本发明提供了一种锂离子电池废料中正极活性材料的回收方法,该方法包括,S1、将所述废料在惰性气体或还原性气体的气氛下350-500℃热处理;S2、将步骤S1所得的粉末产物在惰性气体或还原性气体的气氛下600-800℃烧结,回收得到正极活性材料;所述正极活性材料选自锂的磷酸盐、锂的硅酸盐或者锂的钒系材料中的一种或几种。回收得到的正极活性材料充放电容量高,充放电效率高,得到的正极活性材料粒度分布均匀,晶体结构完整,且回收方法工艺过程简单,对设备要求低,过程容易控制,同时,回收过程不会对活性材料产生负面影响,活性材料的理化性能及电化学活性不受到影响,实现了正极活性材料原材料的回收再利用,可以节约成本,并具有环保的效益。
本发明提供了一种负极材料,包括石墨、炭黑导电剂和磷酸化壳聚糖,所述石墨由表面活性剂包覆,所述石墨、所述炭黑导电剂和所述磷酸化壳聚糖按照质量比8∶1∶1配置。石墨表面经由表面活性剂包覆,磷酸化壳聚糖所含的氨基、羟基等基团可与石墨表面的表面活性剂的孤对电子形成氢键,产生强有力的吸附力,因此可用以抵抗嵌锂时石墨的体积膨胀带来的应力作用,减少因膨胀而导致石墨的层离,从而提高锂离子电池的循环能力。本发明还提供了应用这种负极材料制备的锂离子电池负极片,以及这种锂离子电池负极片的制备方法。
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池电解液及其电池制备方法,在前真空烘烤和注入电解液过程之间,注入添加剂的溶剂,静至1-5min,设置真空度-0.05~-0.1Mpa,使注入电池中的溶剂抽出,作为清洗溶剂以及作为功能添加剂,实现了优化工艺效果,同时又不引人杂质,再进行后真空烘烤,添加剂溶液在高温条件下,在干燥蒸发过程中带出水分,接着进行电解液注液操作。留在电池中的添加剂与电池中水分、羟基等活性基团反应,参与形成SEI膜;同时能够结合正负极材料、隔膜、极片;对整个电池内部微观正负极颗粒进行支撑维持作用。
一种碳纤维布用作锂离子电池负极片的制备方法,采用碳纤维可纺沥青为原料,通过原丝制备、原丝预氧化,再进行牵切制条、纺纱织布得到预氧丝布,最后进行碳化、石墨化、分切、极耳焊接,最终得到和现有制备工艺完全不同的锂离子电池负极片。采用该方法制备的负极片,改变了传统的锂离子电池负极片制备工艺,节省了部分辅料和生产设备,极大的降低了生产成本;碳纤维丝错综交织,形成良好的导电网络,导电性能优异,能大大降低最终成品电池的内阻,满足锂离子动力电池大电流充放电的要求。
本发明公开了一种兼顾高低温性能的高电压倍率电解液及使用该电解液的锂离子电池。所述电解液包括非水溶剂,溶于该非水有机溶剂的锂盐以及添加剂,其中,所述非水有机溶剂含有碳酸丙烯酯(PC)和线状羧酸酯,所述添加剂包括柠康酸酐、二氟磷酸锂(LiPO2F2)、氟代碳酸乙烯酯、硫酸乙烯酯和1,2‑二(2‑氰乙氧基)乙烷。通过所述溶剂体系和添加剂优化组合使用所产生的协同效应,用于锂离子电池,能使电池在高电压倍率下仍保持优良的循环寿命、低温放电特性和高温存储特性。
本发明提供一种碳纳米管锂离子电池负极材料及其制备方法,涉及锂离子负极材料技术领域。本发明碳纳米管锂离子电池负极材料由以下原料制成:负极材料、碳纳米管、分散剂、十六烷基三甲基溴化铵、溶剂;本发明通过使用十六烷基三甲基溴化铵、分散剂,能够有效提升碳纳米管在浆料中的分散性,同时可以明显提高浆料稳定性,增大浆料固含量,十六烷基三甲基溴化铵的加入可以有效抑制碳纳米管的团聚,同时在相同固含量条件下减小浆料粘度,提高浆料稳定性,另外该负极材料的导电性能和机械性能得到了更大的提升,由于导电性能和机械性能的提升,作为锂离子电池负极材料时,循环性能与倍率充放电性能、首次充放电效率都得到进一步的提升。
