本发明属于循环经济技术和建筑材料领域,特别涉及一种含Cr钢渣制备多孔保温材料的方法。本发明以含Cr钢渣、粉煤灰为基料,废玻璃、粘土和膨润土为粘结剂,石灰石、SiC、碳粉、石蜡、硬脂酸、有机纤维和小米为造孔剂,将质量比40%~70%含Cr钢渣、10%~40%粘结剂和5%~30%造孔剂,通过破碎、混料、成形、脱模和烧结获得一种无机多孔保温材料。本发明提供了一种含Cr钢渣、粉煤灰、废玻璃废弃物的高值化再利用技术,有效固化了重金属Cr,解决了重金属Cr的环境污染问题。本发明制备的多孔保温材料质轻、隔热、保温、阻燃,可广泛应用于建筑物的外墙保温和工业所需的保温材料领域。
本发明公开了一种含钒页岩微生物脱硫的方法。该法包括:(1)将含钒页岩磨碎至-74μm以下;(2)用水将矿粉调制成矿浆,质量浓度为5~30%;(3)将矿浆pH调整至1.5~3.0并接种脱硫菌液(CGMCC NO.9625);(4)脱硫过程温度控制在10~35℃,周期5~60天。本发明适用于各种含硫含钒页岩的微生物氧化脱硫,其中硫的脱出率>80%。该方法操作简便,生产成本低,对环境友好且能脱除含钒页岩中的部分铁(>20%),为后续的含钒页岩的焙烧提钒技术提供有力支撑。
本发明的双取代环状碳酸酯类贵金属萃取剂, 是 将取代基分成二部分, 分别取代在环的二侧, 并控制R1+R2的总长度(≤7个碳), 以降低R基过大对这类萃取剂形成盐及这些盐同络阴离子缔合时的空间阻碍。在保持它们有足够疏水性(不用稀释剂)的情况下, 使这类萃取剂萃取性能明显提高。
一种制备锂离子筛吸附剂的方法,涉及一种用于 从盐湖卤水、井卤、海水等含锂溶液中吸附锂的吸附剂的制备 方法,特别是一种以大洋多金属结核氨浸渣为原料制备锂离子 筛吸附剂的方法。其特征在于是以大洋多金属结核氨浸渣为骨 架材料制备锂离子筛吸附剂,制备过程为首先将多金属结核氨 浸渣与锂盐混合;再将混合物煅烧得到离子筛前驱体;然后对 前驱体进行酸处理,溶出锂前驱体转变成H-型离子筛,再将 料浆过滤、用水洗涤、干燥后得到对锂离子具有筛分效果的吸 附剂。本发明的方法,用多金属结核的还原焙烧-氨浸或亚铜 离子催化还原氨浸产出的氨浸渣取代昂贵的锰化学试剂制备 吸附剂,工艺简单、生产成本低,合成的离子筛吸附剂亲水性 好、吸附速度快。
本发明涉及一种可磨耗封严用复合粉末、涂层及制备方法,技术方案如下:可磨耗封严用复合粉末,包括金属元素和可磨耗组分,所述金属元素为镍和铜,所述可磨耗组分为六方氮化硼或石墨,或者是六方氮化硼和石墨的组合物。粉末的第一种制备方法,将可磨耗组分表面包覆镍,形成核壳型复合粉末;将上述核壳型复合粉末与铜粉喷雾干燥制粒;将制粒后的粉末烧结;将烧结后的粉末破碎,按照产品粒度要求筛分;第二种制备方法,将镍粉和铜粉烧结,然后与可磨耗组分混合;加入水玻璃团聚制粒,将湿料过筛后烘干。本发明的可磨耗封严复合粉末及由可磨耗封严复合粉末制备的涂层,可以满足航空发动机中温段可磨耗封严的需要,进而提升了发动机的性能。
一种用於料浆的高效洗涤塔,其特征是使用低床层、矮塔,总塔高度为2.5—5米,浓相段高度为0.5—1.5米;在扩大段内安装有自循环絮凝器,用自逆止喷水管,以脉冲方式进水,同时采用二次絮凝。因此布水均匀,絮凝效果好,床层稳定,洗涤效率高,容易操作,可以用於浸出矿浆的固液分离和洗涤,也可以用于微细物料的洗涤。
