本发明公开了一种提高纤维增强复合材料精度的装置及工艺,该装置包括一次固化设备和二次固化设备,一次固化设备设有加热平台,加热平台上设有至少一个凹槽,凹槽内填充有冷却管,冷却管内有冷凝液。固化成型时,1)将未固化的纤维增强复合材料通过置于加热平台上,冷却管内通过冷凝液进行循环,然后对加热平台进行加热,使得除冷却管上方的纤维增强复合材料外的其余部分均进行固化;2)为步骤1)得到的材料安装模具,置于二次固化设备中进行加温,使得整个纤维增强复合材料固化成型。通过上述装置及工艺,能够大幅提高纤维增强复合材料成型的精度。
本发明公开了一种高温抗氧化石墨陶瓷复合材料及其制备方法,由陶瓷和三维多孔的石墨坯体组成。石墨制备成三维多孔的结构,其内部孔洞相互连通,陶瓷填充在孔洞中,孔洞尺寸控制10mm以下,三维多孔的石墨占石墨陶瓷复合材料总的体积分数不低于50%。制备时,对含有硅粉/碳化硼粉末的石墨/酚醛树脂混合粉末,再利用选择性激光烧结成型技术快速制备三维多孔的石墨坯体,对其进行二次固化、致密化、碳化处理,再将硅溶胶浸渍其中,待烘干后,将陶瓷浆料浇注其中,再经过真空冷冻干燥和高温烧结,获得高温抗氧化石墨陶瓷复合材料。该方法制备的复合材料不仅保证了粉末之间的粘接性能、坯体的均匀排列分布,还增强陶瓷与石墨之间良好的界面结合性和提高复合材料的强度。
本实用新型公开一种耐高温抗冲击复合材料壳体,包括内胆体、隔热层、复合材料层和防护环;内胆体为不锈钢薄壁筒,内胆体的外圆周依次为隔热层和复合材料层;复合材料层包括缠绕在隔热层外圆周的斜纹纤维布以及缠绕在所述斜纹纤维布外圆周的芳纶纤维布;在所述复合材料层的外圆周沿轴向均匀分布有两个以上防护环。该壳体能在250℃高温条件下可靠地工作而不发生明显变形。
本发明公开了一种P掺杂FeS/Co3S4/Co9S8纳米复合材料的制备方法及在高电压水系对称超级电容器中的应用。以泡沫镍为基底,铁盐、钴盐为金属源,氟化铵和尿素为沉淀剂,硫化钠为硫化剂,次磷酸钠为无机磷源。首先获得均匀生长在泡沫镍基底上的FeS/Co3S4/Co9S8三相纳米复合材料;再使用化学气相沉积法获得具有银耳结构的P掺杂FeS/Co3S4/Co9S8纳米复合材料。将制备的P掺杂FeS/Co3S4/Co9S8纳米复合材料组装成三电极体系,在1M KOH电解液中进行电化学性能评价,在‑1~0V电位区间,最大容量高达531 F/g(10A/g),2万次循环后容量保持率为71.36%;在0~0.55V电位区间内,初始容量为1028.78F/g(10A/g),20000次循环后容量上升至2492.73F/g,即容量保持率为242.3%。
本发明公开了一种Mo@Mo2C纳米复合材料的合成方法,属于纳米材料制备领域。本发明采用一步合成法,将无机Mo盐及有机碳源球磨混合,通过调节两者的比例,在特定的梯度下高温热解还原得到Mo@Mo2C复合材料。本发明采用一步合成法制备Mo@Mo2C复合材料,比现有的水热法及高温熔炼法工艺简单、经济环保,适用于批量生产。同时,制备的Mo@Mo2C复合材料具有较好的分散性及较大的比表面积,在催化领域具有很好的应用前景。