本发明提供了一种改性石墨材料、石墨负极材料及各自的制备方法和锂电池。该制备方法包括:步骤S1,采用氧化扩层剂对热解碳粒进行氧化扩层处理,得扩层后材料;步骤S2,将沥青和扩层后材料混合后进行等静压、焙烧处理,得改性石墨材料。将该改性石墨材料用作制备锂离子电池的石墨负极材料,可为Li+的脱嵌提供更充足的通道,提高锂离子电池的比容量、压实密度、振实密度以及首次效率,从而提升锂离子电池的能量密度,且上述制备方法简单,原料易得,生产成本低。
本发明涉及锂电池技术领域,公开了一种锂离子电池充放电硬件二次防护电路,包括门限比较器和逻辑控制电路,门限比较器包括第一运放和第二运放,逻辑控制电路包括充电控制驱动电路和放电控制驱动电路,充电控制驱动电路包括GP_CO和CO_CP输入端,放电控制驱动电路包括DO_CP和GP_DO输入端,GP_CO和GP_DO输入端分别与CPU主控芯片的I/O管脚电连接,作为CPU主控芯片软件程序的充放电逻辑保护出口,CO_CP和DO_CP输入端分别与门限比较器的第一运放和第二运放的输出端电连接,作为硬件的充放电逻辑保护出口。本发明的技术方案能够极大地降低锂电池在使用过程中因出现过充、过放而导致燃烧、爆炸等危险的几率,在低压、低串数锂电池应用场合具有较大的实用价值。
本发明公开了一种聚烯烃锂电池隔膜涂层浆料,由涂层材料、粘结剂和去离子水制备而成,所述涂层材料为石墨烯包覆Al2O3粉体、碳纳米管、石墨烯和石墨中的一种或一种以上按任意比例组成;所述粘结剂为海藻酸钠、羧甲基纤维素钠、丁苯橡胶、聚偏氟乙烯中的一种或其中两种按任意比例组成;所述涂层材料与粘结剂的质量比为10:(0.01~1),余量为去离子水,且所述聚烯烃锂电池隔膜涂层浆料中所述涂层材料的质量分数为0.1‑30%。本发明还公开了用上述的聚烯烃锂电池隔膜涂层浆料涂布聚烯烃锂电池隔膜的方法。本发明的涂层浆料以水为溶剂,成本低廉,环境友好、涂层浆料粘度可控,涂层浆料浸润性、分散性好;本发明的方法制备过程简单、成本低廉、适合大规模生产。
本发明公开了一种醇系钛铝溶胶包覆锂离子电池多元复合正极材料及其制备方法和用途,其制法包括以下步骤:取液态醇和去离子水混匀,再加入钛酸丁酯和铝盐溶液,均匀搅拌后加入有机酸,搅拌至浑浊消失,得到醇系钛铝溶胶;将正极材料前驱体、锂源、元素M的化合物与镍锰氢氧化物混合,烧结,冷却后破碎筛分,得到化合物A;取醇系钛铝溶胶溶于乙醇溶液,加入化合物A,均匀搅拌,过滤,烘干,然后在300~990℃热处理,冷却后破碎筛分得到醇系钛铝溶胶包覆的锂电池正极材料。本发明制备的包覆型锂二次电池多元复合正极材料,具有更高的首次效率、放电比容量,同时包覆钛铝保护层降低电解液对基材活性物质的腐蚀,提高电池安全性能和循环性能。
本发提供一种双功能添加剂、包含其的电解液及锂离子电池。所述双功能添加剂为1,1‑二乙氧基‑1‑硅杂环戊‑3‑烯,能够参与正负极成膜,改善电解液与正负极的界面相容性,并降低电解液HF含量。与氟代碳酸乙烯酯、双苯磺酰甲烷联合使用得到的锂离子电池电解液,能够有效的提高高能量密度锂离子电池的常温循环性能,减缓其容量衰减,同时还能进一步提升锂离子电池的高温储存性能和低温性能。