本发明提供一种多步选择性电解回收废硬质合金中金属的方法,包括以下操作:第一步电解:将废硬质合金作为阳极,在熔盐介质中插入阳极和阴极,在熔融的熔盐电介质中电解;第二步电解:将第一步使用的阴极取出,在所述熔盐介质中插入第二个阴极后进行第二步电解;或,将阳极取出清洗后再用新的熔盐介质进行第二步电解,电解方式为恒压电解或恒流电解。本发明提出的方法,在电解过程中,采用多阴极和分步电解的方法,通过控制电解参数,控制阳极材料‑废硬质合金溶解时进入熔盐介质中离子的种类。经过扩散传质,阳极掉落的离子迁移到阴极,放电沉积为金属单质,不同的元素沉积在不同的阴极上,实现选择性回收硬质合金中金属元素的目的。
本发明公开了一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺,属于红土镍矿综合利用领域。本发明将红土镍矿磨细处理后,与适量浓硫酸混合均匀、熟化后,硫酸熟化料在还原剂作用下,进行高温快速还原焙烧脱硫,含硫烟气通过制酸实现硫酸再生循环利用,还原焙砂采用水浸出,得到镍钴溶液进行常规冶金处理,制备镍钴产品,水浸渣进行磁选富集回收铁精矿。本发明可以有效解决现有红土镍矿处理工艺存在资源利用率低、能耗高、环境污染严重等不足,尤其是褐铁型红土镍矿中伴生有价元素铁的综合利用问题,是一种实现红土镍矿短流程、低成本、高效率、环保清洁开发的新工艺。
本发明公开了一种铀钼矿氧压浸出铀、钼的方法,属于铀、钼综合回收技术领域。本发明针对性质多变的铀钼矿,利用氧气或空气中的氧在一定温度下高效氧化铀钼矿中胶硫钼矿,有效实现铀、钼的强化浸出,大幅提高Mo的回收率,切实解决目前铀钼矿工业开发中存在的钼资源浪费严重、二次污染严重的问题。本发明方法对于铀钼矿具有广泛适应性,可高效浸出铀钼矿、铀钼矿常压硫酸浸出渣以及单钼矿中的铀和钼,实现铀、钼资源的绿色、高效回收。
一种专属菌及用于高硫分煤矿中有机硫的脱除工艺。本发明提供了一种专属有机硫脱除菌,其菌种分类名称为枯草芽孢杆菌(Bacillus subtilis)Retech Organosulfur-Ⅰ,保藏单位为:中国微生物菌种保藏管理委员会普通微生物中心,地址为:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,保藏日期:2015年05月28日,保藏编号:CGMCC No.10933。所述芽孢杆菌在酸性好氧条件下能够降解煤矿中的有机硫,配合高效脱硫混合菌Retech TS-Ⅰ脱除无机硫,从而达到高硫分煤矿有效脱除全硫的目的。与常规的物理及化学方法相比,该方法具有条件温和、成本低、无有害气体排放等优点,在煤矿脱硫领域具有广阔的应用前景。
本发明公开了一种含钛高炉渣提钛的方法,属于冶金化工技术领域。自20世纪60年代起,我国对含钛高炉渣的综合利用做了大量的研究工作,但均因经济效益差、工艺复杂、能耗较大、污染严重等问题,以至于其难以推广。本发明采用Si粉作为还原剂对含钛高炉渣进行还原。首先将Si粉和含钛高炉渣按一定质量比配料,均匀混合,焙烧,得到钛硅金属间化合物Ti5Si3(或其他的硅钛化合物如TiSi2等)和玻璃渣。本发明直接采用Si粉资源化利用含钛高炉渣,成本低,操作简单,反应易于控制,有利于解决资源化利用含钛高炉渣工艺复杂、能耗较大、污染严重的问题。
本发明公开了一种磁流体萃取剂分离低浓度稀土离子的方法。所述方法主要包括以下几个步骤:制备具有超顺磁性的磁流体萃取剂;磁性流体固定床装置的构建;萃取分离低浓度稀土离子。本发明的创新之处在于将溶剂萃取和固定床两种分离模式的优势集于一身,制备了具有超顺磁性的磁流体萃取剂,并提出了一个全新的集成创新分离模式,这种分离模式克服了溶剂萃取和固定床的缺点,发挥了各自的优点,是一个全新的分离技术。