本发明公开了一种TiO2‑C‑MoO2纳米复合材料的制备方法及应用,属于纳米材料制备领域。本发明采用一步高温煅烧工艺,将P25,有机碳源及无机Mo盐按照比例混合均匀,通过调整三者的比例,在高温条件下进行热解反应得到TiO2‑C‑MoO2纳米复合材料,然后将其用于光催化产氢及污水治理领域。本发明采用一步合成法制备TiO2‑C‑MoO2纳米复合材料,工艺简单、经济环保,适用于批量生产。同时,制备的TiO2‑C‑MoO2纳米复合材料具有较好的分散性,可以极大的改善P25的光催化活性,具有很好的应用前景,利于广泛推广应用。
本发明公开一种基于I‑WP曲面的Cu/SiC复合材料的制备方法,是一种金属相Cu和陶瓷相SiC以三周期极小曲面I‑WP结构为基础,在三维空间网络结构连续并且互相缠绕在一起的三维网络结构复合材料。I‑WP曲面结构能有效避免应力集中,增加复合材料的力学性能,Cu/SiC复合材料既具有金属的塑形、导电导热性,又具备陶瓷的高硬度、高耐磨性及化学稳定性等特点。所述制备方法具体是设计并3D打印I‑WP曲面的结构;多孔SiC陶瓷预制体的制备;金属Cu的浸渗。本发明可以通过改变I‑WP曲面结构的打印参数,控制金属和陶瓷的含量,使制备的Cu/SiC复合材料更适合工业的需要。
一种梯度石墨/铝基表层自润滑复合材料的制备方法,属于自润滑材料制备领域。该梯度石墨/铝基表层自润滑复合材料是由铝合金与梯度分布结构的石墨骨架复合而成。制备方法:首先,采用选择性激光烧结成型技术制备出具有梯度分布结构的石墨骨架,并对石墨骨架进行碳化处理,然后对石墨骨架表面进行镀铜处理,最后采用铸造法,将石墨骨架固定于模具底部,将铝合金加热至熔融,浇铸到模具内,冷却脱模后,制备出梯度石墨/铝基表层自润滑复合材料。该方法解决了传统自润滑铝基复合材料制备过程中,难于实现摩擦磨损不同阶段所需分配石墨,克服了自润滑复合材料力学性能和摩擦磨损性能的匹配问题。
本发明公开了一种石墨/环氧树脂复合材料的制备方法,该复合材料制备方法包括以下几个基本工艺环节,首先利用选择性激光烧结成型技术快速打印多孔石墨骨架素坯,并对其进行碳化、多次真空压力浸渍、石墨化、整体表面镀铜等后处理,获得高传导多孔石墨骨架预制体,将短切碳纤维增强的环氧树脂基体浆料灌注到模具中,与镀铜多孔石墨骨架复合,待完全固化,获得石墨/环氧树脂复合材料。本发明所提供的石墨/环氧树脂复合材料具有环保、快速、高效、低成本优点,具有良好的导电导热和力学性能,且综合性能可以通过改变多孔石墨骨架结构进行主动调控,该复合材料在通讯工程领域、电子仪器仪表行业具有广阔的应用前景。
本发明提供一种锌基复合材料,该复合材料为碱式碳酸锌(Zn5(CO3)2(OH)6),其形貌为片状;其制备方法为:将纯度为99.9%的乙酸锌、氟化钠、六次甲基四胺按摩尔比1:1:1~5称取;再将原料放置于容器中加蒸馏水搅拌30分钟,形成均匀溶液;进一步将得到的均匀溶液转移至水热反应釜中于120℃反应12~24小时,将反应产物离心、烘干即得到碱式碳酸锌锂离子电池负极材料。本发明首次将制得的锌基复合材料碱式碳酸锌应用于制备锂离子电池负极材料上。合成方法简单,成本低廉;所制备的碱式碳酸锌为片状形貌,尺寸3~10?mm,平均厚度约200nm;所制备材料有明显充、放电平台,在锂离子电池中有潜在应用。
