本发明公开了一种粉末冶金法钼合金的制备方 法。在粉体阶段,钼以钼粉或者氧化钼形式加入,钛以 TiO2或者能够在1050℃温度以 下分解为钛的氧化物的化合物形式,锆以 ZrO2或者能够在1050℃温度以 下分解为锆的氧化物的化合物形式,碳以碳粉或碳化钼形式加 入。粉体经过混料、还原、压制、烧结,制备成钼合金。本发 明解决了背景技术中生产成本高,成品率较低;制备的钼合金 氧含量较高,氧、碳含量不易控制,合金组织均匀性较差的技 术问题。采用本发明,钼合金的Ti、Zr、C和氧含量易于控制, 其中合金的氧含量低于300ppm,合金组织的均匀性也大大提 高。
一种可焊接、高耐磨、高韧性碳化钛基硬质合金,由下述组分制备而成:以TiC或TiC与WC的混合物为主作为硬质相,以Ni、Co、Fe中的一种或两种或三种作为粘结相,再加入按硬质合金总重量计的0-10%的铜和0-10%的锰或锰的化合物,或者0-10%的铜或0-10%的锰或锰的化合物,以及适量的碳,作为添加剂。必要时,还可加入按硬质合金总重量计1-8%的碳化钽或碳化铌或两者的混合物,0.3%-5%的钒或钒的化合物,以及添加1-18%的铬或铬的化合物,0-4%的钼或钼的化合物。本发明具有优良的硬度、韧性、可焊性以及耐腐蚀性能,而且资源广泛,成本价格低,是一种硬质合金新材料。
一种Cr3C2-NiCr复合粉末制备技术,将镍铬合金,合金成分(重量比)为Ni70~80%、Cr10~20%、Si≤5%、B≤5%、Fe≤5%,合金含量为15~50%与碳化铬按重量比例进行混料,通过搅拌制粒或喷雾干燥制粒方法,制备成为球形的Cr3C2-15~50%NiCr复合粉末颗粒,再通过烧结工艺进行致密化,经破碎、机械筛分后,成为烧结态Cr3C2-15~50%NiCr复合粉末。本发明工艺流程简单,生产效率高,粉末松装密度大、流动性好,能满足高性能热喷涂涂层对粉末原料的要求。
一种耐热钕铁硼永磁材料及其制备方法,涉及一种铁基的稀土永磁材料,用于伺服电机等机电产品的磁极材料,特别适用于汽车启动器中的磁体材料。其特征在于其磁合金分子式的通式为(15-x-y)NdxDy yTb(79-z-u-v-w)Fe uCo vNb wGazB,本发明的钕铁硼永磁材料具有高居里温度,高温度系数,高矫顽力,高磁能积和高抗氧化性,可以在高于150℃的温度下应用,在150℃环境温度下表现出只有很小的退磁。
本发明公开了一种医用多孔钛种植体及其制备方法,采用粉末共注射成形方法制备得到多孔钛种植体;再在制品的多孔外层沉积纳米HA和载TGF明胶缓释微球复合涂层。该种植体外层为连通多孔结构,多孔层的厚度为0.4~1.1MM,孔隙度为50~70%,孔径为50~400ΜM;多孔层表面沉积;外层与内芯的结合强度为150~300MPA。相对于已有的医用钛种植体材料,本发明的材料具有较高的力学强度,与骨组织力学性能相匹配,避免应力集中和应力屏蔽现象,有利于应力传导和新骨生长,骨整合时间短,能实现种植体的长期稳定。该方法一次成形,无需后机械加工,大大降低成本。
本发明公开了属于陶瓷靶材技术领域的一种高纯超高温陶瓷靶材的制备方法,具体 为高纯硼化锆/硼化铪粉体及其陶瓷靶材的制备方法。该方法是以高纯Zr粉,Hf粉以及 高纯B粉为原料,采用自蔓延法分别制备高纯ZrB2和HfB2粉体,再采用高温高压的热 压成型工艺制备高纯致密的硼化锆/硼化铪超高温陶瓷靶材,靶材相对密度达到95~99%。 相对于现有技术,本方法混料时金属粉稍过量,弥补了自蔓延反应过程中金属的损失, 进一步保证了产物组分的单一性。相对于无压烧结,本方法所需要的烧结温度大大降低, 并且本热压工艺采用两段式温度,均匀了坯料的温度场,为后期热压过程中得到密度均 匀的靶材,提供了保证。
