本发明提供一种锑电解液萃取除铁的设备系统及工艺流程,其特征在于包括阳极液储罐、输送泵、阀门、萃余液低位槽、氧化罐、压滤机、氧化液中间槽、氧化液储罐、料液高位槽、6级萃取箱、洗涤液低位槽、洗涤液高位槽、再生液低位槽、再生液高位槽、有机相高位槽、反萃罐、反萃液中间槽、反萃液储罐、洗涤有机相出口低位槽。本发明通过氧化、萃取、洗涤、反萃、再生等步骤,将锑电解液液中锑、铁分离。具有除铁流程短,生产成本低,无“三废”产生,铁以三氯化铁产品的方式加以回收等优点。
一种湿法炼锌酸性浸出渣浮选银精矿的综合回收方法,包括以下步骤:A、活化还原脱锌:将银精矿矿浆与锌电解废液在浸出槽中混合,向浸出槽底部通入锌精矿沸腾炉焙烧后且经收尘处理后的烟气;B、针铁矿法沉铁:将步骤A所得的浸出液使用针铁矿法沉铁;C、还原浸出及净化:对步骤B所得针铁矿渣进行还原浸出,浸出终点加入净化剂并调pH,得到净化液。D、净化液合成:对步骤C所得净化液中缓慢加入磷酸盐和氧化剂,得到磷酸铁。本发明方法具有工艺合理、分离成本低、无污染、无毒害等优点,得到的沉铁后液可作为湿法锌冶炼的原料使用,磷酸铁可作为锂离子电池正极材料磷酸铁锂的原料。
本发明涉及金属冶炼加工技术领域,且公开了一种冶炼用矿石破碎后制动并转运的破碎装置,包括破碎仓,破碎仓的底部固定连接有滑台;转杆转动引起破碎机构上移,第二转轮在移动块和破碎机构的重力作用下反向转动,使破碎机构下移,引起破碎机构反复靠近再远离矿石,对矿石进行撞击,凸盘转动使小块矿石筛出破碎仓,大块的矿石依然在进行破碎操作,有效增大破碎效率,避免重复对小块矿石破损,而无法针对大块矿石进行破碎,缩短工作时长,接料框带动撑台下移,引起第一转轮转动并且拉动挡杆上移阻碍齿轮转动,使矿石破碎并转运结束后自动对装置进行止停,避免手动操作开关,增加结构之间的联动性,使操作更加便捷。
本发明公开了一种锌精矿或铅锌混合矿富氧直接浸出渣超声波强化回收硫磺和铅、锌、银的方法,属于有色金属冶炼综合回收利用领域。本发明是以四氯乙烯或三氯乙烯为溶剂,对经过干燥、研磨、筛分预处理好的锌精矿或铅锌混合矿富氧直接浸出渣采用超声波强化萃取渣中的单质硫,保温过滤,滤液经自然冷却和强制冷却再过滤后得到硫磺产品,再生萃硫剂返回萃硫工序;滤渣中的锌、铅、银得到富集,可直接送铅系统回收锌、铅、银,也可先浸出回收锌后过滤渣送铅系统回收铅银,含锌滤液返回直接浸出系统。本发明方法简单、节能、硫磺回收率及产品质量高,萃硫过程保持密封,对环境无污染,特别适合锌精矿或铅锌混合矿常压/高压富氧直接浸出渣的综合利用。
本发明提供了一种含铝废旧电池中有价金属分离提取的方法,包括如下步骤:将含铝废旧电池和造渣剂、含硫物料一起加入到熔炼炉内进行熔炼,使熔炼产出含Co和/或Ni的锍、含Mn炉渣及烟尘;所述含Mn炉渣中,Mn质量百分数≥5%,Mn和Fe的总质量百分含量为5%~40%,Al2O3的质量百分含量为20%~35%,CaO和MgO的总质量与SiO2质量的比为(CaO+MgO)/SiO2≥0.3。该方法可显著降低高铝物料熔炼造渣剂的用量,同时直接产出易于后续处理的含镍/钴硫化物产品,综合经济效益好。
