一种用化学法从含钒铬混合废水及含钒、含铬废水中分离回收钒和铬的方法,该化学法适用于处理冶金、化工、电镀废水中的钒和铬。对钒铬混合废水,单一的含钒或含铬废水中钒和铬都能够进行理想的分离提取、回收、利用,使处理后的水质达到国家排放标准。以往这类水处理一般均采用混合沉淀法,占地面积较大,且污泥产生量大不易回收利用,而本发明在对这类废水处理中采用了快速沉淀分离钒、铬技术、使渣、液迅速分离,因而占地面积少,沉渣量少且易回收利用,经济价值高、对大、中、小型水处理均适用。
本发明属于能源回收利用领域,尤其涉及冶金、钢铁行业中的一种高炉熔渣热能回收系统。该高炉熔渣热能回收系统,包括粒化单元、流化床渣粒碰撞单元、空气热交换单元、过热蒸汽回收单元、出渣单元,粒化单元是由熔渣槽、导流槽、风碎风机、风碎喷嘴组成,熔渣槽呈一定的斜度置于导流槽上方,在导流槽下部由风碎风机产生的高压空气由风碎喷嘴喷出,导流槽出口插入流化床。本发明具有粒化效率高、减少了炉渣颗粒的相互粘附性等优点。
本发明涉及一种从低品位含镓、铁的原料中回收镓和铁的方法,其包括:a)含镓生铁的制备;浇铸阳极板:将所述步骤a)得到的含镓生铁浇铸成含镓阳极板;c)电解分离镓铁:将所述步骤b)得到的含镓阳极板电解制取电解铁粉和含镓阳极泥;d)含镓阳极泥焙烧、酸浸除铁:将所述步骤c)得到的含镓阳极泥焙烧酸浸;e)镓的萃取:将步骤d)得到的酸浸过滤液来得到富镓有机相萃余液;f)反萃取:将步骤e)得到的萃余液反萃取,得到镓反萃取液;g)中和水解除杂:将步骤f)得到的反萃取液的Ga3+与Fe2+、Ti3+、Al3+、Cu2+、Zn2+、Mn2+分离,生成沉淀;h)、碱溶:将步骤g)得到的反萃液加碱碱化。本发明的方法简单、成本低,能高效的回收冶金固体废弃物中的有价元素镓、铁。
该发明属于粉末冶金中超细晶粒碳化钨——铁系复合粉的生产方法。包括将含钨废原料破碎、氧化焙烧、粉碎研磨、湿磨配料、还原处理、配碳及碳化处理,从而制得平均晶粒度≤0.5μm的超细碳化钨——铁系复合粉。该方法由于采用碳氢还原工艺,在还原处理前即在混合粉料中加入碳黑粉及调整量的钨或/和铁系元素,使其在还原过程中即形成一类超细WxCy化合,同时加入适量的钒、铬以抑制晶粒膨胀。从而具有工艺先进、稳定可靠,复合粉中的碳化钨是一种板状结构、晶粒均匀,铁系元素及生成的碳化钒、碳化铬在粉料中分布亦十分均匀等特点。该复合粉用以生产超细硬质合金具有高的强度及硬度等优良性能。克服了背景技术只能生产亚细晶粒复合粉且晶粒度一致性差等缺陷。
本发明公开了一种液态铸余渣处理工艺,属于冶金渣处理技术领域。其包括以下步骤:向熔融的液态铸余渣中加入改进剂,并保温处理后进行吹氧静置处理后采用高速气流对液态铸余渣进行风淬急冷处理,让液态铸余渣雾化成小液滴,经空中自然冷却形成雾化钢渣球。本发明的液态铸余渣风淬工艺采用高速气流快速处理液态铸余渣,具有流程短、时间快、成本低的优点,且成品经初步筛分后即可得到,且整个风淬利用率高。不仅仅适用于刚入罐保持流动性的高温液态铸余渣,同样适用于流动性较差的高温液态铸余渣。
本发明公开了一种高铁高钛超细粒级钒钛精矿的烧结方法,属于冶金烧结领域。高铁高钛超细粒级钒钛精矿的烧结方法包括如下步骤:a.按质量百分比将原料配料;b.将高铁高钛超细钒钛精矿、国内中粉和石灰石加水强制混匀后,再加入进口矿粉、国内高粉、活性灰/生石灰、燃料和返矿进行二次混匀,然后将混合原料滚动制粒,得到烧结料,进行烧结。采用本发明的方法,通过二次混匀、降低水分配比和优化烧结过程,能够使高铁高钛超细粒级钒钛精矿烧结所得烧结矿取得较好的技术指标,满足钒钛矿高炉冶炼要求,可有效解决现有技术烧结钒钛磁铁矿的成本较高的问题。