本分明提供了一种高强度耐高温数控钻头的制备方法。采用金属粉末冶炼的方法制备数控钻头,加入锰、钛提高钢体的韧性和抗冲击性能,粘结剂将金属粉末塑形,减少在烧结过程中钻头的内部缺陷和收缩,在烧结后,不留残余。其中的有效成分避免在掺杂锰粉中引发的火灾,提高工艺的安全性。对数控钻头的钻头进行电镀镶钻处理,提高钻头的钻孔性能。电镀液中的有效成分可将金刚石与钻头高效的嵌合,提高金属元素沉积的均匀性,使电镀后的金属件更加光亮。保护剂通过络合的方式来提高电镀液的稳定性,抑制氢脆现象,同时“引导”金属原子在钻头的缺陷部位沉积,填补粘结剂在烧结后留下的缺陷,提高钻头的抗冲击性能。
一种低偏析铝钪合金靶材是采用Al包覆Sc的核壳结构,其Sc含量为20~50at%,成分波动在±0.2%之内,氧含量小于200ppm,相对密度不小于99.5%的AlSc合金靶材;其制备方法,包括:加入粘结剂的Sc粉与Al粉混粉,热处理烧结粉末,获得核壳结构AlSc合金粉末,热压烧结及获得低偏析铝钪合金靶材;本发明形成的合金粉后,不存在后期传输过程由于两种粉末性质不同造成的二次偏析现象,经过后期热压烧结后可获得低偏析的AlSc合金靶材。
本发明涉及一种高强高韧铝基复合材料的制备方法,先将Ti粉、碳纳米管粉、炭黑与Al粉均匀混合并球磨、放入模具中冷压成预制坯,发生燃烧合成反应,得到微纳混杂Al‑C‑Ti颗粒的中间合金烧结坯,将其与铝合金的熔体在喷射成形设备中混合,雾化后喷射沉积得到微纳混杂Al‑C‑Ti颗粒增强的铝基复合材料坯料,再进行挤压变形、固溶时效处理,最终得到管状或棒状的高强高韧铝基复合材料;本发明方法可同时提高铝合金的强度和延伸率,当微纳混杂Al‑C‑Ti颗粒占铝基复合材料的质量百分含量为0.5%时,抗拉强度提高了23.9%,延伸率提高了33.3%,本发明复合材料的制备方法简单,成本低,可控性强,可用于大规模生产。
本发明公开了一种氮化硅晶须增强Al基复合材料及其制备方法,属于金属基复合材料技术领域,其制备方法由以下步骤完成:采用化学镀的方式在氮化硅晶须表面镀一层Ag膜,并将其与Al合金粉末按一定比例混合均匀;采用真空热压烧结工艺将混合均匀后的粉末烧结成预制体;最后将烧结预制体置于真空压差铸造设备内,利用差压工艺制备氮化硅晶须增强的Al基复合材料。采用本发明方法制备的增强Al基复合材料有效解决了氮化硅晶须与Al基体之间的润湿性差问题。此外,先采用热压烧结工艺制备预制体,然后再用真空差压铸造工艺制备氮化硅晶须增强Al基复合材料的方法,在有效提高复合材料致密度的同时,还大幅度提升了Al基复合材料的力学性能和导热性能。
本发明公开了一种梯度Mg‑Zn合金棒的制备方法,将质量比为Mg:Zn=95:5的Mg‑Zn混合粉末压制成的棒料;将质量比为Mg:Zn=90:10的Mg‑Zn混合粉末压制成外径为
内径为
的管料;将质量比为Mg:Zn=80:20的Mg‑Zn混合粉末压制成外径为
内径为
的管料;将棒料和管料组装,内层为
的棒料,中间层为外径为
内径为
的管料,外层为外径为
内径为
的管料,组装后装入内径为
的钢制料筒中一起烧结,然后向料筒一端施加垂直的压力,另一端用外径为
的旋转压头进行旋转挤压,旋转压头和材料间的摩擦作用使接触区域的材料呈熔融状态,在垂直压力的作用下,熔融的材料从旋转压头中间的通孔中溢出并凝固,即得到梯度Mg‑Zn合金棒。
本发明公开了一种碳化硅注塑成型工艺,属于碳化硅注塑成型技术领域,其技术方案要点是,包括如下步骤:S1、原料经过球磨、烘干、破碎过筛得到粉体Ⅰ;S2、使粉体Ⅰ经过冷等静压、破碎、过筛,获得粉体Ⅱ;S3、粉体Ⅱ和粘接剂经过密炼、冷却破碎、过筛获得喂料颗粒;S4、喂料颗粒通过注射成型获得陶瓷生坯;S5、将陶瓷生坯脱蜡浸泡获得坯体;S6、坯体烧结后获得产品。本发明的碳化硅注塑成型通过制备粉料、冷等成型、密炼喂料、注射成型、排蜡脱脂、烧结等工序的相互配合,能够获得注塑密度为3.13~3.17g/cm3、抗弯强度≥390MPa的产品;通过该工艺能够获得更高品质的产品,满足更多高要求应用场景的需求。