一种含锑精矿的矿浆电解液的净化方法,包括以下步骤:A.氧化,使部分二价铁离子氧化成三价铁离子;B.萃取,将氧化液与有机相在混合槽混合进行萃取;C.洗涤,使有机相中夹带的少量锑转入洗涤液;D.空白,将洗涤有机相在空白级经混合槽流至澄清槽分相;E.反萃,使有机相中的铁、铜和二氧化硅等物质转入碳酸钠溶液并生成沉淀;F.再生,将反萃后有机相与配置好的再生剂在混合槽混合进行再生。本发明解决了有机相中不和锑的夹带问题,实现有机相循环使用。
本发明提供了一种超细高纯二氧化锡的制备方法,包括以下步骤:A、将纯度为5N的固体锡置于电炉中熔融、水淬,得到锡花;B、将锡花与浓硝酸充分反应,形成锡酸前躯体,然后中和、洗涤、干燥得到锡酸;所述中和过程中体系的pH为2.5~4.0;C、将锡酸进行煅烧、制粉,得到纯度为5N、平均粒径为10~100nm的超细高纯二氧化锡粉体。本发明提供的制备方法,工艺简化、对设备要求低、粉体纯度高且粒径分布均匀,成本低。
本发明公开了一种硫酸锂溶液深度除氟的生产方法,先将深度除氟剂添加至硫酸锂溶液中,然后调节pH=9~12.5,固液分离,即得深度除氟液。本发明可将硫酸锂溶液中的氟离子浓度降低到5mg/L以下。本发明得到的深度除氟液再经过水解法或沉淀法等传统净化工艺进一步去除钙、镁、锰等杂质后可得到精制硫酸锂溶液,可用于生产高档次电池级碳酸锂或电池级单水氢氧化锂产品。
一种利用二段作业热碱分解工艺处理稀土精矿的方法,采用磨浸与搅拌浸出二段作业方式处理稀土精矿物料;先在磨浸机内对稀土精矿物料进行湿法磨浸,再将湿法磨浸出的物料输入稀土精矿热碱分解槽内,进行热碱分解搅拌浸出,通过湿法磨浸与热碱分解搅拌浸出二段作业方式制取超细稀土精矿碱分解物料。本发明采用磨浸与搅拌浸出二段作业方式,实现了边磨边浸工艺,提高了稀土精矿中的稀土金属直收率,缩短了碱分解周期,降低了工艺成本,节约了能耗、时间,极大改善了作业环境,提高了生产效率,成为一种适应性强、清洁、高效、快速,可连续作业的处理稀土精矿的方法,达到了合理、经济、环保、节能处理稀土精矿的效果。
一种低真空锌电积方法及电积槽,在电积过程密闭电积槽液面,并在电积槽液面上方的密闭区域营造低真空环境,在低真空环境下进行并完成电积过程,使电积过程产生和寄生的气体被真空抽送酸雾处理装置对酸雾进行净化和回收。电积槽由下部槽体和上部槽体组成,其下部槽体设有新液室、电积室和废液室;其上部槽体设有槽盖、释压孔和至少一个负压抽气孔。该方法的主要用途包括电积过程、电解过程和电镀过程。
本发明公开了一种处理含单质硫矿渣的超声萃取方法及工艺,采用四氯乙烯、三氯乙烯、甲苯、二甲苯中的一种或几种的混合物作为溶剂,对含单质硫矿渣实施超声萃取,超声波频率为20-200KHz,声强为2.0-50w/cm2。该发明无需高温,可以实现低温萃取,大幅减少能耗,工艺成本低,且操作简单易行、萃取效率高、原料处理量大、萃取剂损失小,综合经济效益显著。
一种废旧锂电池正极片的综合回收方法,将正极边角料、报废正极片放入真空炉中煅烧,然后进行振打、筛分,得到正极活性物质,再将正极活性物质加入硫酸浸出液中进行二段浸出,过滤分离得到浸出渣碳和含镍、钴、锰和锂的浸出液;对浸出液加入活性炭进行吸附脱油和除硅,并往滤渣中补充碳酸镍、碳酸钴、碳酸锰或碳酸锂,得到前躯体,将前躯体进行球磨、烧结、粉碎、研磨、过筛网,得到镍钴锰酸锂正极材料。本发明废旧锂电池正极片的回收具有工艺合理、分离成本低、无污染、无毒害等优点。
