本发明涉及焊接材料与冶金领域,具体是关于一种基于双辊连铸技术的铁基薄带钎料的制造方法。其特征在于:将熔炼好的熔态钎料的温度控制在1560‑l630℃之间,所述的熔态钎料的成分为Cr:12‑25wt%,Ni:10‑25wt%,Ni和Cr总质量分数控制在25%‑45%之间,Si:3‑5wt%,P:2‑6wt%,Si和P总质量分数控制在3%‑8%之间,Cu:3‑10wt%,余量为Fe;将其浇注在中间包内,熔态钎料经中间包流入两个旋转的‑结晶辊和侧封板组成的空腔内,从结晶辊导出厚度为1.67‑1.95mm宽度为200mm的铸带,铸带经在线切边处理后卷取,然后将铸带卷在空气中冷却至200‑300℃后进行温轧,经硫酸酸洗后得到厚度为0.80‑1.20mm的薄带,再进行退火处理后得到铁基薄带钎料产品。本发明的目的是提供一种基于双辊连铸技术的铁基薄带钎料的制造方法,利用其短流程,近终成型的特点有效提高生产效率,同时减少传统钎料造成的不必要浪费。
本发明提供了一种电力连接金具用过渡型耐磨涂层及制备方法,该涂层包括底层、过渡层和顶层;本发明用感应熔炼法将铝、铜、镁、锰块状单质制成涂层靶材,用粉末冶金法将氧化铝、氮化钛粉末制成涂层靶材,用双源同步蒸发法制得涂层;本发明不仅实现了涂层组织结构和物理化学性能的渐变,还提升了铝铜镁锰合金的耐磨性能、增强了涂层与基体之间的界面相容性,达到了避免裂纹生成的效果,对于架空输电线路连接金具的运行工况具有更好的适应性。
本发明公开了一种采用钼精矿和硫铁矿制备钼铁的方法,属于钼冶金技术领域,解决了现有技术中钼铁的制备流程长,工艺复杂、污染多的问题。包括:步骤S1、将原料钼精矿和硫铁矿进行配料、混匀,然后添加粘结剂成型,制成球团或块,作为待熔炼混合物;步骤S2、将成型后的球团或块进行干燥;步骤S3、将球团或块放入高温真空炉内进行冶炼;步骤S4、将冶炼后的钼铁合金液和炉渣冷却,得到钼铁。本发明的方法制备流程短,能耗低,无污染,钼的收得率高。
单相Sm2Co17纳米晶块体材料的制备方法属于纳米材料和新型粉末冶金技术领域。现有纳米晶Sm2Co17型合金的研究集中于两相或多相的合金体系。本发明通过将金属Sm和Co按2∶17的摩尔比混合,真空感应熔炼制备Sm2Co17合金铸锭;在氩气保护下,将合金铸锭破碎、研磨成粒径小于500μm的粉末,再将粉末放入球磨罐中进行球磨,制备出非晶态的合金粉末;将非晶态的合金粉末放入模具,利用现有放电等离子烧结技术快速烧结成型,制得单相Sm2Co17纳米晶块体材料。本发明具有工艺简单、可控性强,所制备的单相Sm2Co17纳米晶块体材料完全致密化、晶粒均匀细小,晶界区域纯净无析出相等优点。
一种电子产品用高强不锈钢粉末及制备工艺,属于消费电子产品所用粉末冶金材料制备领域。成分重量百分比为:C:≤0.2%;Cr:11.0‑13.5%;Co:11‑14%;Mo:5‑7.5%;(Cu+Ni)≤3.5%;V:0.1‑0.5%;W:0‑2%,余量为Fe及不可避免的杂质。经熔炼工艺制备母合金,经制粉、粉末烧结后,进行固溶处理→深冷处理→时效处理;热处理后的粉末烧结材料,其屈服强度≥1500MPa,延伸率≥4%。本发明不含有易氧化的强化元素Ti、Al等,通过W、Mo、Co、Cu等元素的强化,成分设计可以避免铁素体和过多奥氏体相的形成,得到的高强不锈钢金属粉末除了可用于消费电子产品领域,也可应用于激光打印用复杂精密零件的粉末耗材,也可推广至医疗、海工等相关领域,具有广阔的市场前景。