本发明具体涉及一种高速钢及其制备方法和应用。所述高速钢为无碳高速钢;或所述高速钢由无碳高速钢作为基体材料,并加入氮化硅晶须及氮化硅粒子进一步强化。所述无碳高速钢以质量百分比计,包括下述组分:Co占10~30%、Ni占0~5%、Mo占8~20%、W占0~5%,Cr占0~13%、Nb占0~2%、Ti占0~2%、Si占0.2~1%,Y和La之和占0~1%,其余为Fe;当高速钢中含有氮化硅晶须及氮化硅粒子时,Si3N4晶须占0.01~2%,Si3N4微米级粒子占0.01~3%。其制备方法为:按设计组分配取原料;必要时进行原料的预处理,然后混合均匀并压制、烧结,得到烧结坯;烧结坯经热处理,得到产品。本发明材料组分设计合理、制备简单可控、便于大规模工业化应用,同时所得高速钢特别适合用作玻璃热弯机的加热板。
本发明的一种碳化硅等级孔陶瓷的制备方法,属于材料技术领域。制备时,将SiC粉体、B4C粉体、CB粉体和淀粉粉体球磨混合,干燥研磨过筛;倒入溶有分散剂的水溶液中,搅拌均匀,配制混合粉体悬浮液,加入硼酸,尿素,氨水,氢氧化钾或异丙醇凝胶引发剂,搅拌均匀后,静置反应;加入流变性能调节剂,搅拌后进行高速球磨,制得用于自由直写成型技术的SiC陶瓷浆料;将SiC陶瓷浆料挤出,逐层沉积完成后,烘干去除水分,真空下高温烧结,制得碳化硅等级孔陶瓷。相应孔尺寸和孔隙率的可调控范围均远高于现有报道,且能够使得SiC陶瓷浆料具有相比于现有体系更高的粘弹性,更好的稳定性,经7天以上时间保存后,仍然能够从较细的喷嘴中高速挤出。
本发明提供一种钕铁硼废旧磁钢全循环回收利用生产新永磁体的制备工艺,涉及稀土功能材料的稀土永磁材料领域。所述钕铁硼废旧磁钢全循环回收利用生产新永磁体的制备工艺包括:废料处理、氢破碎、混料、气流磨、混粉冷化处理、磁场成型、冷等静压、微波烧结、磁场热处理等步骤。本发明克服了现有技术的不足,通过优化氢破碎脱氢工艺、气流磨的晶粒细化技术以及新的烧结时效工艺等方法,不仅复原了废旧38M磁钢的性能,而且进一步提高产品的性能,提高NdFeB磁体生产的经济效益。
本发明公开了一种使用复合型金刚石锯头的圆盘锯及其金刚石锯头制备方法。包括复数个的圆形的锯片,所述锯片的刃口方向的边沿的锯齿位间隔地焊接有多个金刚石锯头;所述金刚石锯头外突于所述锯片的刃口方向的边沿;所述金刚石锯头包括四个的第一刀片坯体、一个第二刀片坯体、多个第一金刚石颗粒和多个第二金刚石颗粒;所述第一金刚石颗粒嵌装于所述盲孔,位于所述金刚石锯头左右两个外侧面的所述第一金刚石颗粒的顶部外露于所在的外侧面;包括多个盲孔的所述第一刀片坯体为一体成型;所述金刚石锯头通过加压烧结熔合成为无间隙的一体。本发明还提出了一种复合型金刚石锯头的制备方法,制得的金刚石锯头切割效率好和使用寿命长,并且能耗低。
本发明公开了一种医用钳金属手柄注射成型工艺,具体包括下列步骤:(1)产品设计;(2)模具制造;(3)混料;(4)喂料;(5)注射成型;(6)脱粘;(7)烧结;(8)再加工;(9)检验。本发明涉及医用器械加工技术领域,具体提供了一种医用钳金属手柄注射成型工艺,与传统的医用钳金属手柄成型加工工艺相比,具有下列优点:1.直接成形几何形状复杂的零部件;2.产品尺寸精度高,表面光洁;3.产品内部致密性好,密度高;4.内部组织均匀,对合金来讲,无成分偏析现象;5.生产效率高,在大批量生产情况下,生产成本大幅降低;6.材质适用范围广,包括:难熔,难铸和难加工材料。
