本发明公开了一种高性能低密度钢板的制备方法及应用,属于金属材料及冶金领域;采用包含限定重量的C、Mn、Al、Si、Ni、Cr、V、Mo、Ti、Nb、S、P,余量为Fe和不可避免的杂质的金属材料;将球磨过的碳化钨和铁粉与熔融的金属材料混合后再通过均匀化处理、多道次热轧变形、淬火分配处理制备而成;本发明制备得到的低密度钢板强度高、耐磨性好,同时重量轻,可以被广泛的应用于汽车、航空航天和船舶等领域,有利于减少二氧化碳等气体的排放,更加环保;本发明生产工艺简单,无需进行冷轧工艺,生产工序短,有利于工业化的推广。
本发明属于硅酸铝纤维的制备领域,具体是一种由煤矸石大规模制备高纯硅酸铝纤维的方法。先对煤矸石进行破碎、煅烧、碱溶、调节酸碱度进行熟化聚合,之后加入成纤助剂制得可纺性溶胶,最后静电纺丝制得硅酸铝纤维。本发明是大规模制备高纯度硅酸铝纤维的有效快速手段。采用溶胶凝胶法结合静电纺丝技术制备硅酸铝纤维,这些硅酸铝纤维可以用做电力、石化、冶金等大部分领域的绝热保温需要,还可以用其制作成陶瓷纤维针刺毯、陶瓷纤维毡和陶瓷纤维纸等;同时,又将煤矸石变废为宝,铝、硅有用成分得到协同利用,由此引起的环境污染问题也得到解决。
本发明涉及一种有效控制N08810铝钛成分的电渣重熔方法,属于冶金技术领域,解决N08810铝钛成分烧损难以控制的技术问题。解决方案为:一种有效控制N08810铝钛成分的电渣重熔方法,所述方法包括:电极坯成分控制、生产前设备关键控制元器件功能精度确认、保护气氛确认、熔速确认和电制度确认。本发明通过电极坯成分控制、生产前设备关键控制元器件功能精度确认、保护气氛确认、熔速确认和电制度确认等工艺,控制铝钛成分烧损。
本发明公开了一种铝钢固液双金属复合铸造的方法,属于双金属铸造技术领域;步骤为:在铝合金熔体加入Al‑5Ti‑0.5C中间合金并搅拌除气;之后将熔体升温到708℃‑710℃;将预热好的钢基体放入砂型中,将超声装置的振动子进行预热后移到砂型中,开始浇注铝合金熔体;浇注完成后,开启超声振动;超声振动的频率为10KHz‑20KHz,功率为1‑3KW;超声振动的时间为10‑40s;本发明方法有助于界面反应,并形成冶金结合,有效增加铝钢固液界面处的结合强度。
本发明属于耐磨材料制备及应用的技术领域,具体涉及一种铁基耐磨材料的混合成型方法。本发明提出一种先进的陶瓷‑金属耐磨材料的制备方法,首先,将高体积分数的Al2O3陶瓷颗粒放入微米铸铁粉末内部,通过高能球磨工艺对陶瓷颗粒的分散度进行改善,随后通过高频脉冲电流烧结技术对混合粉末进行固化烧结,烧结过程加载部分压力,使的混合粉末成形后内部呈多孔状态;随后将烧结制备的耐磨块体放入定制的碳钢模具内部,并与模具底部焊接固定,随后将铸铁金属液体浇入耐磨试块空余间隙部位进行浸渗,最终冷凝后成形为界面结合质量高的中型耐磨试块,该技术综合了粉末冶金法和无压浸渗法的优点。
本发明适用于铁素体不锈钢冶金和热处理技术领域,涉及一种餐具用铁素体不锈钢及其制备方法,按照重量百分比计算,由以下成分组成:Cr:21~26%;Al:0.05~0.08%;Cu:0.15~0.30%;La:0.1~0.5%;Si:0.4~0.9%;Mn:0.6~0.8%;C:0.02~0.05%;N:0.008~0.02%;O:0.002~0.2%,余量为Fe和不可避免的杂质。采用La和Cu作为Fe的添加剂,与Cr、Al、Si、Mn、C、N、O等元素组合制备出铁素体不锈钢。其中,La通过Fe‑La中间合金的形式添加,Fe‑La中间合金中La的质量分数在18‑20%,利用稀土金属对不锈钢性质进行改善,使得制备的铁素体不锈钢不仅具有优良的力学性能,而且符合重金属离子溶出的标准,可满足意大利D.M.21‑03‑1973和德国的LFGB(2013)食品接触用不锈钢的标准。