一种铜基碳化钛/氧化铝表面颗粒强化复合材料的制备方法,属于金属基复合材料制备技术领域。首先配置表面强化层粉末,为自蔓延反应体系粉末。然后,添加聚乙烯醇水溶液均匀搅拌,将表面强化层粉末混合成膏状或压制成预制块,涂覆或粘结于EPS塑料泡沫模样表面,经涂挂耐火涂料后干燥,进行铜液熔炼、埋砂浇铸得到铜基TiC/Al2O3复相陶瓷表面颗粒强化复合材料。该方法的特点是通过浇铸热量引发表面强化层粉末的自蔓延反应,由于产物原位生成,避免了外界的污染与夹杂,保证了强化区域的力学与物理性能;自蔓延反应的高放热温度使得产物为熔体,熔覆于金属表面既保证强化涂层的致密性,同时保证强化层与基体实现冶金结合。
本发明提供了一种新型耐磨耐蚀镍基高温合金,涉及高温材料领域。所述耐磨耐蚀镍基高温合金,其化学成分(wt.%)为:C0.15~0.30%、Cr25~30%、Mo10~12%、Al1.0~1.5%,其余为Ni,合金中会存在生产过程的少量杂质。所述镍基高温合金熔点高达1430~1455℃,在1300℃以上超高温条件下具有较高的蠕变强度、良好的抗氧化腐蚀性能和优异的耐磨损性能,有效地延长使用寿命,适用于工业生产大气熔炼,同时也适用于粉末冶金方法生产。所述镍基高温合金用于钢坯加热炉耐热垫块、滑轨及CSP均热炉辊环等部件具有钴基高温合金的耐用寿命而其成本远低于钴基高温合金。
本发明公开了一种大型电渣炉高强度冷却定向凝固结晶器及凝固工艺,属于电渣特种冶金技术领域,解决了现有技术中超大直径电渣锭现有的凝固条件恶化导致的凝固方向改变和易出现疏松缩孔等问题。本发明结晶器为分段式组装结晶器,设置有多段结晶器单元,结晶器单元为可拆卸的;各段结晶器单元的内径均从下往上均匀增加,相邻两结晶器单元中,上方的结晶器单元底端内径与下方的结晶器单元顶端内径相同,各段结晶器单元内表面斜度一致,斜度α≤10°。本发明结晶器及凝固工艺适用于直径超过1600mm或吨位超过60吨的大型电渣锭的熔炼。
本发明公开了一种提高轴承钢表面耐腐蚀性的方法。通过真空感应熔炼炉制得基体钢材并利用箱式电阻炉进行前期常规热处理,并利用激光对基体表面进行重熔处理提高轴承钢表面耐腐蚀性的方法。得到的表面重熔层与基体呈现良好的冶金结合,服役过程中不容易剥落,可靠性大,实用性强。所用激光表面重熔方法简单实用,在兼顾轴承钢芯部断裂韧性的前提下,提高了轴承钢表面的耐腐蚀性。
一种多元少量低合金化槽帮铸钢件的制备方法,属于钢铁材料加工技术领域。该方法是对添加铬、镍、钼等合金元素的常用的中碳槽帮铸钢ZG30MnSi提出的。其主要技术特征是利用铬的固溶强化,以及铬与镍共存时可明显提高淬透性,且镍在提高材料强度的同时可使材料保持较高韧性;同时,少量的钼可减弱含铬铸钢的回火脆性,并进一步提高其淬透性及抗回火稳定性的作用;以及利用熔炼时的夹杂物球化变质处理、热处理的正火、高温回火、调质技术来实现槽帮铸钢件的高强度、高韧性、高耐磨。按照上述成分及工艺方法处理,该槽帮铸钢件的抗拉强度不低于1200MPa、室温冲击韧性不低于65J/cm2,相对于ZG30MnSi,其耐磨损性能提高2.5倍以上,满足矿山冶金机械对耐磨损性能的高要求。