本发明属于冶金技术领域,具体涉及一种Fe‑Mn‑Al‑S系低密度易切削钢及其制备方法。本发明所要解决的技术问题是提供一种Fe‑Mn‑Al‑S系低密度易切削钢,其化学质量百分数为:0.01~0.5%C、15.0~25.0%Mn、8.0~15.0%Al、0.1~0.5%S、1.0~5.0%Ni、0.001~0.005%V、0.001~0.005%Ti、P≤0.001%,其余为Fe与不可避免的杂质。本发明还提供了上述钢的制备方法。本发明钢具有易切削和密度低等优点,能够很好地应用到汽车领域。
本发明涉及钒的提取冶金技术领域,具体涉及一种利用含钒碳酸化浸出液提钒和沉钒余液循环利用的方法。所述方法包括以下步骤:a:将含钒碳酸化浸出液与HCO3‑型阴离子交换树脂接触,得到富钒树脂和离子交换余液;b:将离子交换余液返回碳酸化浸出工序使用;c:将富钒树脂与解吸剂接触,得到解吸液;d:向解吸液中加入碳酸氢铵进行沉钒,过滤得到偏钒酸铵和沉钒余液;e;将沉钒余液返回步骤c使用;其中,所述解吸剂为含有碳酸氢铵和碳酸氢钠的溶液。该方法以离子交换树脂为载体实现钒酸根与碳酸氢根的交换,简化了碳酸化浸出液回收钒及介质循环的工艺过程;整个工艺过程在常温下进行,降低能源消耗。
本发明涉及一种VCD含B不锈钢的生产方法,属于冶金技术领域。本发明的VCD含B不锈钢的生产方法包括:电炉冶炼→钢包精炼炉真空精炼→大气下注保护浇注→电极坯精整→电渣重熔;所述电渣重熔的过程使用三元渣系CaF2‑Al2O3‑CaO,所述三元渣系的成份为CaF2、Al2O3、CaO、SiO2、B2O3,所述CaF2、Al2O3、CaO、SiO2、B2O3的质量比为:45~65:10~25:10~25:0~2.5:0.5~1.8。本发明的方法能够稳定控制VCD含B不锈钢中的质量含量Si≤0.10%,Al≤0.010%,B:0.007~0.012%,O≤35ppm、B损耗小、产品的报废率低、工艺简单。
本发明涉及钢铁冶金技术领域,本发明旨在解决现有MFB枪的枪位控制方法的控制精度低的问题,提出一种MFB枪的枪位控制方法及系统,方法包括以下步骤:分别获取MFB枪在顶部极限位时编码器的第一脉冲数、MFB枪在底部极限位时编码器的第二脉冲数和MFB枪当前位置对应的编码器的第三脉冲数;根据第一脉冲数、第二脉冲数和第三脉冲数并基于顶部极限位和底部极限位间的第一距离信息和MFB枪在底部极限位时枪头距真空室底部的第二距离信息计算MFB枪的实际枪位;接收MFB枪设定枪位对应的控制信号,根据设定枪位与实际枪位的第三距离信息控制电机工作,使MFB枪上升或下降至设定枪位。本发明提高了枪位控制精度。
本发明属于钢铁冶金技术领域,具体涉及470MPa级高硅耐候钢及其制备方法。本发明所要解决的技术问题在于提供具有良好耐腐蚀作用的470MPa级高硅耐候钢。其化学成分为:C≤0.12%,Si:2.20~3.00%,Mn≤1.50%,P:0.005~0.030%,S≤0.015%,Cr:0.20~0.80%,Ni:0.10~0.40%,Cu:0.20~0.60%,Als≥0.010%,余量为Fe及不可避免的杂质。本发明470MPa级高硅耐候钢耐大气腐蚀性指数I达到9.54~10.65,显著高于6.0,实现了产品优良的耐大气腐蚀性能,可广泛用于建筑、桥梁施工或车辆制作领域,具有良好的应用价值。
本发明公开了一种工艺方法,尤其是分开了一种降低转炉钢渣中镁含量的工艺方法,属于冶金生产尾渣处理工艺技术领域。提供一种流程短,分离效果好的降低转炉钢渣中镁含量的工艺方法。所述的工艺方法以破碎或粉磨后的细颗粒转炉钢渣为基础,采用磁场强度不低于1000高斯的矿选设备磁选出其中的铁方镁石或RO相来降低转炉钢渣中的镁的含量,其中,破碎或粉磨后的转炉钢渣的粒径不超过3㎜。