一种废旧磷酸铁锂电池正极片的分离回收方法,先将废旧磷酸铁锂电池正极片剪切成松散状的片断,放入烧结炉中在惰性气氛下煅烧,得到煅烧后的废极片,将废极片分进行振打筛分,振动筛上面得到铝箔,下面为磷酸铁锂废粉。本发明通过在惰性气体保护下的煅烧,使粘结剂失效,同时保持铝箔在高温下的韧性和不被氧化,同时保证了后期使用湿法回收过程中Li的高浸出率和过程除铝的难度。
本发明公开了一种电沉积金属的剥离装置及其方法,包括机架、剥刀部和驱动部;所述驱动部包括动力源、设置于机架两侧结构相同的传动机构和导向机构,所述传动机构包括通过传动链条连接的小链轮和大链轮,所述导向机构包括通过导向链条连接的主动轮和被动轮;所述小链轮与动力源通过动力轴连接,所述大链轮与主动轮之间通过设置于安装座一上的传动轴一连接,所述被动轮与传动轴二连接,所述传动轴二设置于安装座二上,所述安装座一和安装座二设置与机架上,所述安装座一设置于安装座二上部;将剥刀设置于导向链条上的方式,实现剥刀的升降运动,且剥刀的闭合完全可以自动进行,无需额外动力驱动,省去剥刀闭合气缸,实现剥刀无停止的快速往复运动。
一种废旧磷酸铁锂电池正极片的真空分离方法,将废旧磷酸铁锂电池正极片剪切成松散状,再将松散状的废极片放入真空炉中进行真空焙烧,温度为350‑450℃时保温1‑6小时,然后将煅烧后的废极片分批放入振动筛,同时加入不同粒径的钢球,进行振打筛分,振动筛上面得到铝箔,下面为磷酸铁锂废粉。本发明减少了振打筛分过程中铝箔碎裂而进入磷酸铁锂废粉中,同时使锂得到活化,为磷酸铁锂火法直接修复回收打下了基础。
本发明公开了一种去除电解锌溶液中氯离子的泡沫复材及其制备方法和应用。该泡沫复材质量组成为m(泡沫金属)∶m(吸附体)=1∶0.1~2,所述泡沫金属为泡沫钛、泡沫镍、泡沫铝中的一种,所述吸附体为化学沉淀法制备的镁铝水滑石,n(Mg)∶n(Al)=(0.5~4)∶1。本发明提供的泡沫复材具有如下的优点及效果:(1)工业化生产操作更简单、快捷,克服了目前氯离子粉体吸附材料在使用过程中跑冒滴漏的缺点;(2)再生过程,操作简单、快捷,亦不存在跑冒滴漏的问题;(3)泡沫复材上的氯离子吸附体附着牢固,不会带入任何自身成分二次污染电解锌溶液。
本发明公开了一种提高电解锌溶液净化产锌钴渣浸出率的方法。本发明采用物理和化学相结合的方法,先用物理粉碎设备将锌钴渣粉碎到48μm以下,破碎CoZn13(锌钴合金)外壳,然后在分散剂的存在下增大锌钴渣的酸浸反应面积,使锌钴渣在稀酸下达到90%以上的浸出。本发明相对于现有技术具有如下的优点及效果:(1)比现有工艺具有更便宜的吨处理成本;(2)设备简单、工艺安全;(3)硫酸用量较其他方法更省。
本发明提供一种退役磷酸铁锂电池正极材料分选利用的工艺和装置,先将正极材料剪切成松散状,再松散状的正极片放入隧道炉中进行煅烧、振打分离工,然后放入推板窑中进行焙烧,得到焙砂;将焙砂中加入锂源、铁源、磷源中进行球磨、干燥、还原再生、气流破碎,得到磷酸铁锂粉料,最后筛分除铁得到磷酸铁锂产品。本发明是基于磷酸铁锂正极材料的制备原理,采用完全的火法直接修复方法对退役磷酸铁锂电池正极材料进行分选、除杂、补充元素源、再生,具有处理流程短,生产成本低,无“三废”产生等优点。