本发明公开了一种耐锂离子电池电解液的双组份环氧胶粘剂及其制备方法,A组分按重量份由以下原料组成:双酚A型环氧树脂30~50份,聚氨酯改性环氧树脂20~40份,偶联剂1~4份,活性稀释剂2~8份,填料15~35份;B组分按重量份由以下原料组成:改性胺类固化剂50~70份,胺类固化剂2~8份,咪唑类固化剂0~2份,促进剂1~3份,填料20~40份。本发明的双组份环氧胶粘剂在电解液环境中性能稳定,具有优异的耐锂离子电池电解液腐蚀性,耐热性,电化学稳定性,在电解液环境中能保持较高的强度,可应用于锂离子电池制造工艺中暴露在电解液环境下部件的粘接与密封,满足锂电池制造业用胶的多样化需求。
本发明涉及锂电池封装技术领域,特别是涉及一种全自动软包蓝牙锂电池封装设备及封装工艺,包括上料机构、冲口机构、冲坑机构、裁切机构、托料机构、顶裁机构、侧裁机构、一次折壳机构、二次折壳机构、机器人、CCD检测机构、称重机构、整形机构、顶封机构、第一侧封机构、第二侧封机构、短路测试机构、转盘机构、喷码扫码机构及机械手,实现了蓝牙软包锂电池全自动化的封装工艺。该封装设备通过机器人高效入壳的电芯入壳方式,利用精密的转盘机构循环作业的工艺形式,有效的大大提高了设备的生产效率及降低了人工劳动力,同时避免锂电芯在人工接触过程中出现的二次损伤等现象,也降低人工长期作业过程中设备对人体的损伤风险。
本发明公开了一种废旧锂离子电池正极材料修复方法,包括:S01:将废旧锂离子电池正极极片进行分切;S02:将分切好的正极极片冷冻,取出后研磨,研磨完毕后筛分,得到粉体;S03:将S02中筛分得到的正极材料粉体在高氧、减压、条件下焙烧,然后研磨、焙烧2‑5h;S04:根据设定值添加补充的锂源和还原剂形成预处理正极材料,然后研磨分散至均匀;S05:将S04中得到的预处理正极材料添加导电剂后在焙烧后随炉冷却后研磨至粒度小于0.05μm。本发明提供了一种针对废旧锂离子电池正极材料的修复方法,该修复方法针对电解液、正极材料粘结剂、正极材料粉体和正极集流体之间材质上的差异,分别采用不同的修复方法实现了正极材料粉体的回收修复利用。 1
本发明公开了一种磷酸铁锂材料及其制备方法,包括将氢氧化锂和磷酸溶液混合,形成混合液A,备用;将七水硫酸铁、磷酸二氢钾和维生素C酸试剂混合,形成混合液B,备用;将混合液A和混合液B混合后倒入高压釜中,加热后进行恒温保压,降温降压后进行抽滤,排除滤液并收集滤饼,得到所述磷酸铁锂。解决了传统的锂离子电池的正极材料安全性能较差、制备成本加高,容量低,比能量还不能满足需求的问题。
本发明涉及一种高比容量的锂硫电池正极材料及其制备方法。所述锂硫电池正极材料为一种硫‑氧掺杂MXene‑碳纳米管复合材料,所述复合材料是以MAX相陶瓷粉体为原料,采用气相沉积法制备MXene‑碳纳米管复合材料,通过过氧化氢浸泡处理得到氧掺杂的MXene‑碳纳米管,然后利用球磨和热融法掺硫制备而得。硫‑氧掺杂MXene‑碳纳米管复合材料用作正极材料应用于锂硫电池,具有导电性极高、表面积大的特点,能够有效地吸附放电中间产物聚硫化锂,减少穿梭效应。
本发明公开了一种废旧锂离子电池焙烧尾气资源化利用的方法,包括以下步骤:1)物料经过破拱操作进入回转焙烧窑;2)通过控制回转焙烧窑的转动速度和倾角,调节物料在回转焙烧窑内的停留时间,以控制排料温度,实现物料的脱水与焙烧;3)对脱水与焙烧后的物料进行冷却;脱水与焙烧过程和冷却过程中产生的尾气进行降温后进入布袋除尘器。该方案能够实现各设备的有效衔接和能源的高效利用,有效解决废旧锂离子电池焙烧尾气中的氟、磷和锂的回收问题,从而实现整个系统的连续、高效生产。
