、树脂增强材料和催化剂载体等使用。
本发明公开的一种基于铱合金屏蔽罩的高温气流温度传感器,属于温度测量领域。本发明包括热电偶丝、屏蔽罩、绝缘瓷管、外壳、安装法兰。屏蔽罩设有屏蔽罩壳体、进气孔、出气孔。本发明采用铱‑铌‑钨‑钍‑铝五元合金作为传感器的屏蔽罩材料,通过合金化,提高材料的再结晶温度,抑制晶粒长大,同时改善材料焊接性能,避免纯铱机械性能与加工性能不足的问题。通过钨促使铱合金在高温加工时不会发生再结晶。加入元素钍增加晶界的结合力;且能进一步改善铱的塑性;加入元素铝能够促进钍偏析至晶界处,有效改善铱的塑性和冲击韧性;加入铌改善合金的焊接性能。本发明在保证高温气流温度传感器在耐2300K高温的同时,具有良好的强度、塑性、韧性与加工性。
本发明涉及医用材料领域,是一种在体内可降解的植入性金属材料。本发明公开的是一种由Zn、Cu、Ti、Mg等组成的多元锌合金,组分及质量百分比为:Cu 0~4.5%,Ti 0~1.5%,Mg 0~1.5%,余量为Zn;该合金还可以含有Mn和Ag等,其中Mn 0~2%;Ag为0~3%。Mg、Cu、Mn为人体必须元素,Ti和Ag已证实是无毒元素,避开毒性的合金化元素的引入。本发明提供的多元锌基合金,选用高纯度的原材料或中间合金制得,并经加工获得高性能坯料,具备良好的力学性能,能均匀腐蚀且可控性强,可以满足医疗器械的安全性和力学性能的要求,可在血管支架、管腔支架、骨科植入物以及外科缝合器械等器械中的使用,优先用于制造可降解支架,用于冠心病介入治疗和身体管腔狭窄处暂时性支撑。
本发明提供了一种可用于3D打印的铝合金粉末及其制备方法和应用。所述铝合金粉末包括如下质量分数的成分:Mg:1.00~10.00wt%;Sc:0.10~1.80wt%;Zr:0.1~1.60wt%;Mn:0.05~3.50wt%;Fe:0.01~0.90wt%;Cu:0.01~3.00wt%;Si:0.01~3.00%;Zn:0.01~3.50wt%;Cr:0.01~0.08wt%;Ni:0.01~0.08wt%,其余为Al。采用本发明所述铝合金粉末制得的3D打印工件,具有组织细密、力学性能好、抗应力腐蚀性强等优点。
中冶有色为您提供最新的北京有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!