本发明公开一种基于Diamond曲面的Cu/Al2O3复合材料及其制备方法,是一种金属相Cu和陶瓷相Al2O3以Diamond结构为基础,在三维空间网络结构连续并且互相缠绕在一起的复合材料。所述制备方法主要包括设计并3D打印Diamond曲面的结构;多孔Al2O3陶瓷预制体的制备;金属Cu的浸渗。本发明制备的Cu/Al2O3复合材料既具有金属相优良的导电、导热性,又具有陶瓷相的高硬度、耐磨性及化学稳定性。同时Diamond曲面作为一种三周期极小曲面,能有效避免应力集中,增加复合材料的力学能力。同时直接通过设计调整Diamond曲面结构的打印参数,得到复合材料的Cu和Al2O3的含量和结构的控制,进而性能优化。使制备的Cu/Al2O3复合材料更适合工业的需要。
本发明公开了一种多氯代钴基复合材料,制备方法及其应用。具体合成方法是利用四氯邻苯二甲酸有机配体、钴盐与4,4’‑联吡啶在去离子水中自组装得到多氯代钴基配位聚合物,该材料的化学分子式为[Co(Cl4‑bdc)(bpy)(H2O)2]n。利用乙炔黑(AB)作为导电物质通过研超研磨法对自组装得到多氯代钴基复合材料。纯Co‑Cl‑MOF晶体在电流密度为10 mA/cm2时析氢电位为424mV,Tafel斜率为125 mV·dec‑1,与乙炔黑复合后的多氯代钴基复合材料AB&Co‑Cl‑MOF(3:4)在电流密度为10 mA/cm2时析氢电位为115mV,Tafel斜率为66mV·dec‑1,该催化剂在电催化析氢反应(HER)中展现出优越的催化活性。
本发明公开了一种花瓣状复合材料的制备方法及其应用,通过控制合成前驱体氢氧化镍的原料比例,来调控其形貌,替代金属盐原位合成比表面积更大且形貌为花瓣状的MOF‑74@Ni(OH)2材料,将其作为甲醇氧化反应的正极催化剂材料,探究其在甲醇氧化反应中的应用。以尿素和硫酸镍为原料合成前驱体花瓣状的氢氧化镍,并将制备好的氢氧化镍、有机配体2、5‑二羟基对苯二甲酸在DMF/H2O/EtOH的溶剂体系中进行自组装合成得到的MOF‑74@Ni(OH)2复合材料,同时在此合成路线的基础上改变合成前驱体原料尿素和硫酸镍的比例调控形貌,从而调控复合材料的整体形貌,将合成材料组装成三电极体系来进行甲醇氧化性能的测试,通过数据分析,合成的花瓣状氢氧化镍与有机配体合成的MOF‑74@Ni(OH)2比纯MOF‑74‑Ni性能较好。
本实用新型公开了一种提高纤维增强复合材料精度的装置,该装置包括一次固化设备和二次固化设备,一次固化设备设有加热平台,加热平台上设有至少一个凹槽,凹槽内填充有冷却管,冷却管内有冷凝液。固化成型时,1)将未固化的纤维增强复合材料通过置于加热平台上,冷却管内通过冷凝液进行循环,然后对加热平台进行加热,使得除冷却管上方的纤维增强复合材料外的其余部分均进行固化;2)为步骤1)得到的材料安装模具,置于二次固化设备中进行加温,使得整个纤维增强复合材料固化成型。通过上述装置,能够大幅提高纤维增强复合材料成型的精度。
本发明属于材料制备技术领域,涉及一种复合材料成型工艺,为了解决现有一些复合材料(主要是那些包括表层以及位于表层内的芯层,且芯层一般为泡沫,表层一般为织物的复合材料)普遍采用如手糊或预浸料模压等成型工艺制备,制成的产品存在产品质量(主要体现在产品的物理性能上)不够稳定或产品表面存在针孔和色差等问题,本发明提供了一种复合材料成型工艺,该工艺分别用两种不同的方法来制备复合材料的内层和外层,使用本发明技术方案即可有效的解决上述技术问题。
