本发明公开了一种掺铝钴酸锂的制备方法,属于锂离子电池技术领域。该方法以一定浓度的钴和锂混合溶液为钴、锂源,碳酸钠溶液为沉淀剂,氨水溶液为络合剂,水合肼溶液为还原剂,铝盐无水乙醇溶液为掺杂剂,采用湿法合成出碳酸钴和碳酸锂混合物。在反应过程中,通过分散加液方式将掺杂溶液加入反应釜中参与反应;合成结束后在一定pH值条件下,利用一定浓度的双氧水溶液将碳酸钴氧化成羟基氧化钴,然后将混合物洗涤、干燥、在一定条件下煅烧,得到掺铝钴酸锂产品,生产效率高;且采用本发明方法制备出的掺铝钴酸锂产品掺铝量为0.2‑0.4%,且铝元素均匀分布,激光粒度为5‑15µm,振实密度≧2.0g/cm3,比表面积0.2‑0.6m2/g,呈块状或类球形形貌。
锂在地球上本来广泛分布,地表锂资源被雨雪一直溶解冲洗着,只有少量汇入今天的盐湖,尚可为人类利用,但绝大多数流入海洋,现有技术无法提取,造成宝贵资源巨大流失。地球生态必须低碳清洁‑锂资源是实现低碳的重要桥梁;2021.12.30.上海钢联报:电池级碳酸锂均价27.75万元/吨(年初价4.5万元/吨),足见紧缺至极;明年电动车增长40%多,大型光伏、风电储能10亿KWH,需求又巨增,未来需求高增长还要延续很多年;国际能源署:到2030年LCE缺口量仍高达50%;为此,本专利利用简易坐地式漂浮式晒盐池、并用自然蒸发浓缩方式,以极低成本实现低浓度锂盐水锂饱和,进而提取锂盐,让默默流失中的盐碱苦咸水中的锂资源留下来造福低碳清洁生态。
本发明涉及一种用于盐湖锂盐浸取的溶剂组合物及回收溶剂的方法,所述溶剂组合物包括体积百分数为50‑80%的磷酸三丁脂和体积百分数为50‑20%的饱和烃类辅助溶剂。本发明涉及的在含锂盐湖盐中浸取氯化锂的复合溶剂组成和回收不溶性固体物中残留溶剂的方法,尤其适用于主浸取溶剂中所添加辅助溶剂的理化特性选择以及复配比例,特别是适用于高效分离回收浸取溶剂的方法。利用主浸取溶剂和辅助浸取溶媒既相互融溶,沸点又差异较大的特性,在低能耗条件下,实现复合溶剂的高效分离和回收再利用。此外,利用辅助浸取溶媒的无毒、不燃烧、水不溶特性,有效缓解传统溶剂浸取法提锂所存在的溶剂损耗大、能耗高、环保、消防隐患大的状况。
一种高温高倍率型锂离子电池用电解液,该电解液的组成包括非质子有机溶剂、基础电解质锂盐以及功能添加剂。非质子有机溶剂为常见碳酸酯、亚硫酸酯、砜类化合物等中的一种或者几种的混合物,基础电解质锂盐为0.5~1.2mol/L的双草酸硼酸锂或二氟草酸硼酸锂或它们的混合物,功能添加剂为占电解液质量百分含量1%~10%的硫酸二氟硼酸锂或亚硫酸二氟硼酸锂或它们的混合物。本发明通过优化电解液组成,提高了电解液的电导率及热分解温度,并极大降低了电解液在电极材料表面所形成的固体电解质界面膜的阻抗,进而提高了电池的高温性能及倍率性能。