本发明涉及有色金属冶金技术领域,具体涉及一种蛇纹石型红土镍矿盐酸常压浸出清洁生产方法。本发明的蛇纹石型红土镍矿盐酸常压浸出清洁生产方法,包括以下步骤:1)将蛇纹石型红土镍矿与盐酸混合进行常压浸出反应;2)将步骤1)得到的酸浸液加入煅烧水解炉,进行煅烧反应;3)将步骤2)煅烧反应过程生成的氯化氢气体经两级以上除尘与氯化镁分离后进入吸收塔生成盐酸;同时,收集煅烧炉及除尘器底部的混合氧化物粉末;4)将步骤3)得到的混合氧化物粉堆存,用作后续高炉还原熔炼生产镍铁的原料。本发明既可实现蛇纹石型红土镍矿中镁、硅与镍、铁的分离,又可实现盐酸介质的再生循环,降低原料成本。
本申请公开了一种大规格难变形镍基高温合金铸锭及其制备方法,其制备方法包括以下步骤:三联冶炼:将高温合金原料通过真空感应熔炼、保护气氛电渣重熔和真空自耗重熔三联冶炼得到自耗锭;均匀化处理:采用多段式均匀化处理,将自耗锭保温;升温,保温;升温,保温;升温,保温后冷却,得到大规格难变形镍基高温合金铸锭,本申请还公开了通过上述方法制得的大规格难变形镍基高温合金铸锭。通过本申请中提供的方法可以稳定制得规格为Φ660mm的难变形镍基高温合金,且制得合金铸锭偏析低,解决了大尺寸铸锭的开裂问题,提高了难变形高温合金的冶金质量,热塑性高,进一步降低后期锻造开坯开裂,为制备大规格棒材和大尺寸盘锻件奠定了基础。
本发明一种铝/镁固液复合铸造成型方法。步骤如下:将厚度为3~10mm的铝合金管材机加到指定规格,经机械处理和化学清洗去除其内外表面的油污及氧化物后,置于空气炉中预热到150~450℃,采取CO2+0.5%SF6气氛保护熔炼,浇铸温度660~760℃;将熔铸模具在井式电阻炉中预热到450~650℃,保持20min;待模具预热完成后将其取出,将熔融的镁合金浇入其中,并将达到预热温度的铝包套置入镁合金液中;迅速将整个熔铸模具淬入室温水中,待界面凝固后放于空气中完成冷却。本发明通过固液复合铸造的方法将镁合金和铝合金冶金结合,所得到的复合铸件兼具铝合金的耐腐蚀性和镁合金的低密度、优良减震降噪等性能。
本发明公开一种在化铁炉(冲天炉)内综合脱除铁中有害杂质元素硫、磷的工艺,目的是解决现有技术可操作性差,脱硫效率低及不能同时脱除硫、磷两种杂质元素等问题,满足冶金、铸造行业的需要。技术方案是:通过采用向过热带吹入粉末状或颗粒状脱杂剂的方法脱除铁中的有害杂质元素硫、磷,所述脱杂剂为脱硫剂和脱磷剂。开炉时,在化铁炉过热带和炉缸带填以焦炭和脱杂剂,在以后进行的熔炼过程中,随炉料加入足量小块脱杂剂,以补充消耗掉的脱杂剂,增强脱硫、磷效果。本发明简便易行,可及时补充脱杂剂;脱杂效率高,能同时脱除铁中硫、磷两种有害杂质元素,并可同时用于脱除铁中其他杂质元素。
本发明首先采用真空熔炼和气流粉碎技术制备髙纯净度中间合金粉末,再在高纯氩气气氛中将细粒径铌粉与中间合金粉末中进行混合,得到合金成分均匀、具有合适松装密度和流动性、并具有较大晶格畸变的混合粉末。然后采用电子束快速成形方法将混合粉末逐层熔化堆积得到轻质铌基合金坯体,最后利用热等静压使轻质铌基合金坯体全致密,从而得到复杂形状的轻质铌基合金零部件。该方法以中间合金粉末和微细铌粉的混合粉末为原料,并且不需要模具,降低了原料成本和制造成本,成形过程准确。成形在真空环境下进行,有效降低了氧含量,克服了粉末冶金铌基合金烧结致密化困难的问题,制备出的铌基合金接近全致密、组织结构均匀、综合力学性能优异。