本发明提供一种从低品位矿石中综合提取分离含铀铌矿的新方法。该方法步骤:(1)将含铌铀矿石磨细;(2)磨细后矿石与浓硫酸按照一定质量比进行配料,在150~300℃条件下焙烧0.5~6h;(3)焙烧后熟料采用0~20wt%硫酸溶液进行浸出;浸出矿浆过滤、洗涤得到含铀、铌滤液;(4)采用P204、TBP、P311、磺化煤油混合有机相对浸出液中铀进行协同萃取;载铀有机相用8wt%~15wt%Na2CO3溶液反萃取,反萃取合格液用NaOH沉淀制得“111”产品;(5)提铀后溶液转移至高压釜内,在温度110~200℃条件下保持压力0.14~1.55MPa反应;降温过滤得到含铌沉淀物和沉铌母液,沉铌母液返回浸出工序。本发明方法有效解决了含铀低品位铌矿综合提取、回收难题,其具有金属回收率高,加工处理成本低的优点。
本发明提供了一种氢氟酸‑硫酸体系铀铌分离的方法。该方法根据氢氟酸‑硫酸体系铀、铌的化学特性,通过对溶液中硫酸和氢氟酸浓度的控制和调整,采用低酸条件下P204萃取铀和高酸条件下N503萃取铌,实现了HF‑H2SO4体系铀铌的萃取分离。
本发明提供了一种从铬钒酸性液中络合分离铬与钒的方法,所述方法包括以下步骤:(1)在一定温度与pH值的条件下向铬钒酸性液中加入返回的胺类有机物,并补加少量新鲜胺类有机物,酸性液中的钒与胺类有机物发生络合反应,并产生沉淀物,铬不与胺类有机物发生络合作用;(2)将得到的固液混合物过滤,可得到分离钒后的含铬酸性液及钒的络合沉淀物。(3)将钒的络合沉淀物在碱性物质中进行结构转化,实现钒与胺类有机物的解离;(4)将上述步骤的固液混合物过滤,分别得到钒的无机沉淀物及解离的胺类有机物;碱性条件下解离的胺类有机物可循环用于酸性条件下铬与钒的络合分离过程。本发明提出钒、铬络合分离方法,钒、铬分离率高,避免了钒、铬的互相夹带;同时本发明流程简单,条件温和,操作范围宽广,易于在工业生产中应用。
本发明涉及一种硫酸体系中铀铁的P204萃取分离方法,包括以下步骤:步骤1,配置萃原液,所述的萃原液为含有铀和铁的硫酸溶液;步骤2,配置有机相,所述的有机相含有P204、叔胺和稀释剂;步骤3,将步骤1和2所配制的萃原液和有机相在一定条件下进行逆流萃取,得到负载有机相和萃余液。步骤1中所述的萃原液组成:铀浓度为0.2g/L~10g/L,铁浓度为0.2g/L~10g/L,硫酸浓度为1g/L~120g/L。步骤2中所述的有机相组成:P204浓度为0.01mol/L~0.3mol/L,叔胺浓度为0.01~0.4mo/L,其余为稀释剂。步骤3中所述的萃取条件为,萃取流比为有机相流量与水相流量之比为1:20~10:1,萃取级数为3~15级,每级的混合时间为5~40min,温度为10℃~50℃。本发明具有流程简单,无废渣、废液排放,具有高效、经济、环保、实用性强的优点。
本发明公开一种电解液势能转化为混合动能的装置,该装置包括能量转化装置和进液装置,所述能量转化装置包括底板、支撑架和叶轮,所述底板安装在所述进液装置溜槽的底部或侧面,所述支撑架安装在底板上,所述进液装置包括电解前液溜槽,出液管将冷却后液送入冷却后液溜槽,冷却溜槽出液管将冷却后液送入电解前液溜槽内安装的能量转化装置。本发明的电解液势能转化为混合动能的装置可以保护玻璃钢溜槽槽底免受冲刷,又保证了混合电解液连续、均匀、定量、平稳的输送至各自电解槽,提高阴极锌片的质量。
本发明公开了一种由航空工业铝合金废料再生制备含铜铝合金的方法。本发明属于循环经济技术及环保领域。其主要技术方案为使用脱漆后的航空工业铝合金混合废料,根据目标合金成分要求,添加适量的金属或合金做成分调控,在真空炉里进行熔炼,通过控制熔炼条件过程实现铝合金杂质脱除和合金化同步进行,经过滤除杂后进行浇铸,制备目标含铜铝合金。本发明充分利用了航空工业铝合金废料中合金成分,经在线/离线合金成分调控和短程熔炼,不需额外脱气即可实现不同型号铝铜合金的再生,回收成本低,易于工业化生产,具有显著的经济、环境和社会效益。