本发明公开了一种黏土矿物复合锂电池隔膜的制备,是将粘结剂分散于分散剂中形成均一的分散液;再将黏土矿物纳米粒子和导电碳材料混合后添加到上述分散液中,经搅拌、均质处理后形成均匀浆料;然后将均匀浆料涂覆于锂电池隔膜表面,经真空热固化,得到黏土矿物复合锂电池隔膜。本发明制备的黏土矿物复合锂电池隔膜具有良好的电解液润湿性和热稳定性。由其组装的锂电池具有较高的倍率性能、循环稳定性和安全性,且能抑制电池的自放电现象,提高锂‑硫电池容量、倍率性能和库伦效率,为发展高性能锂电池提供了一条行之有效且易于商业化的途径。另外,发明具有方法简单、工艺绿色环保、成本低廉和易于规模化生产等优点。
制酸尾气和废镍钴锰酸锂协同治理并回收金属的方法,其步骤为:将废锂离子电池进行放电、拆解获得废正极片,废正极片经焙烧、水溶解、过滤获得废镍钴锰酸锂;废镍钴锰酸锂与硫酸钾混合后球磨,球磨产物装入吸收装置;制酸尾气先经过转化后再通入吸收装置,吸收装置出来的符合排放标准的气体排至大气,吸收装置中的混合物取出用水浸出,再向溶液中加入碳酸钾溶液后过滤,滤渣中补充碳酸锂后球磨、压紧、焙烧,重新获得电化学性能良好的镍钴锰酸锂正极材料。滤液经结晶处理后获得硫酸钾。
本发明提供一种高稳定性高相容性改性铝锂合金粉的制备方法,是将铝锂合金粉超声分散于有机溶剂中,得到铝锂合金粉分散液;再向铝锂合金粉分散液中加入烷基甲氧基硅烷和小分子甲氧基硅烷,在常温下搅拌反应30~180 min,使二者在铝锂合金粉表面发生偶联反应形成致密的共聚物包覆层;然后经抽滤、洗涤、真空干燥,即得到改性铝锂合金粉。本发明通过烷基甲氧基硅烷和小分子甲氧基硅烷形成致密的偶联包覆层,不仅提高了铝锂合金粉的稳定性,使其在高温、高湿环境中存放后燃烧性能不下降,又提升了铝锂合金粉在复合固体推进剂中的相容性,为铝锂合金粉在复合固体推进剂等含能材料中的实际应用提供了技术保障,具有工艺简单、易规模化制备和成本低廉等优势。
本发明公开了一种盐湖提锂如何延长寿命、提高产能的生态环保治理方法。锂资源(锂及其化合物)被发现是实现低碳最有效、最重要的使者;通过锂电池能很好的将清洁能源(光伏发电、风力发电等)及时储存,并在耗能机器如电动车、电动工具...上消耗电能,完美替代了化石能源,实现了清洁化,由此,锂资源用量突然暴发巨增。地球上锂资源量很有限,多存储与盐湖之中,因盐湖提锂比矿山提锂优越性大很多,在盐湖提锂技术已经突破、并仍继续改进的今天,提取量即将剧增至天量,有限的盐湖锂资源几年后将会逐年枯竭化;如何延长盐湖开发寿命,为人类多贡献盐湖锂资源十分急迫,刻不容缓。
本发明公开了一种掺掺铌钨钽钴酸锂的制备方法,属于锂离子电池技术领域。该方法以一定浓度的钴和锂混合溶液为钴、锂源,碳酸钠溶液为沉淀剂,氨水溶液为络合剂,水合肼溶液为还原剂,铝盐无水乙醇溶液为掺杂剂,采用湿法合成出碳酸钴和碳酸锂混合物。在反应过程中,通过分散加液方式将掺杂溶液加入反应釜中参与反应;合成结束后在一定pH值条件下,利用一定浓度的双氧水溶液将碳酸钴氧化成羟基氧化钴,然后将混合物洗涤、干燥、在一定条件下煅烧,得到掺铝钴酸锂产品,生产效率高;且采用本发明方法制备出的掺铌钨钽钴酸锂产品掺铌、钨、钽量为0.2‑0.4%,且铌、钨、钽元素均匀分布,激光粒度为5‑15µm,振实密度≧2.0g/cm3,比表面积0.2‑0.6m2/g,呈块状或类球形形貌。