本发明提供了一种合金的制备方法,包括:细化第一金属材料的粒径至0.1μm‑1mm,得到金属钛粉末;细化第二金属材料的粒径至0.1μm‑1mm,得到金属铝粉末;第一预设金属材料的熔点大于第二金属材料的熔点;将金属钛粉末、金属铝粉末分别进行退火,并消除杂质,得到单质金属钛粉末、单质金属铝粉末;混合单质金属钛粉末、单质金属铝粉末,得到混合粉末;将混合粉末压制成型得到生坯试样;烧结生坯试样得到合金预制品,在合金预制品上焊接辅助电极,进行真空自耗熔炼。采用本方案,解决Ti和Al熔点差异较大,在真空熔炼工程中铝优先熔化,电极横截面方向熔化不均匀,产生侧弧,导致熔炼过程异常的问题。
一种氧化物弥散强化(ODS)钛及钛合金的制备方法,属于粉末冶金钛领域。本发明将钙铝合金(CaAl)粉末与钛粉末按照比例混合,随后进行冷等静压成型和真空无压烧结,得到氧化物弥散强化的钛及钛合金。本发明的优点在于:通过添加CaAl合金粉末在钛合金中引入Ca和Al元素,Ca在基体中均匀分布,在烧结过程中原位生成弥散分布的细小的Ca‑Ti‑O氧化物第二相颗粒;同时,Al元素固溶到钛基体中,形成TiAl固溶体,从而大幅度提高钛合金的力学性能。本发明为高性能钛及钛合金的制备提高控氧、性能调控的新思路,对钛及钛合金粉末原料的氧含量要求降低,具有低成本、工艺简单、操作简单、适合工业化生产等特点。
本发明公开了一种控制钨硅靶材中非金属元素含量的方法,将混合粉体通过冷等静压成形,并进行高温真空脱气处理,再以吸氧性金属箔材隔离毛坯和石墨模具,经真空热压烧结得到钨硅靶材。该方法有助于钨硅靶材中易挥发非金属元素的脱除,有效地控制了钨硅靶材中的非金属元素含量,具有可操作性强、成本低的特点。
本发明公开了一种TiC颗粒增强高铬铸铁合金材料的制备方法,包括:(1)合金配比设计:TiC增强颗粒粉末的添加量为5wt%~35wt%,粒度为200~3000nm;高铬铸铁预合金粉末的添加量为65wt%~95wt%;(2)球磨混料:采用干混或者湿混的方式实现TiC增强颗粒粉末的均匀分布;(3)压坯烧结致密化:向混合好的原料粉末中加入适量成型剂,先模压成坯,然后实现合金的烧结致密化;(4)淬火处理:淬火温度为880℃~1100℃,保温时间为1h~6h;(5)回火处理:回火温度为150~500℃,保温时间为1h~6h。本发明产品合金的硬度为HRC75~HRC65,抗弯强度为2500~1000MPa,冲击韧性在20~4J/cm2;与WC‑Co硬质合金相比,该类新型合金不仅硬度和强韧性优异,而且由于使用廉价的TiC颗粒为强化相和高铬铸铁为基体,使得合金的原料成本和比重显著降低。
本发明公开了一种人工假体及其制备方法,通过三维软件设计假体,得到数字化假体模型,所述数字化假体模型具有与被设计假体一致的形貌参数;用数字化3D打印机将得到的数字化假体模型一体打印成型,得到假体坯体;去除所述假体坯体上的粘合剂,干燥所述假体坯体;将步骤得到的干燥后的假体坯体进行烧结,获得预成型假体;对所述预成型假体进行后处理,获得成型假体。本发明遵循现代无模具数字化增材制造一次成型的理念,结合传统的粉末冶金技术及传统制造工艺等的批量化生产优势,实现人工关节假体骨长上或骨长入面与基体之间无物理界面的一次成型,无需模具,提高生产效率。
一种高热导率高品质氮化硅陶瓷基板及其制备方法,它涉及一种氮化硅陶瓷基板及其制备方法。本发明的目的是要解决现有方法制备的氮化硅基板的热导率和力学性能差,且使用放电等离子烧结,其设备及制造成本高昂,难以实现批量化生产的问题。一种高热导率高品质氮化硅陶瓷基板由氮化硅粉或氮化硅粉和氮化铝、稀土氧化物、镁粉、增塑剂和有机溶剂制备而成。方法:一、称料;二、研磨、混合造粒;三、干压成型;四、气压烧结。本发明可获得一种高热导率高品质氮化硅陶瓷基板。