本发明涉及Cr12冷作模具钢VD工序稀土添加方法,属于模具钢冶金技术领域。本发明解决的技术问题是对于Cr12冷作模具钢目前还没有相适宜的稀土添加方法在提升稀土收得率的同时满足夹杂物要求。本发明的技术方案是采用EF电炉冶炼+LF精炼+VD真空精炼冶炼Cr12冷作模具钢,VD真空精炼破空后添加稀土,出钢,模铸浇注。本发明稀土收得率≥50%,夹杂物按GB/T10561‑2005的A法检验与评级,A、B、C、D粗/细系及Ds各类非金属夹杂物级别≤2.0级的达标率≥85%,能开发出各类夹杂物≤1.0级的高端冷作模具钢。
本发明涉及含V的铁路货车组合式制动梁用钢及其制造方法,属于钢铁冶金领域。本发明提供了含V的铁路货车组合式制动梁用钢,其化学成分按重量百分比计为:C:0.14%~0.18%、Si:0.25%~0.40%、Mn:1.35%~1.55%、Cr:0.20%~0.30%、V:0.15%~0.18%、Nb≤0.005%、N:0.0090%~0.0110%、P≤0.015%、S≤0.015%,其余为Fe和不可避免的杂质。上述钢材经920℃正火+480℃回火后,其屈服强度≥460MPa、Akv(‑40℃)≥27J,疲劳性能检验100万次无裂纹。
本发明公开了一种铍铝合金表面氧化铍/氧化铝双相颗粒复合强化改性层的制备方法。采用在铍铝合金表面预烧微米金属铝粉、纳米氧化铝粉与纳米氧化铍粉三元预混复合粉体的方式,结合电子束重熔与后续热处理获得了高硬度与强化相颗粒梯度式分布的合金表面改性层。采用上述技术路线可避免使用金属铍粉造成的不利影响与表面改行层的开裂失效,实现了改性层与合金基体之间的冶金结合,保证了表面改性层的结构稳定性。该方法工艺路线简便可行,可有效解决铸造铍铝合金用作电子包封材料时对表面涂层热物性能的要求,具有良好的实际工程应用前景。
本发明公开了一种转炉钢渣用于转炉炼钢的方法,涉及转炉炼钢领域,解决的技术问题是提供一种可降低炼钢成本,并提高炼钢效率的转炉钢渣用于转炉炼钢的方法,采用的技术方案是:包括以下步骤:S1将金属铁含量小于5%的钢渣进行破碎,再选取粒径为15~60mm、水分质量小于1%、单质磷质量不大于0.7%的钢渣块料;S2在转炉炼钢溅渣后或吹炼后1~10min内加入钢渣块料。本发明使炉渣熔点由1500℃降至1200~1300℃,炉渣中其他低熔点氧化物有助于加速活性石灰、高镁石灰的熔化,克服半钢转炉炼钢需额外加入酸性材料而造渣慢的缺点,使转炉炼钢冶炼过程来渣快和避免冶炼过程返干,节约其他冶金辅料的消耗,降低炼钢成本。
本发明涉及冶金技术领域,尤其是一种钒铁的生产方法。一种钒铁的生产方法,所述钒铁为含钒原料和含铁原料通过电弧炉冶炼制成,所述含铁原料为厚度在0.7‑1.0mm之间的钢带余料,所述钢带余料是由冷轧板生产时产生的钢带废料,钢带废料再经过切屑机切屑加工形成的。通过检测大量的厚度在0.7‑1.0mm之间的钢带余料,满足钒铁生产对含铁原料的要求,而且在电弧炉冶炼中,0.7‑1.0mm之间的钢带余料具有良好的流动性及分散性,不会出现成分偏析,可见,本发明采用冷轧板生产时产生的钢带废料作为钒铁生产时的含铁原料,废料重新利用,提高了资源利用率,显著降低生产钒铁的成本。
本发明属于冶金固废处理技术领域,公开了一种热闷池钢坯修复安装方法。本发明包括以下具体步骤:取下热闷池内需更换的旧钢坯,同时取下钢坯紧固的旧螺栓和旧螺杆;将旧钢坯与混凝土池壁之间的旧耐火层剥离;用新螺杆和新螺栓在热闷池内安装新钢坯,在新钢坯和热闷池内壁之间预留耐火层空间;在新钢坯与热闷池内壁之间的耐火层空间灌入新耐火泥;在新耐火泥上方的新钢坯与热闷池之间焊接密封板。本发明用钢板将钢坯与热闷池边水封槽焊接连好,保护覆盖表面钢坯、耐火层和水泥池壁,避免水、渣进入,将旧的钢坯、螺栓、螺杆和耐火层均进行了剔除,然后换成新的,保证了修复效果,延长修复后钢坯使用寿命,减少钢坯变形和松脱现象,保证安全生产。