本发明涉及一种行星式高能球磨机,包括:驱动单元和物料研磨出料单元,所述物料研磨出料单元包括物料研磨筒,与所述驱动单元连接并且可转动地支承在所述物料研磨筒内的物料研磨结构,所述物料研磨筒包括中心筒体和从四周包围所述中心筒体的外筒体,所述外筒体为由多个弧形筒体环形阵列构成,并且所述外筒体和所述中心筒体之间形成连通的物料研磨腔体。根据本发明的方案,本发明的行星式高能球磨机因为物料研磨筒和物料研磨结构的空间布局和结构布置,能够对物料进行充分高效的研磨粉碎,并诱导机械力化学反应,使得研磨时间短,研磨效率高,而且还使得球磨机的研磨部分不容易磨损,提升球磨机的使用寿命,使得整个生产周期短,投入成本低,而且生产效率显著提升。
本发明涉及一种自动加料设备及其方法,所述自动加料设备包括:密封板房系统、配液容器、输送系统和机器人系统,所述密封板房系统包括密封板房、换风装置、空气过滤装置和粉尘收集装置,所述换风装置、所述空气过滤装置和所述粉尘收集装置均设于所述密封板房,所述配液容器设于所述密封板房内,所述输送系统用于承载物料,且可将所述物料输送至所述密封板房内的目标位置,所述机器人系统设于所述密封板房内且邻近所述配液容器,所述机器人系统用于抓取所述目标位置的物料,并将所述物料加入至所述配液容器内。本发明的自动加料设备可以保障人身安全,减少粉尘污染,降低人工成本。
本发明涉及一种大直径管道旁溶液沟边坡大范围滑坡治理方法,属于安全生产领域。通过溶液沟边坡大范围滑坡处全部填充沙袋,将整个滑坡区域分为若干个治理位点,选取第一个治理位点,清空沙袋及土方,放置PE衬盒及钢筋骨架,完成混凝土浇筑,在治理位点处填充沙袋,恢复边坡形状,修复焊接溶液沟边坡PE膜,完成第一处治理位点施工完成,选择后续治理位点并完成施工,本发明具备的有益效果:工序简单,不影响上堆溶液池主管道运行生产,治理后滑坡区域稳定性好,耐腐蚀。
本发明提供一种利用废旧磷酸铁锂电池制备LiFe5O8磁性材料的方法,属于环境保护和资源综合利用领域的固体废弃物资源化新技术。核心包括磷酸铁锂正极材料的机械化学活化和煅烧生成LiFe5O8等步骤。其特征是:将废旧磷酸铁锂电池拆解得到正极粉末,利用正极粉末和一定质量的助磨剂混合后机械活化,浸出,调整含锂滤液中锂铁比例并加入添加剂,水浴蒸发浓缩后,将样品置于马弗炉中煅烧,即可获得LiFe5O8磁性材料。本发明操作简单、反应条件温和,经济实用性强,所制备的LiFe5O8有较好的磁性。
本发明提供了一种冶金法太阳能多晶硅提纯用中频感应炉及多晶硅提纯方法,中频感应炉炉体的中部为圆柱形,圆柱形两侧的炉体上分别设有一个短炉嘴和一个长炉嘴,在长炉嘴下部的炉体上设有吹气装置。方法是,首先配备两台不同容量的中频感应炉,前端的一号中频感应炉容量为1~12吨,后端的二号中频感应炉容量为一号中频感应炉容量的1/4~1/2;在一号中频感应炉中和二号中频感应炉中的提纯精炼时间均是3~4个小时,并在一号中频炉中精炼完后缓慢倒入二号中频炉中,同时一号中频炉中也要同时缓慢倒入工业硅炉新出的硅液,二号炉精炼的硅液再倒入定向凝固器中,三种装置连续作业、连续精炼,实现生产的连续性和产能的规模化。
本发明涉及一种用于高粘性物料的萃取塔、萃取方法及用途。所述萃取塔塔体内设有旋转的筛网塔盘。本发明通过萃取塔内旋转的筛网塔盘对高粘性物料进行剪切,有利于高粘性重相物料的分散,与连续的轻相充分传质。本发明解决了萃取塔内高粘性重相物料的有效分散与萃取传质的难题,适用于高达3000厘泊的高粘性物料萃取,单位时间内物料处理能力大,操作效率高。本发明所述萃取塔可以用于单塔连续萃取操作或多塔串联逆流连续萃取操作。