本发明涉及一体化成型复合材料喷管的界面柔性处理方法,喷管包括隔热层、柔性层和复合材料壳体,隔热层采用酚醛树脂基复合材料缠绕成型,复合材料壳体为环氧树脂基材料铺放或缠绕型,隔热层与复合材料壳体之间铺设有柔性层,所述柔性层为绝热弹性橡胶材料;界面层采用填充柔性层共固化技术,内结构使用的树脂基体为酚醛树脂,而复合材料壳体采用的树脂基体为环氧改性酚醛树脂,酚醛树脂和环氧改性酚醛树脂以及柔性层在固化时相互渗透、相互扩散,形成酚醛‑橡胶‑环氧的梯度界面,柔性橡胶很好的补偿了酚醛和环氧两种树脂因热胀系数不同、固化温度区间不同而带来的空隙以及热应力引起的褶皱,从而使界面强度提高,无脱粘风险。
本实用新型公开了一种Z向增强的复合材料发动机喷管,包括C/C复合材料喉衬、烧蚀层、隔热层以及复合材料壳体,其中,C/C复合材料喉衬为碳纤维编织成预制件后经化学气相沉积工艺制成而成,C/C复合材料喉衬的外边缘为带捻碳纤维束;在C/C复合材料喉衬的带捻碳纤维束上经纤维或布带预浸料缠绕并固化后形成烧蚀层,带捻碳纤维束插入烧蚀层内部;烧蚀层的一侧通过纤维或布带预浸料斜缠并固化形成隔热层,带捻碳纤维束插入隔热层内部;隔热层的一侧通过纤维或布带铺放或缠绕成型复合材料壳体。本实用新型提出的Z向增强的复合材料发动机喷管,提高了层间作用力,减少烧蚀层被气流冲刷而剥落的几率。
本发明提供一种复合材料增强件成型工艺方法,所述复合材料为碳纤维/环氧树脂型,包括以下步骤:S1.按增强件的3D图作2D展开图;S2.对碳纤维复合材料柔性接头增强件进行铺层设计,大口、中段和小口的比例为1:2:1,各部分重叠搭接,无明显界限;S3.对碳纤维复合材料柔性接头增强件按其与轴线成+45°、0°、90°、‑45°四个铺层角度方向进行铺层角度和顺序设计;S4.采用热压固化工艺,制作成待固化增强件;S5.将待固化增强件进行真空袋组合,并放入热压罐,升温固化;S6.对固化增强件进行外形加工,得到所需的产品。本发明的工艺方法根据柔性接头的特殊受力情况进行针对性设计,充分利用碳纤维复合材料的各向异性的优势,进一步提高性能降低重量。
本发明属于材料制备技术领域,涉及一种复合材料成型工艺,为了解决现有一些复合材料(主要是那些包括表层以及位于表层内的芯层,且芯层一般为泡沫,表层一般为织物的复合材料)普遍采用如手糊或预浸料模压等成型工艺制备,制成的产品存在产品质量(主要体现在产品的物理性能上)不够稳定或产品表面存在针孔和色差等问题,本发明提供了一种复合材料成型工艺,该工艺分别用两种不同的方法来制备复合材料的内层和外层,使用本发明技术方案即可有效的解决上述技术问题。
本发明提供一种锌基复合材料,该复合材料为氟化氢氧化锌(ZnOHF),其形貌为棒状;其制备方法为将纯度为99.9%以上的乙酸锌、氟化钠、六次甲基四按摩尔比为1:1:1-5混合,并搅拌均匀,得到混合物;再将混合物放置于容器中加蒸馏水搅拌30分钟,形成均匀溶液;进一步将得到的均匀溶液转移至水热反应釜中于140℃~180℃反应24小时,将反应产物离心、烘干、收集,得到ZnOHF锂离子电池负极材料。本发明首次将锌基复合材料氟化氢氧化锌应用于制备锂离子电池负极材料上。本发明合成方法简单,成本低廉;所制备的氟化氢氧化锌(ZnOHF)呈特殊棒状形貌;所制备氟化氢氧化锌(ZnOHF)具有明显的充、放电平台,在锂离子电池中有潜在应用。