本发明涉及钢铁冶金领域,本发明旨在解决现有的钢坯加热的能耗和成本较高的问题,提出一种钢坯入炉温度的检测方法,包括:将钢坯样本加热到工艺要求的出钢温度后,在空气中冷却到常温,并在钢坯样本的冷却过程中根据预设周期检测钢坯样本的多个检测点的温度得到检测结果;根据检测结果确定钢坯样本的断面规格和表面温度与至少一个内部温度之间的对应关系,根据对应关系建立数据库表;获取待入炉钢坯的断面规格和表面温度,根据待入炉钢坯的断面规格和表面温度并基于数据库表确定待入炉钢坯的至少一个内部温度;根据待入炉钢坯的表面温度和至少一个内部温度的平均值确定待入炉钢坯的实际入炉温度。本发明降低了钢坯加热的能耗和成本。
本发明公开了一种钢绳更换方法,在该更换方法中利用卷取辊筒来卷绕旧钢绳,以使旧钢绳牵引新钢绳绕在对应的活套动滑轮上,新钢绳卷绕在新钢绳辊筒上,在旧钢绳牵引新钢绳移动时,新钢绳会逐渐从新钢绳辊筒上退下。相较于现有技术中采用吊车将旧钢绳一段一段吊出的技术方案,本发明中钢绳的更换方法具有方法简单、操作方便、安全适用、方法独特,大大缩短检修时间、增加生产时间等优点。该方法适合空间受限、长度较长钢绳更换,也可用于冶金行业大型重型桥式吊车主卷钢绳更换。能够推广,社会效益显著。本发明还公开了一种辊筒装置。
本发明涉及含V、B的锌铝镁合金镀层钢材及其制备方法,属于钢铁冶金生产技术领域。本发明提供了含V、B的锌铝镁合金镀层钢材,镀层的化学成分按质量百分比计为:铝0.4%~2.8%,镁0.5%~3.0%,钒0.005%~0.8%,硼0.001%~0.20%,其余为锌及不可避免的杂质;其中Al/Mg为0.8~1.5,钒+硼总量为0.01%~0.50%。本发明提供的锌铝镁合金镀层钢材能够满足用户对于钢材耐蚀性和成形性双高的要求,尤其适用于家电和汽车领域,具有良好的推广应用前景。
本发明属于钢铁冶金技术领域,公开了一种具体的向00Cr18Mo2铁素体不锈钢中添加稀土的方法,其中,00Cr18Mo2铁素体不锈钢冶炼工艺为:电弧炉→VOD真空精炼→LF→浇铸工艺;具体为(a)、稀土加入时机控制在VOD破空软吹氩开始的第5~10分钟之间,并且添加稀土时间在1分钟以内;(b)、稀土的加入方式为将稀土绑在插杆上后插入VOD钢包中;(c)、稀土加入后至吊包之间持续软吹氩时间15~30min,并且VOD破空后总软吹氩30~40min;(d)、稀土的加入量为0.125kg/吨。本发明方法可有效地避免稀土在钢中形成大颗粒的稀土夹杂物,同时提高稀土的收得率,并使得最终产品的纯净度得到大幅提升。
本发明涉及钒冶金技术领域,公开了一种钒氮合金的制备方法。该方法包括:(1)将钒氧化物、石墨粉、钒铁合金粉按照质量比为1:(0.16~0.25):(0.01~0.02)的比例混合均匀,得到混合料,混合料加水混合后压成料块;(2)将料块装入坩埚并推入煅烧窑中干燥至水分含量为0~0.3重量%,得到干燥料块,将干燥料块在400~850℃氢气气氛和氮气气氛中煅烧2~4h,得到预还原料块,将预还原料块在1100~1350℃氮气气氛中煅烧3~5h,冷却后得到钒氮合金。该方法采用碳氢复合还原氮化、钒铁合金粉催化技术,加快反应速率并保证钒氮合金具有较好的质量,达到降低配碳量和碳排放、降低反应温度和能耗的目的。