本发明提供了复合锂基稠化剂及其所得的润滑脂和润滑脂的制备方法,属于重载工况润滑技术领域。所述润滑脂的组分及组分的质量百分数如下:基础油66.5~87.5%,复合锂基稠化剂10~25%,抗氧剂2‑7%,防锈剂0.5~1.5%。所述复合锂基稠化剂由一元羧酸、3,3‑二硫代二丙酸和单水氢氧化锂合成。本发明提供的复合锂基稠化剂具有优良的稠化能力、良好的极压性能,无需额外添加极压剂,避免外加极压剂对润滑脂胶体结构造成破坏。
本发明公开了一种长寿命的锂离子混合超级电容器及其制备方法。本发明将超级电容器用电极材料与锂离子电池负极材料协调组合于一个储能器件中,正极电活性物质采用多孔炭,负极电极活性物质采用多孔NbN,电解液为有机锂盐,组装成锂离子混合超级电容器。该电容器具有超级电容器和锂离子电池的双重特征,具有能量密度大、功率密度高、可快速充放电且循环寿命长等特性。
本发明属于纳米材料技术领域,公开了一种原位掺杂金属元素制备磷酸铁锂的方法,具体包括以下步骤:将硫酸铁、金属盐、磷酸、pH调节剂、表面活性剂配置成溶液;将上述溶液并流加入多相界面反应器中,反应,陈化,过滤去滤液,制得纳米磷酸铁;磷酸铁与碳源,锂源经混料后进行高温固相反应制备纳米磷酸铁锂。本发明制备的纳米磷酸铁锂的离子传输效率高,纯度好;连续反应所得的产品批次稳定性好,生产效率高。
一种锂离子电池正极材料前驱体的连续合成方法,涉及锂离子电池正极材料镍钴锰三元正极材料镍钴锰酸锂合成方法的改进。其特征在于其合成过程是将络合剂氨水、金属镍钴锰离子的水溶液和沉淀剂氢氧化钠水溶液并流,连续加入到反应釜中,在强搅拌条件下,在保护性气体条件下,进行合成反应,将反应釜溢流进行进行陈化,、过滤、水洗,干燥得到锂离子电池正极材料前驱体球形镍钴锰三元氢氧化物。本发明的方法,其制备过程连续,制备的镍钴锰复合氢氧化物粉末粒度在5-20微米范围内可控且分布均匀、电化学性能优异。该制备方法生产率高、节能、生产成本低,具有显著的经济和社会效益。
本发明公开了一种梯度掺杂钴酸锂的制备方法,以一定体积的钴盐、锂盐为原料,再配制一定浓度的碳酸氢铵溶液、掺杂元素可溶盐溶液、氢氧化钠溶液以及双氧水溶液,通过合成反应和氧化反应,再经过过滤、洗涤及干燥和煅烧,得梯度掺杂钴酸锂产品;本发明通过随着合成反应时间延长,加入反应釜中掺杂剂的量梯度增加,使掺杂元素在产品中呈梯度分布,湿法合成出掺杂元素梯度分布且锂、钴均匀混合的沉淀物,再将氢氧化钴氧化成羟基氧化钴,最后经过煅烧,得到掺杂元素梯度分布的掺杂钴酸锂产品。本发明避免了传统掺杂钴酸锂制备过程中需要将掺杂元素氧化物、钴氧化物、碳酸锂等长时间混料且仍然不能完全避免掺杂元素局部富集,容易出现相分离,弱化材料性能的缺点。
本发明涉及一种高安全性镍钴锰酸锂NCM523三元材料的制备方法。本方法采用LiFePO4对镍钴锰酸锂NCM523颗粒表面进行包覆修饰,LiFePO4为锂电活性正极材料,具有比钴酸锂、三元、锰酸锂等更好的安全性和循环性能,有效解决了镍钴锰酸锂正极材料锂电池的高温、过充、针刺条件下的安全性。该材料能量密度高、循环性能好、安全性好、制备工艺简单、易于实现产业化。
