本发明涉及一种利用低温热处理整形从电子废弃物中分离金属与非金属的方法,所述方法为:将电子废弃物进行破碎,然后进行低温热处理整形,得到形状重塑的物料,将所得物料进行分选后,实现金属和非金属的分离。本发明利用有机物相在加热和/或机械力作用条件下容易变形以及金属具有延展性的特点,通过在低温加热的环境中将电子废弃物物料进行碰撞和摩擦,使电子废弃物中塑料和金属的形状分别重整为类球形,有利于后续的分选操作。该方法条件温和,不产生环境污染,且分选后塑料的品位达到90%以上,金属品位达到95%以上,增加了电子废弃物的综合利用价值,具有良好的经济效益和应用前景。
本发明提供了一种利用废锂离子电池黑粉与硫化镍钴矿协同制备三元前驱体和碳酸锂的方法及应用,包括以下步骤:电池黑粉和硫化镍钴矿浆化获得矿浆,控制反应条件,制得浸出液,所述浸出液经除铁铝铜以及萃取除杂,再经共沉淀后,制得三元前驱体材料,共沉淀后液经蒸氨和沉锂后,制得碳酸锂。本发明具有工艺流程短、成本低以及环境绿色友好等的优点。
生物沥浸‑循环富集技术解决了固废/危废中金属含量低、回收困难的问题,且显著减少了废水产生和培养液消耗;但膜生物反应器(再生罐)的放大存在困难。研发不增加高度、不扩大直径、可扩展、易放大的膜生物反应器对于技术应用意义重大。双膜生物反应器研制和使用一方面凭借小孔膜的细菌截留作用显著提高了沥液再生单元的微生物浓度,解决了沥浸菌株生长缓慢和硫铁生物氧化效能低下的问题,大幅提高了沥液再生效率;另一方面大孔膜对硫磺和黄铁矿的截留保证了固体能源底物在各个串并联罐(池/柱)中的均匀分布以及菌群的自由流动,在不增加高度、不扩大直径条件下实现生物再生单元的任意扩展和规模放大,极大提高了处理规模及技术推广的适用性。
本发明提供了一种锑精矿熔炼系统。该熔炼系统包括底吹氧化熔炼装置、还原熔炼装置和富氧挥发装置。底吹氧化熔炼装置设置有第一加料口和第一含锑熔渣出口,还原熔炼装置设置有第二含锑熔渣出口和第一金属相出口,第一含锑熔渣出口与还原熔炼装置通过第一含锑熔渣输送通道相连通;富氧挥发装置设置有第二金属相出口和弃渣出口,富氧挥发装置与第二含锑熔渣出口通过第二含锑熔渣输送通道相连通,第二金属相出口用以排出金属锑产品。在底吹氧化熔炼炉中进行氧化熔炼能够使其在较低的温度下进行,而将锑精矿进行低温氧化熔炼,这有利于降低氧化熔炼过程中Sb元素的挥发率,进而有利于进一步提高锑精矿中Sb元素的回收率。
本发明提供了一种高镍锍的制备系统及制备方法。该制备系统包括:液化装置、硫化单元和吹炼单元。液化装置设置有含硫物料入口和液态含硫物料出口,用于使含硫物料液化;硫化单元设置有加料口、液态含硫物料入口和镍锍出口,液态含硫物料入口与液态含硫物料出口连通,加料口用于加入镍铁合金和第一熔剂;吹炼单元设置有镍锍入口、第二熔剂入口、含氧气体入口和高镍锍出口,镍锍入口与镍锍出口相连通。上述高镍锍的制备系统以镍铁合金为原料,大大解决了以硫化镍矿为原料无法制得高镍锍的问题;同时上述制备系统结构简单,产能高,便于进行工业化推广。
本发明公开了一种等离子体炬加热煤气的方法,包括以下步骤:S1:将煤气输入到等离子体炬中进行加热;S2:将加热后的所述煤气通入高炉中还原铁氧化物。本发明还公开了等离子体炬加热煤气的设备,以及该方法或设备在高炉炼铁中的应用。该方法或设备能够利用大功率等离子体炬加热煤气,煤气升温快,避免产生析碳问题,克服了技术偏见,可减少氮硫化物的产生,减少冶金工业带来的环境污染,并具有较高的热电效率。