本发明公开了一种钼钒铝中间合金及其制备方法,属于冶金技术领域。本发明为降低Ti811合金的生产成本,保证其质量,提供了一种钼钒铝中间合金,其组成为:Mo:20~30%,V:20~30%,Al:39.5~59.5%,余量为不可避免的杂质,以上成分百分数之和为100%。本发明设计的钼钒铝中间合金,可代替钒铝、钼铝,直接用于制备Ti811合金,配料更为简单、准确,更能确保Ti811合金的成分均匀、避免成分偏析;且该合金可通过一步金属热还原法制得,工艺简单、易操作。
本发明涉及含V、Ti的铁路货车组合式制动梁用钢及其制造方法,属于钢铁冶金领域。本发明提供了含V、Ti的铁路货车组合式制动梁用钢,其化学成分按重量百分比计为:C:0.14%~0.18%、Si:0.25%~0.40%、Mn:1.35%~1.55%、Cr:0.20%~0.30%、V:0.10%~0.14%、Ti:0.010%~0.025%、Nb≤0.005%、N:0.0090%~0.0110%、P≤0.015%、S≤0.015%,其余为Fe和不可避免的杂质。上述钢材经920℃正火+480℃回火后,其屈服强度≥460MPa、Akv(‑40℃)≥27J,疲劳性能检验100万次无裂纹。
本发明涉及焊条钢H08A的生产方法,属于钢铁冶金技术领域。本发明解决的技术问题是焊条钢H08A的生产过程中连铸时间短以及铸坯气泡缺陷明显。本发明的技术方案是提供焊条钢H08A的生产方法,包括转炉冶炼、LF精炼、连铸,LF精炼中加入主要成分为Al、Al2O3、CaO的精炼调渣剂扩散脱氧,控制钢水氧活度为0.0020%~0.0040%,Als含量为0.001%~0.005%,加入硅铁控制Si含量为0.02%~0.03%,然后进行钙处理。本发明通过制定合理的钢水控制制度,可稳定连续生产无内部缺陷焊条钢H08A连铸坯。
本发明属于高温冶金渣粒化领域,具体涉及一种在线粒化及收集熔融碳化钛渣的方法。本发明所要解决的技术问题是提供一种在线粒化及收集熔融碳化钛渣的方法,将炉口流出熔融碳化钛渣过程的同时采用水对其连续喷射,控制出水口压力为0.3~0.4MPa,距离为0.8~1.2m,渣水混合物落入接渣池,除去渣水混合物中大量的水,渣经干燥后收集即可。本发明方法操作简单、成本低,所得渣粒度均小于3mm。
本发明公开了一种超大断面重轨钢坯壳质量优化控制方法,特别是一种涉及钢铁冶金领域的超大断面重轨钢坯壳质量优化控制方法。本发明的超大断面重轨钢坯壳质量优化控制方法,超大断面重轨钢结晶器的电磁搅拌装置安装于其高度中间线距离结晶器上口下方620mm位置处,结晶器电磁搅拌电流强度控制范围为300A至400A,搅拌电流频率为2.4Hz。采用本申请的超大断面重轨钢坯壳质量优化控制方法生产的超大断面(320mm*410mm)重轨钢铸坯坯壳质量良好,坯壳厚度沿轴向均匀分布,铸坯其他质量得到有效控制,特别地铸坯柱状晶区沿宽度及厚度方向发展均匀,对称性良好,铸坯中心区域等轴晶区对称性较好,低倍质量指标控制较优,对应钢轨浅表致密层厚度均匀。
本发明属于冶金技术领域,具体涉及一种含钒铁水冶炼控制炼钢转炉出钢磷含量的方法。本发明提供一种含钒铁水冶炼控制炼钢转炉出钢磷含量的方法,该方法通过对提钒冶炼工艺参数的优化,进行深提钒,降低提钒转炉出钢后半钢碳含量、提高半钢温度,为炼钢转炉快速脱碳保磷创造条件。同时将提钒后的半钢兑入炼钢转炉后,通过对转炉氧枪枪位及造渣制度的控制,最终实现快速脱碳保磷的目的。采用该方法能将转炉脱磷率控制在30%以内,能显著提高炼钢转炉终点钢水磷含量。本发明即能增加提钒时钒渣产量,又能保证炼钢转炉终点具有较高的磷含量,操作简单,成本低。
中冶有色为您提供最新的四川有色金属电冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!