本发明提供一种高铌含量的高强镍基变形高温合金及其制备方法,按重量百分比计,所述高强镍基变形高温合金的制备成分为:Cr 9~14,Co 14~16,Mo 4~6,W 2~4,Nb 4~6,Ti 2~4,Al 3~5,C 0.04~0.12,B 0.005~0.02,Zr 0.01~0.05,V 0.4~1.5,Fe 0.05~2.0,Ni余量。在所述高强镍基变形高温合金的制备过程中,添加V元素析出含V元素的M2(CN)型碳氮化物,改善了所述高强镍基变形高温合金800℃的持久性能;同时,在所述合金铸锭的真空感应熔炼过程中,通过添加NiNb中间合金降低Nb元素的偏析倾向;真空自耗重熔通过精确调整熔速控制抑制冶金缺陷的形成;对合金棒坯进行二次均匀化处理,进一步地降低了Nb元素偏析,最终制备出高质量、低偏析的高铌含量的高强镍基变形高温合金。
一种高温高矫顽力钐钴永磁材料及制备方法,永磁材料为Sm(Co1‑u‑v‑wFeuCuvZrw)z,其中u=0.09~0.18,v=0.05~0.10,w=0.02~0.04,z=6.9~7.8;制备方法为纯度99.95%的稀土元素Sm、纯度99.98%的Co、纯度99.99%的Cu、纯度99.9%的Fe、Zr混合均匀后熔炼成合金铸锭,将铸锭进行组织优化处理,采用粉末冶金技术制备微米级合金粉末,然后经过取向成型、高温烧结与固溶、时效处理制备成钐钴永磁合金。本发明有效提高了TbCu7结构的比例,制备出了无Zr6(FeCo)23相的组织结构均匀的钐钴永磁体,得到了超高温下兼具高矫顽力和高磁能积的优异性能,可适用于550℃以上的超高温环境。
一种纳米Cu粉掺杂制备高矫顽力SmCoFeCuZr高温永磁体的方法,属于稀土永磁材料制备技术领域。本发明首先采用传统的粉末冶金法熔炼出SmCoFeCuZr合金铸锭,然后将其制备成微米级的合金粉末,再另外将商业纳米Cu粉末按比例与SmCoFeCuZr合金粉末混合均匀,然后经过烧结和时效处理得到2:17型SmCo烧结磁体。由于掺杂纳米Cu粉在烧结磁体中的均匀分布,能够大幅度提高磁体的室温和高温矫顽力。烧结磁体的矫顽力均大幅度增加,室温矫顽力提高2~2.5倍,500℃时掺杂纳米Cu粉磁体的矫顽力和磁能积均明显高于未掺杂磁体的。因此制备的纳米Cu粉掺杂磁体十分有利于在高温环境下使用。
一种细化镍基变形高温合金中氮化物系夹杂物的方法,步骤如下:(1)对金属原材料进行表面预处理;(2)真空感应熔炼:将Ni、Cr、Co、W、Mo等放入坩埚中,抽真空;熔化后加入C、Nb、Ti、Al;充氩气,加入B和Zr,完全熔化后浇注到钢模中,得到高温合金电极;(3)真空电渣重熔:采用含有0.01~0.5wt.%MgO的渣料,抽真空至0.01~100Pa,然后充高纯氩气至0.01~0.06MPa;化渣,精炼。本发明利用电渣重熔时熔渣与合金液的冶金反应,形成细小的均匀分布的MgO系夹杂物,为后续氮化物系夹杂物的形成提供核心;氮化物系夹杂物尺寸减小,分布更加均匀。真空电渣重熔可以减少氮化物系夹杂物的数量;通过控制电渣中MgO含量和电渣重熔的工艺参数,可精确控制合金中Mg含量和Mg系氧化物夹杂物的数量和尺寸,工艺稳定,成本低。