本发明公开了一种强磁场高梯度超导磁体装置,包括金属外壳和电磁结构,所述金属外壳内部围设有容置空间,在所述容置空间的中部设置有通道,所述通道包括入口和出口;所述电磁结构封闭设置在所述容置空间内并处于低温超导环境中,所述通道穿过所述电磁结构的中心,所述电磁结构为超导电磁结构,且提供沿所述通道轴向上依次排布的第一磁场和第二磁场,所述第一磁场和所述第二磁场磁力方向相反。本发明的电磁结构能够同时提供磁力方向相反的两磁场,在保证强磁场的同时由于两相反方向磁场的相互抵消还能够提供非常高的磁场梯度。
本发明提供一种从含铅溶液中提取铅的方法,属于湿法冶金技术领域。该方法用金属铁作阳极和阴极,对含铅的溶液进行电积,阳极主要反应为金属铁的溶解,金属铅从阴极沉积获得。本发明与置换铅工艺相比,产品纯度高、金属回收率高。由于采用廉价的金属铁做阴、阳极,电极材料的制作成本低,且由于电积过程的槽电压远低于常规的铅电积体系,因而还具有能耗低的优点。
本发明提供了一种富锰渣的制备装置。该装置包括侧吹浸没燃烧熔炼炉和至少一个侧吹喷枪,侧吹浸没燃烧熔炼炉设置有锰矿石进口,侧吹浸没燃烧熔炼炉用于使锰矿石在富氧空气、燃料及还原剂的作用下进行熔化还原以生成富锰渣;侧吹浸没燃烧熔炼炉的侧壁上设置有喷孔;侧吹喷枪用于通过喷孔向侧吹浸没燃烧熔炼炉内部的熔池中喷入富氧空气、燃料及还原剂。本发明利用侧吹浸没燃烧熔炼炉作为锰矿石的熔化还原设备,炉内工况为液态熔融熔池,利用侧吹喷枪从侧部以浸没熔池的方式向熔池中喷入富氧空气、燃料及还原剂,使得锰矿石发生熔化还原以生成富锰渣。
本发明提供了一种回收废弃锂电三元正极材料中镍、锰、钴和锂的方法,属于锂电金属回收领域。该方法为将废锂电三元正极材料加入到含亚硫酸和醛类的水溶液中浸出锂,蒸发结晶得到亚硫酸锂,制备低共熔溶剂与含镍钴锰的沉淀物混合反应;过滤得到含锰和钴的浸出液以及草酸镍二水合物沉淀;将含锰和钴的浸出液加入去离子水并通入二氧化碳反应得到碳酸锰钴沉淀和浸出液,浸出液加入回收的草酸后重复使用。本发明在不使用强酸的条件下,浸出废弃锂电池中的金属,分步温和的回收不同的金属,流程简单,且无需额外添加沉淀剂,容易再生。
本发明涉及从含锌冶金粉尘中选择性浸出锌的方法,其采用丁酸水溶液作为浸出剂处理含锌冶金粉尘1~10h;酸水溶液的浓度为1.0mol/L以上;酸固化学计量比为50%以上;酸固化学计量比是假设所述含锌冶金粉尘中的铁元素全部为二价铁,酸摩尔数的二分之一与含锌冶金粉尘中锌和铁的摩尔总数的比值。本方法不但能够有效的回收利用粉尘中的金属元素,而且能够高效的去除锌,为冶金废弃物的综合利用和再资源化提供了新的手段;同时,在用酸浸出锌的同时也会产生氢气,收集起来可以作为清洁能源加以利用;本发明的实施可带来良好的经济和社会效益。
本发明涉及一种废旧锌锰干电池的资源化再生充电电池的制备方法,包括:1)电极粉的制备、2)电极材料的制备和3)二次电池的制备。废旧正极通过化学转化的方法恢复正极材料的活性,废旧负极经过简单处理后可作为二次电池负极。本发明提供的技术方案,正负极的利用率达到95%以上,可以有效的进行资源再利用,解决目前干电池污染环境,回收困难的问题,以适应当下对环境保护的要求。
本发明提供了一种辉锑矿的真空熔炼系统及真空熔炼方法。该真空熔炼系统包括:真空熔炼装置、压力控制装置和精炼装置,真空熔炼装置设置有加料口、粗锑出口、排渣口和烟气出口,加料口用于添加辉锑矿和还原性燃料及碱性添加剂;压力控制装置用于控制真空熔炼装置中的真空度;及精炼装置设置有粗锑入口和金属锑出口,粗锑入口与粗锑出口连通。采用上述真空碱性熔炼系统从辉锑矿中提取金属锑,不仅有利于大幅提高金属锑的回收率,简化工艺流程、降低回收成本,不需要造渣剂,渣量少,还能够降低环境污染和硫元素的浪费,提高其环保性,属于绿色清洁的冶炼方法。