一种用水溶性离子液体回收废锂离子电池中金属的方法及装置,其方法为:1、将废锂离子电池进行放电处理;2、将放电后的废锂离子电池手工拆解分离,得到阳极、阴极、隔膜和含电路板的外壳,并分离分类;3、将水溶性离子液体置于油浴锅中加热并采用电动搅拌机搅拌;4、将分离的阳极和阴极分别加入油浴锅中,在其中停留25min进行负极材料和铜箔的分离以及正极材料和铝箔的分离;5、待油浴锅中的水溶性离子液体冷却后取出分离后的铝箔和铜箔并冲洗;6、对冷却后的水溶性离子液体过滤,分离正极材料和负极材料并水洗;其装置包括自动控温的油浴锅以及插入其中的转速可调的电动搅拌机;本发明具有拆解效率高、有价金属和正极材料回收纯度高、环境友好的特点。
本发明涉及重金属吸附材料领域,公开了一种制备铜离子专用吸附材料的工艺方法。方法包括:将硅胶置入蒸汽加湿处理后,加入稀盐酸加热至沸腾;将经酸洗后的硅胶用去离子水进行洗涤至中性后,进行液固分离;并烘干至恒重,将硅胶至于用溴化钠产生的饱和湿空气在硅胶表面形成单分子水层;加入氯丙基三氯硅烷与硅胶表面的水分子发生水解反应,形成氯丙基硅氧化合物;形成有氯丙基硅氧化合物的硅胶在催化剂醇的作用下与聚酰胺酸溶液反应,高分子聚胺脂接枝共聚在硅胶的表面,得到聚胺脂接枝硅胶;在搅拌下,将2-氯甲基吡啶盐酸盐甲醇溶液加入氢氧化钠甲醇溶液得到混合液,加入聚胺脂接枝硅胶,使聚胺脂接枝硅胶与混合液充中的二氯甲基砒啶发生偶合反应,即得铜离子专用吸附材料。
本发明涉及有机物热解及活性炭技术领域,尤其涉及一种活性炭制备装置,包括炉墙、炉顶和炉底围成的一个封闭的炉膛,炉底沿炉墙的水平延伸方向运动;炉底上方固定有一层架空的布料板;炉膛包括沿炉墙的水平延伸方向依次设置的干燥区、炭化区和活化区,干燥区、炭化区和活化区之间由隔板隔开,隔板与布料板之间留有空隙,用于物料的通过;干燥区、炭化区和活化区内均设有多个辐射加热管;活化区内设有与外界连通的氧化性气体通道;干燥区、炭化区和活化区的布料板上方均设有多个翻料装置,用于翻动物料。本发明的活性炭制备装置实现了连续化生产提高了活化效率。
本发明提供了一种利用微波辅助再生活性炭的方法,属于环境工程领域。其特征是:一、以糖生产过程产生的废活性炭为原料,用150目方孔筛进行筛分后取筛上部分;二、将活性炭、水、浸出剂按照质量比为1.0∶4.0~6.0∶0.02~0.12的比例混合,搅拌浸出2~5h,然后进行过滤,取滤饼备用;三、将步骤二制得的滤饼与水混合,控制活性炭/水(质量比)为3.0~7.0,并加入活性炭质量的1.5%~9.0%的活性剂并搅拌均匀,用调整剂控制体系的pH值在8.5~10.5之间;四、将步骤三制得的活性炭混合液置于微波辐照器中辐射处理10min~30min;五、辐照后的活性炭经过脱水、干燥后即可得到再生活性炭。
本发明提供一种含镍钴锰的废电池材料浸出液的分离回收方法,包括采用三烷基羟肟酸对该待处理溶液进行萃取,获得有机相1与水相1,Ni和Co被萃取到有机相1中,而Mn离子及Li离子留在水相1中;采用硫酸或盐酸对该有机相1进行反萃,获得有机相2与水相2,Ni和Co被反萃到水相2中;采用第二萃取剂对该水相2进行萃取,获得有机相4与水相4,Co被萃取到有机相4中,而Ni留在水相4中形成Ni溶液;采用硫酸或盐酸对该有机相4进行反萃获得Co溶液;采用第三萃取剂对该水相1进行萃取,分相后分别获得有机相5与水相5,Mn被萃取到有机相5中,而Li离子留在水相5中;以及采用硫酸或盐酸对该有机相5进行反萃获得Mn溶液。
中冶有色为您提供最新的北京有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!