本发明属于冶金工艺与设备领域,特别涉及一种高熔点半固态金属浆料连续制备工艺与设备。制备设备包括浆料制备装置和浆料输送装置;浆料制备装置主要由加热、保温、保护、电磁搅拌、输送控制等五部分所构成,五部分由里到外同轴安装;浆料输送装置包括复合耐热管、硅碳加热管、复合保温管、测温热电偶、法兰端盖、电源线、壳体;复合耐热管、硅碳加热管、复合保温管,依次同轴安装于壳体内部;浆料输送装置与浆料制备装置下端相连。金属浆料连续制备工艺,包括合金熔炼处理,浇注、保温、浆料制备和定量输送五个步骤。浆料制备室、导流管上采用硅碳管加热装置,所形成的温度场均匀、可控,浆料制备过程采用氩气保护,制备结束后通过封闭的导流管定量地进入轧机。本发明工艺先进;设备结构简捷、维修操作方便;生产效率高;流程短、能耗低。
永磁合金的湿压方法及其产品属于粉末冶金工艺领域,工艺流程包括配料,熔炼,制粉,压制成型,烧结,时效,后加工,磁性测量。本发明是粉料在有溶剂中压制成型的。操作简便,使用方便。产品性能明显提高。
本发明公开了一种细化高洁净度稀土电渣钢中夹杂物的方法,属于钢铁冶金技术领域。该方法包括:依据目标钢种的元素成分,将合金料置于初炼炉熔炼成钢液,所述钢液采用Si‑Mn合金脱氧,控制钢液中的铝、钙和镁含量;将所述脱氧后的钢液依次经炉外精炼、浇铸制得自耗电极;将得到的所述自耗电极进行电渣重熔精炼,控制此过程中新生成的夹杂物尺寸。本发明可适用于高洁净度电渣重熔稀土钢的生产,使自耗电极中所有的氧化物夹杂在电渣重熔过程中全部被去除,源于自耗电极中原始氧化物夹杂在钢液内分解产生的溶解氧会与稀土Ce反应,在电渣重熔过程新生成的夹杂物尺寸细小,解决了稀土电渣钢中夹杂物尺寸大的问题。
本发明提供了一种基于真空感应加热的成形装置,其技术要点在于:包括装置本体,装置本体包括真空室,真空室内设置有锻造装置和感应线圈,锻造装置内设置有冷却装置,锻造装置的底部设置有预制坯,一种基于真空感应加热的成形方法,在真空环境中,将挤压与锻造结合在一起,并采用感应凝壳熔炼的方法将金属原材料熔化后并按照轨迹进行铺覆,在铺覆到预制坯上的熔滴凝固后立刻对其进行热机械加工,从而通过热机械加工;本发明金属材料从挤压式锻造头中被挤出,具有良好的加工流线,然后对其进行锻造加工,通过锻焊与预制坯连接在一起,层间结合金属未熔覆,而是固相连接,不存在冶金缺陷,结合质量好,成本低,效率高。
本发明提供了一种钢渣分离铁与磷再氧化制备富磷渣的方法,所述方法包括以下步骤:S1:将转炉炼钢排出的熔融钢渣装入密闭式直流电炉中,同时加入还原剂和改性剂,得到的高磷铁水;S2:将S1还原得到的高磷铁水装入到感应熔炼炉中,吹入氧气同时添加助熔剂和冷却剂,从炉底吹入惰性气体进行搅拌,完成钢渣分离铁与磷,同时得到富磷渣本发明通过密闭式直流电炉的炉内氧势低而产生高还原率,低排气量而产生高热效率,直流电炉有促进炉渣内流动、降低电极强度、操作简易等特征。本发明对冶金大宗固废资源循环利用及节约能源具有重要意义。
本发明提供一种含有石墨烯的高强度、高导电率铜或铜合金导线的制备方法。该方法包括如下步骤:1)用粉末冶金工艺或熔炼工艺制备含有增强相的铜或铜合金锭子;2)用变形工艺将铜或铜合金锭子制备成导线;3)铜或铜合金导线于CVD炉中生长一层或多层的石墨烯膜。本发明提供的方法具有制备工艺简单,易于产业化,制备的铜或铜合金导线具有高强度及高导电率的优点,本发明提供的方法制得的铜或铜合金导线在高压及超高压电缆行业具有广阔的应用前景。