本发明提供了一种从废旧电池中回收金属并将其制备成正极材料的方法,包括如下步骤:将废旧电池拆解,得到正极极片,然后将所述正极极片破碎,并焙烧;向焙烧后的正极材料中加入酸性水溶液实施酸浸出操作,然后过滤并收集滤液,得到酸浸出液;调节所述酸浸出液的pH值至2.0‑4.0,然后将所述酸浸出液进行萃取,然后调节所述酸浸出液中的金属比例,再加入络合剂制备得到凝胶;将所述凝胶干燥并煅烧,得到正极材料。本发明的从废旧电池中回收金属并将其制备成正极材料的方法,步骤简单,成本低,具有较高的回收率和回收效率,同时提高了废旧电池中的有价金属资源的利用率。
本发明涉及一种耐高压电池粉末测试池,用于锂离子电池粉末热安全研究。现有的电池粉末测试池不耐高压,操作过程中极易损坏,维修困难。本发明包括导管、上端盖、下端盖、橡胶垫片、测试池缸体、热电偶插槽、螺栓、螺母和垫片。本测试池可以承受超过5MPa的压力,能在700℃及以上的环境温度下进行稳定工作,热电偶插槽位置合理,不易折断。螺栓和螺母的双向连接提升整个测试池的密封性。在实验的过程中可以测量缸内电池粉末的温度,也可以测量缸体外表面的温度,从而控制整个缸体的加热功率。还可以在不同当量比的条件下对废旧锂离子电池粉末的热解过程进行分析,具有结构简单、易于调节、安全可靠、实验形式多样和数据采集完整等特点。
一种稀土铝合金及其制备方法和装置,合金中含有镧、铈、镨、钕、钆、铽、镝、钬、铒、铥、镥、钪、钇中的至少一种稀土金属,稀土含量为5~98wt%,余量是铝以及不可避免杂质;所述的制备稀土铝合金的装置是:a)以石墨做电解槽,石墨板为阳极,钨棒为阴极,钼坩锅作为稀土铝合金接受器;b)钨棒直径为30~55mm;c)石墨阳极由多块石墨板组成。本发明的优点:合金成分均匀,偏析小,杂质含量低;采用熔盐电解制备稀土铝合金工艺技术,可最大限度替代金属热还原法制取单一中重稀土金属工艺,大幅降低能耗、含氟尾气和固体废渣的排放;提高电流效率和金属收率,减少辅材消耗,降低能耗;通过控制不同电解温度和不同阴极电流密度,可得到不同稀土含量的稀土铁合金。
本发明属于炉渣的处理领域,具体的说是一种金属冶炼炉炉渣再处理工艺,该工艺采用的冶炼炉,包括炉体、空气源、过滤室和燃烧室;还包括吸收箱、驱动单元、拉伸单元、辅助单元和控制器。该工艺一方面,对炉渣的处理过程无二次污染,无“三废”排放,清洁、环保、节能;同时,炉渣的处理量大,成本低,综合利用率高,回收的产品品质好,价值高,市场需求量大;能够极大的推动循环经济发展;另一方面,将炉渣处理中产生的氢气作用于冶炼炉,配合冶炼炉对金属进行冶炼,从而提高了金属冶炼效率。
本发明涉及一种钴锰多金属矿的冶炼新工艺。钴锰多金属矿以半熔融状态在回转窑内用煤进行还原冶炼,冶炼后物料经冷却——破碎后,再利用重力选矿和磁力选矿的方法,实现钴锰多金属矿有价金属的分离和富集,处理过程是利用价廉的煤作还原剂,氟化物为熔剂,含硫物质为促进剂,回转窑为主体设备在半熔融状态下直接还原生产钴镍铁合金颗粒和富锰渣。钴镍铁的回收率可达90%,富锰渣中的锰含量大于30%,此工艺和设备简单,能耗低,产品质量好,且较好地解决了回转窑还原过程易结圈的技术难题,有利于实现工业自动化和扩大化。