本发明公开了一种高性能铍铝合金及其制备方法,属于铝合金材料及冶金领域,解决了铍铝合金耐腐蚀性较差的问题;包括限定质量百分比的成分:Be、Ni、Mg、Ag、Si、Sr、Zr、Cr、Sc、SiC、石墨烯,其余为Al和不可避免的杂质;通过将含有以上元素的金属熔融,并加入球磨后的碳化硅、石墨烯和铝粉,混合后经过扒渣、精炼、变质、除气处理,最后浇注得到铸锭;再将铸锭经过均匀化处理和人工时效处理;本发明显著降低了铍铝合金的密度和力学性能,同时有效的增强了铍铝合金基体的强度和耐腐蚀性,本发明所述的高性能铍铝合金可应用于电子封装材料。
本发明公开了一种高耐腐蚀性中熵QP钢的制备方法;属于中熵钢生产技术领域;目的在于保证超高的抗压强度下,提高中熵QP钢的耐腐蚀性;技术方案是利用感应熔覆在中熵QP钢基表面熔覆一层成分主要为石墨烯和铝的复合粉末,具体是将石墨烯与铝粉混合,得到GO/Al复合粉末后,将中熵QP钢基通过感应熔覆加热到1000~1400℃,把GO/Al复合粉末喷在钢基表面,利用基体温度进行熔覆,随后自然冷却;本发明制备工艺简明,易于操作,实现铁铝很好的冶金结合,改善了中熵QP钢的耐腐蚀性。
本发明提供了一种异质复层结构预制体及其增‑等材复合制造方法,属于增材制造和铸造相结合领域。首先利用ansys基于拓扑优化原理设计出满足功能需求的点阵结构单元,并对拓扑优化获得的点阵结构单元规则化;然后利用Proe绘制出带有多孔点阵结构的基体模型,并利用选区激光熔化技术制得带有多孔点阵结构的基体;最后将基体放入挤压模具中,进行固‑液挤压复合铸造,获得复合预制体。本发明通过界面结构设计、选区激光熔化一体化成型、固‑液挤压复合铸造制备出机械结合与冶金结合相配合的复合界面,提升复合预制体在承受剪切应力时的结合强度。
一种改善球团矿质量的方法,其特征是“干返料”进行高压辊磨预处理获得高压辊磨预处理料,即将“干返料”送入高压辊磨机中进行辊磨预处理,其中辊磨压力0.5-6MPa,使“干返料”中小于0.5mm的比例达到30%以上。所述球团矿生球落下次数是3.5~5.0次/个球,成品球强度是2000~3200牛顿/个球,900℃还原度是65~75%,膨胀率是10~20%。本发明采用高压辊磨预处理工艺对“干返料”进行预处理,改善了生球团矿的质量,提了了成品球团矿的质量,同时还提高了成品球团矿的冶金性能。可在一定程度上解决在链篦机—回转窑生产过程中,因使用“干返料”而引起球团矿的强度及冶金性能差的问题。
一种有色金属冶炼烟气硫酸制酸系统的废稀硫酸回收装置及其回收方法,所述回收装置是由电渗析膜堆、硫化反应器和过滤器等设备构成;所述回收方法是将稀硫酸从制酸系统直接打入硫化反应器,与含有硫化氢的净化稀硫酸进行混合,使废酸中的过渡金属离子、砷化物与硫离子发生硫化反应生成过渡金属、砷的硫化物,得到含有金属硫化物、含硫砷化物固体悬浮物的废稀硫酸,经过滤后得到净化稀硫酸,该稀硫酸经蒸发器浓缩后,用于制酸系统补水;或直接引入制酸系统用作工艺补水。本发明提高了硫资源、水资源、有色金属资源利用率,有效解决火法有色冶金长期存在的废稀硫酸排放污染问题,而且回收方法具有工艺简单、操作容易、投资少、安全绿色的特点。
本实用新型属于冶金行业炼钢用的辅助设施,具体涉及减少钢锭冶炼中氧气含量的装置,它包括圆柱形筒,其特征是圆柱形筒内设有煤气通道,煤气通道上均匀设置16个通气孔,通气孔的孔径为5毫米。熔炼前将本实用新型放置在锭模上口部,连接煤气源并通入煤气并点燃煤气,通过燃烧锭模上口部空气,有效地减少了空气中的氧含量进入锭模,同时减少了氧气与熔渣、钢液的接触,避免了钢液氧化现象,钢液中的氧含量明显降低,使氧含量在钢锭中分布均匀,减少了偏析,提高了产品质量。同时降低了钢中的非金属夹杂物含量,提高了钢的纯净度。