本发明涉及材料学科的微波介质陶瓷领域,具体涉及一种锂铌钛微波介质陶瓷材料的低温反应烧结方法。本发明方法直接将各种原料粉末及少量的添加剂通过普通球磨混合、烘干、过筛、成型、烧结得到致密陶瓷产品,而不需要经过混合粉料的高温合成过程以及随后的粉料细磨阶段。本发明方法所需的生产条件简单,此外,采用低温反应烧结制备的锂铌钛陶瓷材料烧结温度低,产品晶粒细小均匀,且具有优异的微波介电性能。
本发明提供一种锂离子电池正极材料 Li1+xM1- xO2,其中0≤x ≤0.2,并且M= CoyMnzNi1-y-z中,y,z,1-y -z分别为Co,Mn,Ni在总金属M中的摩尔百分比。其中, 0.10≤y≤0.35,0.20≤z≤0.45。本发明还提供了上述锂离子电 池正极材料的制备方法,其包括用含Ni、Mn和Co的可溶性 无机盐溶液与可溶性强碱溶液共沉淀制备前驱体、将所述前驱 体与含Li化合物以Li1+x: M1-x充分混合并研磨,形成粉 末混合物和将此粉末混合物在高温下烧结生成化学式为 Li1+xM1- xO2的锂锰镍钴 氧化物三个步骤。本锂锰镍钴氧化物在和 LiCoO2容量接近的基础上显著 降低材料成本,性价比优势明显。
本发明提供一种固态聚合物电解质及包括该固态聚合物电解质的锂离子电池;所述固态聚合物电解质中包括聚合物和锂盐,所述聚合物中含有丙烯酸酯和聚醚类硼酸酯、聚醚类铝酸酯或聚醚类磷酸酯结构,所述聚合物具有梳状结构;所述固态聚合物电解质与聚氧化乙烯PEO聚合物电解质相比,具有更高的电导率、更高的锂离子导通性、更好的力学性能、更高的电池循环性能、更高的电化学窗口,具有一定的应用潜力。
本发明涉及锂电池领域,公开了一种带无尘布的锂离子电池。包括:壳体、电芯体、电解液,所述电芯体以及电解液封装在所述壳体内,所述电解液充满所述壳体内腔,浸泡所述电芯体并且渗入所述电芯体;所述电芯体包括:隔膜、正极片、负极片以及无尘布,在任一正极片、负极片之间分别间隔有一所述各隔膜,所述无尘布位于所述电芯体内部。应用该技术方案有利于提高锂离子电池的循环性能。
本发明属于锂离子电池技术领域,尤其涉及一种具有高安全性能的硬壳锂离子电池,包括电芯和容纳所述电芯的外壳,所述电芯前端设有正极极耳和负极极耳,所述外壳包括外壳主体和顶盖,所述顶盖上设有正极柱、负极柱、防爆阀和注液孔,所述电芯和外壳之间设有绝缘壳体。相对于现有技术,本发明的优点在于:一是在电芯正常使用过程中,可以有效的绝缘外壳,避免电芯在串并联使用时通过壳体接触发生的正负极短路;二是因意外情况引起电芯内短路或直接发生内短路时,可以有效的阻止电芯的外壳与电芯相接触,防止壳体因为正负极短路而造成的熔穿现象的发生,从而显著改善硬壳锂离子电池的安全性能。
一种可快速充电的锂电池,包括电池壳体和置于电池壳体内的阳极、阴极与电解液,阳极和阴极之间有多孔的聚合物隔板,电池壳体有密封盖和对应的电极耳,关键是阴极的结构是在一箔状支撑件两侧面设有阴极材料,该阴极材料的整体内形成易于导电的导电网络,阴极材料由锂化的过渡金属插层活性物质、纳米级膨润土、碳粉和PVDF制备,阳极中间亦有箔状支撑件且阳极由碳质材料制备,阳极与阴极的厚度之比为1∶1.5~1∶4。本发明的充电时间可以控制在10分钟以内,对于小型锂电池,充电时间则更短且可使得小型便携移动电子设备进一步轻量化,本发明突破了现有技术的长期存在的局限,必将得到广泛的应用。