本发明属于先进航空发动机用变形高温合金GH4169盘锻件制备技术领域,涉及一种降低GH4169合金大尺寸盘锻件内部残余应力的方法。包括以下步骤:GH4169合金纯净熔炼铸锭制备;GH4169铸锭均匀化热处理;铸锭开坯;饼坯制备;复合包套;梯度控速等温模锻;盘锻件热处理;粗加工;去应力退火。制备的低应力GH4169合金盘锻件既保证了变形高温合金铸锭内部应力得到缓慢释放,又改善了合金锭内部的冶金质量。可用于制备先进航空发动机高压压气机盘、高压涡轮盘、低压涡轮盘等零件。
本发明涉及一种钛/铝固液复合铸造成型方法,属于材料加工工程领域。所述方法为固体钛合金置于铝合金熔体制备铝包钛铸件,实验室制备工艺的实施步骤如下:(1)加工制得直径3~30mm的钛合金棒材,经车削打磨得到理想的表面粗糙度;(2)对预制的钛棒表面进行化学清洗,去除表面的油污及氧化物;(3)采用井式电阻炉在刚玉坩埚中熔炼铝熔体;(4)在熔体中插入先前处理好的钛棒,铝熔体温度为670~840℃;(5)在井式炉中保温5min~15h后,取出空冷至室温。本发明通过固液复合铸造的方法实现纯钛和纯铝、钛合金和纯铝以及钛合金和铝合金的冶金结合,所得复合铸件集钛合金和铝合金二者轻质耐腐的特点,兼具钛合金的高强度、高韧性和铝合金的易传热、导电等性能。
本发明涉及一种粉末冶金工艺制造永磁材料的 方法,特别是通过在磁粉中掺加有机粘合剂磁场成型 制造铁基稀土永磁体的方法及此方法所直接制备出 的实用R2M17X3-δ永磁。本发明的目的在于加入 有机粘合剂磁场成型而不使R2M17X3-δ永磁体的 磁相性能降低,大大地提高磁体可加工性,便于磁体 实际应用;并且用Fe取代传统Sm-Co磁体中大部 分Co,从而降低成本。本发明用Fe、Sm为基质渗入 X,按Rα(Fe1-yMy)100-α-δXδ组成,经加温熔炼母 合金、破碎、渗X、掺加有机粘合剂、磁场成型、固化 制备出具有高磁能积的实用永磁体。
本申请提供一种用于电渣重熔液渣冶炼的坩埚结构,涉及冶金技术领域,包括石墨坩埚、石墨电极、石墨芯、导电部和导线,石墨坩埚外侧设有钢套。本申请用于电渣重熔液渣冶炼的坩埚结构的石墨坩埚具有良好的导电性,可以提高熔炉冶炼过程中的导电稳定性,同时可以有效地规避因起弧过程中造成的打弧击穿坩埚造成高温液渣与水接触出现爆炸的安全风险;本申请用于电渣重熔液渣冶炼的坩埚结构使用石墨坩埚后可以取消水冷,能够保证液渣的均匀一致性;本申请用于电渣重熔液渣冶炼的坩埚结构使用石墨坩埚在取消水冷却的情况,可以有效地提高熔炼冶炼温度,减少电能和水的消耗。
本发明提供了一种热等离子浇铸修复轧辊设备及方法,涉及冶金工程技术领域,解决了修复轧辊费时费力、成本高、效率低的技术问题。该修复轧辊设备包括物料输送连接的熔料系统和浇铸系统、等离子加热系统和辅助系统;还包括行走装置,熔料系统设置在行走装置上;还包括升降装置,加热系统通过升降装置与行走装置活动连接,从而使加热系统能够相对于熔料系统在竖直方向升降。本发明采用等离子熔炼修复轧辊所用的物料,能快速加热熔化成液态,节省能源和材料,降低了修复成本;减轻了劳动强度,提高了自动化程度,改善了工作环境;缩短了修复周期,减少了企业的负担,提高了设备及资金的利用率;可实现规模化、批量化、系列化、自动化修复。
中冶有色为您提供最新的北京北京有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!