防止电渣重熔电极击穿结晶器的方法,属于冶金领域,它包括用轴心测量装置对对接电极的轴心进行测量,使对接电极的两轴心线在一条直线上;将结晶器水冷底板防护板平铺在结晶器水冷底上,然后再在结晶器底板中心固定引锭板及引燃材料;用轴心测量装置对自耗电极与结晶器内壁之间的间距进行校正,自耗电极与结晶器内壁之间的间距不小于20mm。本发明通过采用在结晶器水冷底版上铺设防护钢板的措施,有效避免了发生刺漏结晶器水箱引发炼钢喷爆的安全事故,确保待熔化的钢锭和底盘之间的良好接触,保证电流能够有效的通过熔炼过程,解决了结晶器底板接触导电不良,造成设备不能送电函待解决的问题,有效提高设备使用效率。
本发明属于冶金技术领域。一种低膨胀合金的冶炼方法,低膨胀合金依次经过铁水预处理、转炉和VD真空精炼炉三个工序生产后直接模铸。应用本发明,VD精炼后直接模铸,钢中碳含量小于0.02%,氮含量小于0.003%,T[O]小于0.0015%,炉产量大于80吨,冶炼成本比真空感应炉或非真空感应炉熔炼吨钢降低2000元以上。
本发明公开了一种生物泡沫镁合金的制备方法,属于泡沫合金制造技术领域,包括以下步骤:将镁合金粉末、碳酸锌及碳酸钙球粒干燥后混合、冷压、烧结得到所述泡沫镁合金;本发明的发泡剂采用以碳酸锌和碳酸钙粗粉和细粉构成芯壳结构的球粒,其不仅解决了孔洞分布不均匀的问题,还解决了碳酸钙使用过多带来的腐蚀性问题;本发明的制备方法可得到均匀孔隙的泡沫镁合金,具有合适的孔隙率,孔径分布均匀;利用粉末冶金法烧结,避免了熔炼的困难,适合于大规模工业化生产;本发明制备得到的泡沫镁合金含对人体有益的元素Mg、Zn、Ca,所得到的材料性能优异,符合生物材料的应用要求,是一种具有良好应用前景的生物泡沫镁合金。
一种固溶强化型镍基合金电渣锭热送均质化开坯的工艺方法,包括(1)电渣锭熔炼至1/3、1/2和3/4时,结晶器底水箱冷却水流量分别为正常流量的75%、50%和30%。重熔结束后45min脱模,用保温罩罩住,15min内进退火炉;(2)电渣锭入退火炉时表面温度≥850℃,温度1210℃,时间为48h,出炉温度1210℃;(3)电渣锭从退火炉内取出后装车,装入热加工车间加热炉时表面温度≥850℃,加热炉的待料温度为1130℃。本发明具有生产周期短、冶金成本低的特点。与传统工艺相比,缩短加热时间28h,缩短生产周期2天,电渣锭报废率降至0,成材率提高7%。质量满足ASMESB-167标准,经济效益显著。
高温高熵合金表面碳化物/金刚石颗粒涂层的制备方法,属于高温高熵合金表面硬质涂层领域,其特征在于:所述基底材料通过粉末冶金和电弧熔炼得到具有高硬度、高熔点的高温高熵合金;所述高熵合金表面通过碳化工艺处理,获得高温、高硬度的碳化物涂层以及高硬度、高耐磨性及高导热率的金刚石;所制备的材料在高温真空退火炉800℃‑900℃、氩气条件下退火3 h‑10 h后随炉冷却至室温,最终在高温高熵合金表面形成碳化物/金刚石材料。通过本发明获得的材料,其特征在于具备可在900~1500℃下工作,表面硬度高于700 HV、屈服强度在最高工作温度下最高可达400 MPa的优点。
本实用新型在隧道窑生产线上应用的余热锅炉,属于在隧道窑生产上应用的换热装置领域;本实用新型提供一种余热锅炉对隧道窑中焙烧段的余热进行充分利用,解决现有余热利用技术中利用不彻底等问题;采用的技术方案是:汽包以自身轴线垂直于隧道窑轴线安装在隧道窑顶部;前后集箱垂直焊接于汽包上,用于连接辐射换热管;辐射换热管安装于隧道窑侧面墙壁的内侧,与前后集箱的布置方向垂直,上端穿出隧道窑与前后集箱连接,下端从隧道窑侧墙穿出与左右集箱连接,左右集箱平行于前后集箱;下降管的上端与汽包联通,下端与左右集箱联通,布置在隧道窑墙外侧。本实用新型广泛用于陶瓷、磨料、建材、冶金等行业的隧道窑生产线中的余热利用上。