本发明提供一种从硫酸铅渣中综合回收有价金属的方法,属于湿法冶金技术领域。该方法将硫酸铅渣先于搅拌磨中加硫酸强化浸出,使其中的铜、锌、铟得到浸出进入溶液,用次氧化锌调溶液pH后用锌粉依次从溶液中置换出铜、铟,得到的富含铜、铟的渣返回铜、铟回收工序。硫酸浸出后得到的富含铅银的浸出渣加氯化钙溶液及少量盐酸再次进行浸出,使其中的铅、银得到浸出进入溶液,浸出液用金属铅板置换银得到粗银粉,银置换后液使用电积技术生产电铅。电积过程阳极产生的氯气,经NaOH吸收后产出次氯酸钠溶液。铅电积后液作为浸出剂返回铅银浸出工序。本工艺具有流程短、工序少、能耗成本低等特点,并满足清洁生产的环保要求。
本发明提供了一种从废旧电池中安全高效回收利用锂的方法,包括以下步骤:将回收的废旧电池充电后,在安全的环境下进行拆解,分选出负极片,用浸出溶液清洗负极片,负极中的锂和溶剂反应后,石墨从集流体上剥离,分离出滤液和滤渣,将含锂的富集液用作化学预锂化试剂重新应用于锂离子电池负极。本发明通过选择浸出溶液安全高效地提取电池中的锂元素,并制备得到高附加值的补锂液重新应用于电池负极中,操作简单,安全性高。
本发明提供了一种锑金属的提取方法。该提取方法包括对含锑物料进行挥发熔炼的步骤,挥发熔炼的步骤在电热挥发装置中进行。采用电加热的方式对含锑物料进行挥发熔炼,整个挥发熔炼过程无需鼓风燃烧燃料,这能够大大降低烟气量,进而能够大大提高烟气中SO2的浓度。产出的高浓度SO2烟气能够通过制酸回收,从而解决了传统的鼓风炉挥发工艺中低浓度SO2因无法进行回收而导致的污染问题。同时电加热效率高,其能够在炉渣渣型波动时,始终保持炉渣的熔融状态。这不仅可以减少配入熔剂的用量,减少渣量,还能有利于提高硫化锑和氧化锑的高挥发率,从而实现环保、节能、提高回收率等综合效益。
一种直接焙烧处理废旧锂离子电池及回收有价金属的方法,特别是针对以钴酸锂为正极材料的废旧锂离子电池的回收处理。首先在500~850℃温度下焙烧除去电池中有机隔膜材料和电极材料上的有机粘结剂,将经过焙烧的电池材料破碎后与硫酸钠(或硫酸钾)、浓硫酸混合调浆,在电炉内350~600℃温度下进行二次热处理,使废旧锂离子电池中的钴、铜和锂等金属转变为易溶于水的硫酸盐,用水或稀硫酸溶液浸出后,再用有机萃取剂分别从浸出液中提取钴、铜,并获得铜和钴产品。用碳酸钠从脱除了钴和铜的浸出液中沉淀金属锂后,浸出液再返回处理热二次热处理物料。金属浸出率大于99.5%,金属回收率大于99%。
一种使用疏水性低共熔溶剂从废电池中选择性分离锂与过渡金属的协同萃取方法属湿法冶金技术领域,提供一种分离与提取效果好的协同萃取方法,具体公开了一种疏水性低共熔与磷酸三丁酯(TBP)协同萃取剂及分离废锂电池浸出液中的锂与过渡金属的方法,本申请提供的疏水性低共熔包含正癸酸(氢键供体)与利多卡因(氢键受体)。所述方法包括如下步骤:(1)配置疏水性低共熔溶剂;(2)配置萃取有机相;(3)镍钴锰共萃;(4)镍钴锰反萃;(5)锂沉淀。本发明对镍钴锰过渡金属的萃取效果好,剩余水相中锂的纯度高,实现对废锂电池正极材料浸出液中有价金属的高效回收,且使用的低共熔溶剂污染小、合成简便、价格低,是一种“新型绿色”溶剂。
本发明公开了一种废旧锂离子电池焙烧分选的方法,该方法将废旧锂离子电池与含钙粉体药剂配料混合进行高温焙烧,或在废旧锂离子电池焙烧过程中,喷入与氟离子反应的含钙药剂,在焙烧过程中氟离子与含钙药剂生成不可溶固相,最终获得的焙烧产物经破碎及分选去除含氟固体,从而获得主体铝、铜、电极材料粉末,所得电极粉末即使混有少量含氟固体也不会影响后续的资源回收;本发明方法避免了废旧锂离子电池处理过程中含氟废气废水的产生,简化并去除了含氟废气、废水的收集及处理工艺,从回收处理的源头防止了二次污染,降低了焙烧成本,具有良好的应用前景。