本发明提供一种软锰矿的还原方法,包括:将软锰矿与还原剂混合造块,得到混合料;将混合料送入微波高温窑炉内进行微波烧结,微波烧结的频率为2450MHz,烧结温度为800℃~900℃;将烧结后的混合料冷却,得到氧化亚锰。本发明采用微波烧结的方式提供还原反应能量,烧结过程中,混合料能够迅速的由内向外快速吸收微波能量,材料整体均一发热,原料受热的均匀性得到提高,使软锰矿充分参与还原反应,提高原料利用率。此外,此种加热方式能使混合料在短时内达到还原反应所需温度,进而缩短生产周期的同时降低了能耗。
本发明公开了一种无氯干法的锗回收方法,主要步骤包括:1)将金属锗废料破碎,得到锗粉;2)将锗粉置于含氧气氛中进行氧化并挥发一氧化锗蒸气;3)将一氧化锗蒸气冷凝收集后,在还原气氛中进行还原,得到纯锗粉。该方法全程无含氯氧化物介入,产物无毒害物质,对环境友好,此外,该方法还具有流程精简,易于操作,提纯效果高,产物回收率高和纯度高等优点。
采用螺旋转子的流态化浸出方法及装置和用途,采用螺旋转子浸出装置,使待浸出溶液单向流经螺旋通道。螺旋转子浸出装置包含一个密闭圆筒状的浸出腔室和一个设于浸出腔室内的螺旋转子;所述的浸出腔室底部壁面设有一个待浸出溶液进口,其顶部壁面设有一个浸出后液出口;所述的螺旋转子,由一个与浸出腔室具有同一垂直中心轴的中空转轴、设于中空转轴上的至少一个空心螺旋叶片、设于中空转轴上和空心螺旋叶片上方的分散装置、设于中空转轴上和空心螺旋叶片下方的搅拌叶片组成。所述的螺旋通道,是由空心螺旋叶片上底面和下底面、中空转轴外壁和浸出腔室壁面内壁所围成的空间。所述方法及装置的用途,包括应用于各种浸出温度下的流态化浸出过程。
本申请涉及电池材料回收工艺技术领域,尤其涉及一种碳酸锂的回收方法和装置,该方法包括如下步骤:将废旧三元正极材料进行还原处理得到含单质镍和钴以及锂离子的还原料;向还原料中加水进行研磨得到浆料;将浆料进行第一过滤处理得到第一滤液和滤渣;将二氧化碳通入第一滤液中进行碳化沉锂处理得到沉锂浆料;将沉锂浆料进行第二过滤处理得到碳酸锂。本申请将废旧三元正极材料中的锂以碳酸锂的形式回收,不仅过程条件易于控制,用时短,耗能少,而且锂回收效率高,因此降低了回收成本,另外整个工艺过程不易产生废水,过程绿色环保,在废旧三元正极材料回收领域中具有很好的应用前景。
本发明提供了一种硫酸锂溶液净化除杂的方法,该硫酸锂溶液中含有F‑,且含有Fe2+、Ni2+、Co2+、Mn2+中的至少一种杂质离子,该包括以下步骤:向硫酸锂溶液中加入过氧化钙,搅拌进行反应,反应完成后过滤得到滤渣和滤液;向滤液中加入pH调节剂分段调节滤液的pH值,搅拌进行反应,反应完成后过滤,得到滤渣和硫酸锂净化液。本发明的方法可以同步实现Ni2+、Co2+、Mn2+、Fe2+等杂质离子氟络合物的解络与氧化,有效降低溶液中杂质元素Co、Mn、Fe、F的含量,并减少溶液中氟对净化除杂的影响。本发明的方法还可以防止净化过程中形成胶体性物质,可以避免除杂过程形成的胶体物质对锂的无选择性吸附。