一种高温煤气脱硫剂及制备,属于气体净化脱硫剂及催化剂制备领域。该脱硫剂由铁、钙、锌、铝等金属氧化物经研磨、过筛,添加特种粘合剂、结构助剂、造孔剂混合均匀后沉降,用挤条、滚球分别制成圆柱型、球形样品,在80—150℃下干燥和500—900℃含氧气氛下焙烧活化而制得。该脱硫剂在高温(400—800℃)下对燃料气中含硫化合物有很好的脱除能力,具有硫容高,净化效率高,机械强度高,脱硫饱和后易再生的优点。可用于整体煤气化联合循环发电(IGCC)和燃料电池(MCFC)技术中燃料气的净化及电子、冶金和化工中的环境保护行业原料气的精脱硫。
本发明属于冶金技术领域,涉及一种高碱度球团矿的制备方法,包括配料、混匀造球、焙烧、冷却,其中,调整了球团矿的粒度、链篦机料层厚度和链篦机风速,所制备的高碱度球团矿的二元碱度为0.8‑1.4。本发明的高碱度球团矿的制备方法使预热球团矿的AC转鼓指数降低了3个以上百分点,大大提高了高碱度球团矿的强度。
本发明涉及一种铝基碳化硼中子吸收复合材料的制备方法,是针对中子吸收复合材料的特性,采用铝粉、硅粉、钛粉、碳化硼粉做原料,采用粉末冶金法,通过研磨、制坯、冷压、焙烧、热压,在真空状态下制成铝基碳化硼中子吸收复合材料,经回火定性处理,使材料的化学物理性能更加稳定,此制备方法工艺先进合理,连续紧凑,数据翔实准确,此材料配比合理,具有稳定的物理化学性能和力学性能,产物纯度好,达99.5%,可用此材料制备各种中子吸收零部件,是十分理想的铝基碳化硼中子吸收复合材料的制备方法。
本发明涉及矿物加工和湿法冶金领域,具体是一种含钾岩石中协同提取钾、铷的方法。包括以下步骤:将含钾岩石破碎、磨矿,得到矿粉;取含钾岩石和碱性添加剂生石灰或熟石灰混合,加入水,置于熔盐炉内熔盐热活化;对活化后的混合物进行固液分离,得到含有铷、钾的过滤液和滤渣,滤渣用于生产硅钙肥;滤液加入碳酸钾水溶液进行碳化,过滤除去杂质,获得二次滤液;二次滤液蒸发结晶,获得钾、铷结晶物;钾、铷结晶物焙烧,获得含钾、铷富集物盐,提纯分离获得碳酸钾及碳酸铷。采用石灰为碱性添加剂,固液分离滤液为碱性,钙离子沉淀进入尾渣,尾渣用于制备硅钙肥,相比于采用氢氧化钠为碱性添加剂,成本较低,滤液中省去钾、钠分离工序,有利于钾、铷的提纯。
一种消除炼钢辅料膨胀性的方法,属于冶金炼钢辅料检测技术领域,(1)膨胀材料判断:将炼钢辅料按照GB/T219制样要求制成三角锥形试锥,试锥在室温下放置至少12小时晾干或在90~110℃烘箱内烘干半小时,使试锥成为含水率小于0.5%的干燥试锥;将干燥试锥放入1300℃炉中,瞬间试锥溃散,即试锥中含有膨胀材料;(2)研磨:即采用振动磨在1200r/min~1400r/min的转速下研磨至少70秒;(3)预烧保温:即在900℃~1100℃温度下焙烧并保温10min~30min;预烧升温速率是10℃/min。本发明在太钢技术中心耐火实验室炼钢辅料熔点检测中试验,解决了物料膨胀对熔点检测的干扰,排除了物料膨胀对熔点检测的干扰,效果显著。
本发明涉及合金材料的制备领域,具体涉及一种高强韧高稳定性TiAl‑Ni合金板材的制备方法;本发明是为了解决现有铸锭冶金和粉末冶金法制备TiAl合金板材晶粒过度长大、工艺遗传性导致的组织不均匀、力学性能差的问题,尤其是强度和塑性低的难题;体步骤为:一、称取原料、二铸锭熔炼;三、坯料预处理一;四、坯料预处理二;五、包套热轧;六、稳定处理;七、去包套,即可得到TiAl合金板材。本发明中得到的板材表面质量良好,组织细小、均匀,力学性能良好,可重复性高。