本发明属电子元器技术领域,尤其涉及提高片式固体电解质电容器耐应力的方法,包括阳极设计和阴极被膜强化处理;所述阳极设计是将阳极钽块高度方向棱边进行倒角处理,直角棱边变成圆弧状;所述阴极被膜强化处理是将形成介质层的阳极钽块通过多次浸渍分解硝酸锰溶液和强化处理形成二氧化锰层。本发明提供的方法,能在钽阳极表面能形成厚度均匀、致密度高的二氧化锰层,消除钽阳极加工过程中出现的应力集中和局域薄弱现象。本发明所制的钽阳极能提高片式固体电解质钽电容器耐热应力、机械应力等应力冲击能力,提高其焊接性能;可用于制造出耐应力能力强、可靠性高的片式固体电解质钽电容产品,扩大了电容器的应用范围。
本发明提供一种超细高强单壁碳纳米管铝基复合材料,包括单壁碳纳米管为0.05wt%~0.2wt%,铝基体为99.8wt%~99.95wt%;其铝基体为铝合金的预合金粉,并通过称取单壁碳纳米管和铝基体原料在超声波分散混合均匀进行混合,经过压制、热压烧结和热挤压加工得到超细高强铝基复合材料;其低温预烧结导致铝合金颗粒不会长大,再经过挤压进一步提高致密度和强度,改善了碳纳米管分布的均匀性而具有优异的综合性能。
本发明公开激光照明用浓度渐变荧光陶瓷及其制备方法,所述荧光陶瓷以YAG陶瓷作为基质材料,Ce3+离子作为发光离子,其分子式为Cex:Y3‑xAl5O12,x的取值范围:0≤x≤0.06,所述荧光陶瓷沿激光光源激发入射方向上呈浓度渐变升高分布。本发明的有益效果在于:能够均匀地吸收激发激光能量,从而实现材料温度均匀,解决材料因温差导致的荧光转化效率降低及样品炸裂问题,并且利用渐变浓度对荧光光谱拓宽,提高荧光陶瓷显色指数。
本发明涉及一种钛合金自润滑涂层及其制备方法,包括以下步骤:在钛合金基板上依次成型至少一层纯过渡金属箔层和多孔青铜层,在所述多孔青铜层的孔内填充固体润滑物,所述过渡金属选自VB和IB族元素中的一种或多种。本发明改善了钛合金表面耐磨性、难以润滑等表面缺陷。该材料可以大幅延长材料的耐磨损时间,降低材料表面摩擦系数。
本发明涉及一种碳化硅陶瓷光固化成型方法,属于碳化硅陶瓷成型领域。本发明的成型方法,首先将SiC陶瓷粉体、光敏树脂、光引发剂混合球磨,得到分散均匀的SiC浆料;然后利用光固化成型设备打印成SiC陶瓷生坯;再经过热解后使得SiC陶瓷生坯转变成C/SiC坯体;再通过高温渗硅,使Si与C/SiC坯体中的C进行原位反应生成SiC。本发明的成型方法实现了碳化硅陶瓷的光固化成型制备。
本发明公开了一种数学高精度量具加工装置,包括底座,底座上部安装夹具、导向杆和固定架,固定架的上部安装两个步进电机,步进电机的输出轴竖直朝下,两个步进电机的输出轴之间又间距,导向杆位于两个步进电机的输出轴之间,本发明的导向杆位于两个步进电机的输出轴之间可以在两个步进电机带动升降板升降的过程中在两个丝杆之间起到稳定调节作用。固定管内部开设内螺纹与螺栓相比具有与丝杆更大的配合面,从而进一步提高旋转电机进行升降铣切的过程中的稳定性,极大地提高了数学高精度量具加工装置的量具加工精度,提高了量具加工质量。本发明适用于高精度量具的加工。
本发明公开了一种多孔陶瓷砂轮及其制备方法,包括一圆形基底,该圆形基底的中部具有一安装孔,沿安装孔的周向均匀分布有若干固定通孔,且该圆形基底的周缘沿该圆形基底的轴向延伸形成一过渡环,该过度环上均匀分布有由3D打印制成的若干异形陶瓷磨块。本发明采用的是3D打印成型,能够快速,高效的完成坯体成型,且所打印的坯体具有高度一致性,自动化程度高,材料损耗低,能源消耗少、环境污染小等优点。本发明打印出来的坯体能够严格控制多孔陶瓷砂轮的气孔和孔隙率。本发明能够打印出各种异形磨块,不受传统的模具限制,能够满足不同砂轮需要的磨块。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!