本发明主要针对废旧二次电池的容量衰减失效原因,研究其充放电容量、电压平台、循环寿命等性能恢复的可行性,探索了废旧电池正、负极材料容量及电化学性能回收与再生的新途径,提出一种较为有效的方法——纳米化处理法,将失效二次电池正负极材料通过震荡或机械剥离等方法将活性物质取下,用蒸馏水洗涤、抽滤至滤液为中性,真空烘干,经纳米化处理后可达到电极材料电化学性能再生的目的,从而在一定程度上实现了废旧电池电极材料的循环再生,效果明显且简单易行。本发明可以降低废旧二次电池给环境带来的污染,将有利于二次电池及其关键材料的低成本化发展。
本发明公开了一种褐铁型红土镍矿盐酸常压浸出—酸浸液中蛇纹石型红土镍矿选择性浸出—水解耦合反应—含Fe、Si氧化物分离、纯化制备铁精粉及建材用SiO2的红土镍矿清洁生产方法,该方法可解决红土镍矿传统常压浸出液难以处理、酸耗大的问题,实现镍、钴、铁分离及综合利用。
本发明属于废旧印刷线路板的回收,特别涉及废旧印刷线路板基板的金属与非金属的分离方法。本发明用有机酸水溶液和氧化剂进行配制得到液体介质,通过废旧印刷线路板基板上的铜铆钉和铜箔的表面部分与液体介质反应溶解而使铜铆钉和铜箔与废旧印刷线路板的非金属材料分离,得到经处理的废旧印刷线路板的非金属材料和从废旧印刷线路板基板上脱落的铜铆钉及铜箔;电解使用后的液体介质,可回收液体介质中的铜,电解后的液体介质可循环使用。本发明反应条件温和,操作简单,便于控制;液体介质对废旧印刷线路板基板的非金属材料无破坏,铜铆钉和铜箔与非金属材料完全分离,无“三废”的排放。
一种硫化矿浸矿菌生长的高效电化学培养方法 及装置,特别是适用于硫化矿精矿和含砷金精矿搅拌浸出的高 效浸矿菌的电化学培养方法。该方法包括:(1)经过预培养的硫 化矿浸矿菌菌种在生物反应器中培养,反应器中的培养液含有 氧气及二氧化碳气体,培养过程中由于细菌生长代谢,培养液 中的Fe2+离子被氧化为 Fe3+离子;(2)在具有可调压外接 电源的电化学反应器中,培养液中的 Fe3+离子被还原为 Fe2+离子,通过调节外压来控制 反应; 电化学反应器向生物反应器提供所需要的培养液。应用本方法 可连续稳定供给硫化矿浸矿系统高活性浸矿菌,菌液浓度始终 大于109个/dml,并可控制适当的 溶液电位。
本发明提出一种无氰全湿成套工艺绿色回收废旧电路板的方法,属于循环经济领域。本发明所述方法,包括将废旧电路板进行机械破碎,采用重力分选分离得到杂铜粉和非金属粉,将杂铜粉进行冶炼、浇铸得到铜阳极板,将铜阳极板进行铜电解提纯,铜阳极泥进行分铜、分金、分银、分铂钯、分铅、分锡回收其中的铜、金、银、铂钯、铅和锡有价金属及废液循环再利用。本发明废旧电路板中金属总回收率达到98%以上,铜电解提纯得到的阴极铜达到4N级,铜阳极泥中铜的脱除率达到96%以上,金的回收率达到98%以上,铂钯的回收率达到96%以上,银和铅的回收率达到95%以上,锡的回收率达到90%以上。本发明具有无氰全湿、废液循环再利用、不造成二次污染的特点。
一种低硫铜精矿的冶炼方法,涉及一种铜精矿,特别是低硫的硫化铜精矿或含部分氧化铜的硫化铜精矿生产粗铜或粗铜合金的方法。其特征在于其冶炼过程是在铜精矿中配入硫或黄铁矿,进行沸腾氧化焙烧,产出的焙砂,焙砂再经矿热电炉还原熔炼得到粗铜或粗铜合金;沸腾氧化焙烧和矿热电炉熔炼产生的烟气经余热锅炉和电收尘、布袋收尘处理后,进入制酸系统生产硫酸。本发明可处理不能自热造锍熔炼的含硫量低、含硅量高的硫化铜精矿或含部分氧化铜的硫化铜精矿,具有工艺流程短,投资较少,建设周期短,适合于在电力丰富地区建设较小规模的铜冶炼企业。
中冶有色为您提供最新的北京有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!