本发明公开了一种无包套制备TiAl合金板材的方法,为了解决现有铸锭冶金包套轧制TiAl合金板材工序复杂、加工成本高、原料利用率低,而粉末冶金法制备的TiAl合金棒材易引入杂质、成本高的问题。具体步骤为:一、称取各原料组分;二、水冷铜坩埚感应凝壳熔炼+熔模精密铸造制备铸锭;三、坯料预处理;四、板材挤压第一阶段;五、板材挤压第二阶段,即可得到TiAl合金板材。本发明中得到的板材表面平整无开裂,板材组织均匀,晶粒细小,具有优异的力学性能。
本发明涉及合金材料的制备领域,具体涉及一种TiAl合金板材“热‑电”耦合无包套制备方法;本发明是为了解决TiAl合金板材现有铸锭冶金包套轧制法工艺复杂、成本高、板形差、材料利用率低的问题,以及克服粉末冶金法杂质含量高、成本高、致密度低、生产效率低的难题。具体步骤为:一、称取各原料组分;二、真空感应凝壳熔炼+金属型铸造制备铸锭;三、坯料预处理一;四、坯料预处理二;五、板材“热‑电”耦合无包套轧制,即可得到TiAl合金板材;本发明中得到的板材表面质量良好,无氧化层脱落,边部和端部无开裂,板材组织均匀、细小,力学性能良好。
一种测定渣钢中元素含量的方法,属于冶金领域,它包括下述步骤:(1)选取渣钢称重记为m,同时检测渣钢中含水量记为p;(2)将称重后的渣钢放入中频炉内进行熔炼,待渣钢全部熔化后,分别提取渣样、钢样;(3)分别对渣样、钢样按照常规化验法做元素含量分析;(4)待熔炼完成后将钢渣从钢水中倒出,钢渣冷却后称重记为m1;将钢水倒入模具中,冷却后称重记为m2;(5)计算渣钢中各元素含量,计算公式为:。本发明简单且精确,解决了钢铁企业渣钢成分使用光谱法数据不准确的问题,为渣钢返回冶炼工序提供准确依据。
本发明属于冶金技术领域,具体涉及一种镁质球团的制备方法及镁质球团。本发明的镁质球团的制备方法,包括:(1)将CDQ粉和再生铁粉混合后进行预处理;(2)将预处理后的CDQ粉和再生铁粉与镁质熔剂配合,得到C‑M粉;(3)将所述C‑M粉与赤铁精矿粉、膨润土进行配料、强混、造球、预热及焙烧处理后,得到镁质球团。本发明的镁质球团的制备方法,使CDQ粉和回收再生铁粉中的有用成分得到回收利用,不仅扩宽了CDQ粉和回收再生铁粉的合理利用途径,还减少了焙烧过程的喷煤量,有利于减排。
本发明提供了一种磁铁矿粉球团矿的生产方法,包括:(1)配料:按照赤铁矿粉8‑20重量份、磁铁矿粉78‑90重量份和膨润土1‑2重量份进行配料;(2)混匀造球:步骤(1)的原料经混料机混匀之后,加入圆盘造球机中补充水分,造球制备生球团;(3)焙烧:将步骤(2)制备的生球团在链篦机‑回转窑上进行布料、焙烧,得到成品球团。本发明还提供了前述方法制备的磁铁矿粉球团矿。本发明的方法提高了磁铁矿粉球团预热焙烧球团矿强度,同时还能改善其冶金性能的方法,对于高效利用磁铁矿粉具有重要意义。
本发明公开了一种熔剂性MgO球团矿生产方法,包括尾矿粉预焙烧、配料、混匀、造球与焙烧,其特征在于:将尾矿粉首先进行预焙烧,然后将预焙烧过的尾矿粉与其它铁矿粉和膨润土一起混匀、造球、焙烧。本发明取消了加工CaO或MgO熔剂的工序,而采用了配加从铁矿山尾矿坝提取的CaO和MgO含量高的尾矿粉,所得到的成品球的冶金性能得到大幅度改善,其中还原度较酸性球团至少提高2.5%以上,软化开始温度至少提高15℃以上;配加尾矿粉后,由于其粒度较细,不会对生球团矿的落下次数以及抗压强度带来负面影响。
中冶有色为您提供最新的山西太原有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!