本发明提供了一种试剂,包括以下成分:Co2+:20g/L~36g/L, Cu2+:4g/L~9g/L;阴离子为SO42-;所述试剂的pH≤3。使用该试剂 区分有机萃取剂P204、HR、N235和TBP的方法包括:将所述试剂加 入有机萃取剂中,混合均匀;静置后观察有机相的颜色,根据反应后 不同的颜色来区分有机萃取剂P204、HR、N235和TBP。使用本发明 提供的试剂对冶金中常用的有机萃取剂P204、HR、N235和TBP进行 区分,方法简单、快速且准确。
本申请提供了一种镍钴锰的回收方法及回收得到的材料与回收系统,镍钴锰的回收方法包括以下步骤:将废旧三元正极材料进行过筛处理,得到筛下物,筛下物包括镍钴锰酸锂;将筛下物放置于还原气体的气氛中进行还原处理,得到还原料,还原料包括镍单质、钴单质、锰氧化物和氧化锂;将还原料浸出处理,得到浸出浆料,浸出浆料包括镍、钴及锰氧化物的固体和含锂离子的液体;将浸出浆料进行过滤处理,得到浸出渣,浸出渣包括镍、钴及锰氧化物;将浸出渣进行水洗处理,得到镍单质、钴单质和锰氧化物。工艺流程简单,过程条件易于控制,回收效率高,完成一次生产用时短,对设备要求不高,生产效益高。
本发明提供了一种浸出反应装置,包括反应系统、加热系统和振动系统,反应系统包括用于容纳物料的反应壳体;加热系统包括位于反应壳体内壁与外壁之间的夹层,夹层内设有电阻丝;振动系统包括电动机以及分别与反应壳体和电动机连接的传动轴,传动轴上设有偏心组件。本发明还提供一种物料加工方法,基于上述的浸出反应装置进行。本发明提供的浸出反应装置,通过加热系统对反应系统内的物料进行加热保温,以使得内部的物料反应充分。电动机带动传动轴旋转,传动轴上设有偏心组件,使得传动轴偏离重心做旋转运动,从而发生振动,进一步带动反应壳体发生振动现象,避免发生搅拌死角,以使得位于反应壳体内部的物料充分的混合均匀,从而使得反应充分。
一种脱锑选金方法,采用浸出脱锑方法处理难选金锑矿,使锑以离子态进入液相,使金以结晶态留在固相。难选金锑矿至少包含单质金和载金矿物;单质金包含可见金和不可见金;载金矿物至少包含载金含氧盐矿和载金硫化矿;含氧盐矿至少包含碳酸盐矿和硅酸盐矿;硫化矿至少包含辉锑矿和(或)黄铁矿和(或)砷黄铁矿。一种实现脱锑选金方法的脱锑选金选冶工艺,其特征是:1)采用浸出脱锑方法处理难选金锑矿,使锑以离子态进入液相,使金以结晶态留在固相;2)对浸出后矿浆进行固液分离,产出液相和固相;3)采用置换沉锑方法处理液相,使锑由离子态转为结晶态;4)采用浮选方法处理固相,使单质金和载金硫化矿与脉石分离。
用超声波清除颗粒表面包层的方法,是采用超声波撞击溶液中的颗粒,清除颗粒表面包层,使颗粒裸露自身表面的方法。所述的超声波,频率为15-200kHz,声强为0.5-200w/cm2。所述的颗粒表面包层,包括颗粒自身的表面包层和颗粒在溶液中新生的表面包层。所述的方法的用途,包括超声硫化工艺、超声浮选工艺、超声浸出工艺和超声净化工艺。
中冶有色为您提供最新的湖南株洲有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!