一种球形掺杂磷酸铁锂/炭复合粉体的制备方法,涉及一种锂电子正极材料用球形磷酸铁锂的制备方法。其特征在于制备过程采用九水硝酸铁、磷酸、碳酸锂、掺杂金属离子盐及碳源为原料,其步骤包括:(1)将九水硝酸铁、磷酸加入去离子水,反应制备磷酸铁悬浮液;(2)将碳酸锂、掺杂金属离子盐及碳源加入制得到悬浮液中,研磨得到混合浆料;(3)将混合浆料经喷雾干燥得到前驱体,前驱体在惰性气氛或弱还原气氛下煅烧得到球形掺杂磷酸铁锂/炭复合粉体。本发明的方法合成的球形掺杂磷酸铁锂/炭复合粉体外观呈类球型,具有良好电化学性能的磷酸铁锂材料,工艺流程简单,适合用于工业上大规模生产。?
一种碳包覆多孔磷酸铁锂粉体的制备方法,将三价铁盐溶于水配成溶液,用沉淀剂调节pH=7.0-13.0至Fe2O3.nH2O完全沉淀;将沉淀分离、洗涤、酸化后得到的正电性Fe2O3.nH2O胶体粒子;胶体粒子加入去离子水,并加入表面活性剂,再强力搅拌得到Fe2O3.nH2O胶体;在Fe2O3.nH2O胶体中加入水溶性锂源、磷源、碳源和掺杂离子化合物,强烈搅拌形成分子级均匀混合的胶体状混合浆料;浆料经喷雾干燥得到球形磷酸铁锂前驱体;前驱体在微波炉中惰性气体保护下煅烧得到碳包覆球形多孔磷酸铁锂粉体。
一种碳包覆多孔钛酸锂粉体的制备方法,首先将钛源配成Ti4+溶液,用沉淀剂调节pH=2.0-7.0至TiO2.nH2O完全沉淀,沉淀经洗涤后分散在去离子水等分散介质中并加入分散剂,调节pH=3.0-9.0并强力搅拌得到二氧化钛胶体;然后在二氧化钛胶体中加入锂源、碳源和掺杂离子化合物,强烈搅拌形成分子级均匀混合的胶态混合浆料;浆料经喷雾干燥得到球形钛酸锂前驱体;前驱体在惰性气氛保护的微波炉中升温至600~1200℃,保温10-40min后自然冷却,得到碳包覆球形多孔钛酸锂粉体。
本发明涉及一种锂离子电池用正极材料和这种材料的制备方法。本发明的锂离子电池用正极材料的分子式为LiAl0.1Mn1.9O3.9F0.1。本发明的制备方法是将铝的氧化物或硝酸盐、锂的氟化物、锂的碳酸盐或醋酸盐,以及电解二氧化锰研磨为细粉,再按一定比例混合均匀,在其中加入醇水溶液调制成浆状物后,再进行充分混合研磨,然后将浆状物烘干,再将经干燥处理后的粉末在氧化气氛中加热培烧,制得到锂离子电池用正极材料。
本实用新型属于电池技术领域。为了解决由于圆柱形锂离子电池的内部热量无法快速散出,而影响电池使用性能和使用寿命的问题,本实用新型公开了一种基于热管冷却的圆柱形锂电池单体。该圆柱形锂电池单体包括壳体、电极材料层和热管;其中,所述电极材料层以空心卷形结构固定在所述壳体内部,并且在其中心位置设有空心卷轴;所述热管的蒸发段位于所述空心卷轴内,所述热管的冷凝段伸出至所述壳体外部。本实用新型的圆柱形锂电池单体,可以实现将位于电池单体内部的热量直接快速引出散热,完成对电池单体的快速冷却降温,从而避免电池单体内部设备长时间处于高温状态而导致使用性能和使用寿命的降低。