本发明实施例公开了一种多孔碳插嵌式锂离子电池正极材料的制备方法。所述制备方法包括:配制0.05M的锂盐,铁盐或锰盐,磷酸盐,以及设定浓度的螯合剂与表面活性剂组成的混合溶胶液,并用硝酸调节该溶胶液的pH至300°C的温度保温1~10h后,随炉冷却至室温得到黑色前驱体;将所述黑色前驱体充分球磨后,在管式炉内于>700°C的温度烧结并保温1~50h后,随炉冷却至室温得到正极材料LiMPO4-C。通过该方法制备的锂离子电池正极材料来源广泛、环境友好,结构稳定,电化学性能更优越。
本发明公开了一种锂离子电池正极材料湿法包覆钛的方法,具体为:将含钛化合物均匀分散于分散剂中,再加入镍钴锰三元正极材料,混合均匀后,向反应体系中添加碱性沉出剂,反应后抽滤,干燥,回火烧结,冷却后破碎,过筛即得到包覆钛的锂离子电池正极材料。其中,镍钴锰三元正极材料的结构式为LiNixCoyMnzO2,x+y+z=1,0<x,y,z<1;含钛化合物为异丙醇钛、钛酸四丁酯、钛酸四乙酯中的至少一种;碱性沉出剂为氢氧化钠溶液、氢氧化锂溶液和氢氧化钾溶液中的至少一种;含钛化合物:镍钴锰三元正极材料:分散剂:碱性沉出剂的重量比为1:50~1000:50~1000:1~50。本发明通过加入碱性沉出剂,使含钛化合物在正极材料的表面均匀沉出,可得到钛包覆均匀的正极材料。
本发明涉及一种锂电池芯防爆结构的成型方法,先在锂电池芯的壳体顶端的金属顶板上成型一个贯穿该顶板顶面及底面的通气孔,并在通气孔的顶部周缘成型一承接区域,之后将一与顶板相同金属材质的弹性薄膜置放于承接区域内,最后分别以一电极电连接弹性薄膜,以另一电极电连接顶板,在通电之后,利用高电流使弹性薄膜的底面周缘完全熔合于顶板上。借此,即可让弹性薄膜与锂电池芯的壳体的顶板紧密熔合,盖合于通气孔的上方。
一种锂离子电池汽车双电源模块绿色新能源锂离子电池汽车蓄电池。1、现有12V或24V汽车只有一个传统的铅酸蓄电池,当蓄电池没电或故障时汽车发动机不能启动。2、现有汽车铅酸蓄电池放置一段时间:大约1‑3个月后由于蓄电池自耗电电量减少,导致汽车无法打火,发动机不能启动。3、传统的铅酸蓄电池寿命短大约只有2‑3年,内部自放电的问题,每天自放电量约2%,充足电的蓄电池,即使一点不用,经过1‑3个月后,其存电也会被内部自放电放完。而亏电的蓄电池,其极板又会很快被硫酸盐化,从而大大削弱蓄电能力。为了克服上述现有技术的不足,本发明提供了一种锂离子电池汽车双电源模块。
本发明公开了一种超轻阻燃高阻尼Al‑Mg‑Li‑Sn铝锂合金及其加工工艺。按重量百分比计,合金的化学成分为:Li:6.0‑8.0wt.%,Mg:8.0‑12.0wt.%,Sn:2.0‑3.0wt.%,Sr:2.0‑4.0wt.%,Ca:0.5‑1.0wt.%,Ge:0.5‑0.8wt.%,Zr:0.2‑0.6wt.%,Pr:0.1‑0.2wt.%,S:0.4‑0.8wt.%,B:1.2‑1.5wt.%,余量为铝。该材料具有传统铝锂合金的力学性能,并具有传统铝锂合金不具备的低密度和高阻尼性能:SDC=3‑10%,传统材料为SDC=0.5‑0.8%左右。
本发明公开了一种实时监控锂离子边电压的方法,属于锂离子电池技术,其技术方案包括电芯主体,电池保护板,导线,当B+或B-,到包装膜边缘A,两点之间的电压超出监控电压时,监控信号将传递到电池保护板上,此时电池保护板将会停止对有安全隐患的电池的电压输出,说明电池内部有可能有破损,建议更换电池,导线的直径在0.5mm-1.0mm之间;本发明解决了锂离子电池在使用过程中,电池内部破损而带来的安全隐患。
中冶有色为您提供最新的广东有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!