本发明公开了一种二氟双草酸磷酸锂及其制备方法与应用。本发明通过将双(三甲基硅)草酸酯和六氟磷酸锂混溶在非水溶剂中,在70~90℃、惰性气体氛围下搅拌反应12~30h,得到反应液,将反应液中的不溶物过滤除去得到二氟双草酸磷酸锂溶液;在此基础上,本发明进一步将该二氟双草酸磷酸锂溶液在减压浓缩、低温助溶剂析晶、陈化、真空干燥后,得到二氟双草酸磷酸锂。本发明二氟双草酸磷酸锂、溶液均可应用在电解液双功能添加剂方面。本发明二氟双草酸磷酸锂的合成方法非常简单、无环境污染;同时,本发明所制备得到的二氟双草酸磷酸锂的纯度高。
本发明公开了一种SAL2195铝锂合金TIG/MIG焊丝及其制备方法,制造时所使用的原料包括以下重量百分数的各组分:Li?0.5~1.5%、Mg?0.5~1.5%、Cu?3.5~4.5%、Zr0.1~0.25%、Ce?0.1~0.2%,其余为Al。本发明的SAL2195铝锂合金TIG/MIG焊丝的制备方法,按以下步骤进行:a、混合原料采用真空感应炉熔炼,再在氩气的保护下进行浇铸;b、挤压制得合金盘条;c、将合金盘条经过粗、中、精拉丝后,再进行刮削清洗得所述焊丝。本发明制备的铝锂合金TIG/MIG焊丝的烧伤率低,不易断裂,力学性能好。
本发明属于润滑油添加剂技术领域,具体涉及一种溶剂化有机硼酸锂盐的离子液体及其制备方法和应用、一种润滑油。本发明提供的有机硼酸锂盐,具有如式1所示的结构式:其中n为0~8的整数。本发明提供的润滑油,包括基础油和有机硼酸锂盐以及所述基础油与有机硼酸锂盐形成的配位化合物;所述基础油主链上包括氮原子或氧原子;所述有机硼酸锂盐为上述技术方案所述有机硼酸锂盐或上述技术方案所述制备方法制备得到的有机硼酸锂盐。本发明提供的有机硼酸锂盐中的锂能够与油基基础油主链上的碳或氮原位配位形成溶剂化离子液体,使有机硼酸锂盐具有良好的油相溶解性;同时形成的溶剂化离子液体中不含有卤素减少了使用过程中的腐蚀效应。
本发明涉及移动通信电源领域,尤其涉及一种锂离子动力电池组均衡控制方法、装置、介质和设备。本发明方案中,将锂离子动力电池组划分为多个网格,通过充放电,针对每个网格进行剩余容量调整,使得锂离子动力电池组的每个网格对应的剩余容量达到均衡状态,也就使得锂离子动力电池组的每个网格对应的电压达到均衡状态,从而实现对锂离子动力电池组的均衡控制。相对于现有技术中,针对每块单体锂离子动力电池采用开关电容、旁路电阻、变换电路等方式进行电压均衡控制,针对网格进行剩余容量调整,减少了均衡过程具有的时变性、非线性及不确定性,从而可以有效提高均衡控制的精度。
一种兼顾低温性能的超高温型锂离子电池电解液,包含混合非水有机溶剂、混合电解质锂盐,所述的非水有机溶剂包含高沸点的环状、链状碳酸酯类溶剂及低熔点的羧酸酯溶剂,其体积比为(2~3):(4~7):(1~2);其中电解质锂盐包含三类锂盐,三类锂盐的摩尔比为(1~6):(1~4):(1~3)。
本发明公开了一种一体化全固态锂离子电池的制备方法,包括以下步骤:固态无机电解质的制备、有机‑无机杂化电解质的制备、全固态锂离子电池的制备。本发明的优点在于,采用在电极中加入一定量的电解质,人为使得电极浸润在电解质中,从而使得电极与电解质的活性接触位点增加,经退火处理后全固态锂离子电池电极与固态电解质界面相互浸润程度加深,为锂离子传导提供更多的通道,降低了制备所得全固态锂离子电池电极与电解质之间的界面内阻。
本发明涉及一种高纯净复合锂基预制皂稠化剂及其所得润滑脂组合物。润滑脂组合物由12‑羟基硬脂酸、二元羧酸、一水合氢氧化锂组成的复合稠化剂和基础油组成;高纯净复合锂基预制皂稠化剂的制备方法:在适合的溶剂环境下,制备12‑羟基硬脂酸、二元羧酸复合锂预制皂作为润滑脂组成的稠化剂,所述溶剂是乙醇、水中的一种或者两种混合。所述润滑脂组合物为包括10wt.%~30wt.%的稠化剂的基础油‑皂体系,所述基础油是矿物油、合成烃、PAO、合成酯类油、聚醚和聚硅氧烷中的一种或几种。本发明提供的稠化剂无需在高温条件下制备,具有纯度高、可控的有益效果,应用于润滑脂组合物时,显著提高组合物滴点,延长润滑脂组合物的使用寿命。
本发明涉及锂离子电池技术领域,为一种二氟磷酸锂的制备方法及设备,其中方法包括S1,向二氟磷酸锂混合反应液中添加不良溶剂得到二氟磷酸锂溶液;S2,先过滤,然后添加不良溶剂析出二氟磷酸锂,再浓缩结晶,得到高纯度的二氟磷酸锂固体颗粒;S3,将所述S2中得到的二氟磷酸锂固体颗粒进行干燥、破碎,得到水份、游离酸、不溶物、金属离子含量极低的二氟磷酸锂颗粒产品。该方案制备工艺简单、反应快速彻底、无副产物,得到的二氟磷酸锂纯度高,能够满足电池的使用要求;降低不溶物含量,提高二氟磷酸锂的产品品质。
本发明公开了一种掺杂钴酸锂的制备方法,以钴盐、锂盐为原料,通过碳酸氢铵溶液、掺杂元素可溶盐溶液、氢氧化钠溶液以及双氧水溶液,进行合成反应和氧化反应,再进行过滤、洗涤及干燥、煅烧,得到掺杂钴酸锂产品;本发明通过湿法合成出掺杂元素、锂、钴均匀混合分布的沉淀物,再将氢氧化钴氧化成羟基氧化钴,最后经过煅烧,得到掺杂元素均匀分布的掺杂钴酸锂产品,其避免了传统掺杂钴酸锂制备过程中需要将掺杂元素氧化物、钴氧化物、碳酸锂等长时间混料且仍然不能完全避免掺杂元素局部富集,容易出现相分离,弱化材料性能的缺点。
本发明涉及一种锂离子电池用长高温循环镍钴锰酸锂NCM523三元材料的制备方法。长高温循环镍钴锰酸锂NCM523三元材料的化学式为Li1+xNi0.5Co0.2Mn0.3AlxO2,其中x=0.02~0.1。该方法在材料烧结过程中的将铝盐或其氧化物加入,采用干法混料混合均匀后再进行烧结,通过Al离子掺杂提升了镍钴锰酸锂NCM523的高温性能,在有效解决了镍钴锰酸锂高温循环性能、高温储存性能较差的问题。本发明采用干法混合掺杂,制备的镍钴锰酸锂正极材料比容量大、循环性能好、品质稳定、成本低、制备工艺简单、。污染小,不产生废水,易于实现产业化。
中冶有色为您提供最新的甘肃兰州有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!