本发明公开一种耐高温抗冲击复合材料壳体及其成型方法,包括内胆体、隔热层、复合材料层和防护环;内胆体为不锈钢薄壁筒,内胆体的外圆周依次为隔热层和复合材料层;复合材料层包括缠绕在隔热层外圆周的斜纹纤维布以及缠绕在所述斜纹纤维布外圆周的芳纶纤维布;在所述复合材料层的外圆周沿轴向均匀分布有两个以上防护环。该壳体成型时采用物理和化学相结合的方法,将多种具备不同性能或功能的材料制成一种新的多相固体材料,使其能在250℃高温条件下可靠地工作而不发生明显变形。通过恰当的结构设计,采用硬、软不同的材料组合成复合材料,既提高了构件的整体强度和刚度,又具备一定的抗冲击能力。
一种三维空间有序结构石墨/铝复合材料及其制备方法,属于耐磨损材料制备领域。针对传统工艺方法制备的石墨增强铝基复合材料力学性能与耐磨损性能的不匹配问题,提供了一种耐磨损性能好且力学性能优异的三维有序空间石墨铝复合材料的制备方法。所述制备方法采用3D打印的方法打印出空间三维有序的石墨结构,并通过直接浇铸的方法将Al-Mg-Si合金浇铸在前述石墨结构上面,制备出三维空间有序结构石墨/铝复合材料。为了提高传统方法制备的石墨/铝复合材料的自润滑性能,需要大量添加石墨,从而导致了力学性能大幅下降的问题。本方法制备的石墨/铝复合材料可以通过控制石墨的尺寸、结构和分布,在提高自润滑性能的前提下,保证力学性能。
本发明公开了一种二氧化锡/石墨烯/碳复合材料及其制备方法,属于电化学和新能源材料领域。制备时用氧化剂将石墨氧化成氧化石墨,然后将氧化石墨超声剥离成氧化石墨烯材料;将锡源和有机碳源与氧化石墨烯溶液按照不同的比例均匀混合,将混合溶液通过水热反应制备出二氧化锡/石墨烯/碳液凝胶复合材料;水热反应的温度为120?250℃,水热反应的时间为1?48小时。将制得的二氧化锡/石墨烯/碳液凝胶复合材料冷冻干燥和加热处理得到三维二氧化锡/石墨烯/碳泡沫复合材料。本发明提供的材料具有良好的柔性,适合用于制作柔性电极。作为锂离子电池负极材料,无需添加任何助剂,也不需要使用金属基底,显示出良好的循环稳定性和较高的比容量。
本发明涉及一种一次固化成型的全复合材料发动机喷管,包括喉衬、收敛段、隔热层、内烧蚀层和复合材料壳体,喉衬作为起始面层,收敛段、烧蚀层、隔热层以及复合材料壳体依次由内向外回转成型为喷管,在所有缠绕工作完成后整体进行一次热压固化成型;收敛段为碳纤维布带预浸料整体缠绕成型;烧蚀层在喉衬和模具上通过纤维或布带经缠绕而成;隔热层在烧蚀层外侧通过纤维或布带预浸料斜缠成型;复合材料壳体在隔热层外侧通过纤维或布带铺放或缠绕成型。本发明通过过渡结构树脂的共固化技术,一次完成复合材料喷管不同结构和功能层的固化,界面无化学结构性突变,从而使界面强度提高,无脱粘风险,同时还缩短了全复合材料喷管的生产周期。
本发明提供的一种Fe3C/C复合材料,具体为氮硫双掺杂碳包覆的Fe3C/C复合材料制备方法,三聚氰胺为氮源,硫脲为硫源,硝酸铁为铁源,葡萄糖为碳源,研磨均匀后干燥,高温碳化分解,获得氮硫共掺杂碳包覆的Fe3C复合材料。经该方法制得的复合材料作为锂离子电池的负极材料,具有优异的循环稳定性、高比容量的特点。这种Fe3C/C复合材料在4 A g‑1电流密度下具有260.9 mAh g‑1比容量,且在1 A g‑1时经循环400圈后仍具有649.5 mA h g‑1的比容量。经筛选,这种Fe3C/C复合材料与商业三元LiNi1/3Co1/3MnO1/3正极材料组装成的全电池在0.2 A g‑1电流密度下经过100圈循环后具有271.1 mAh g‑1比容量,具有优异的电化学性能。
本发明公开了一种铜基-石墨自润滑复合材料及其制备方法。该铜基-石墨自润滑复合材料由铜合金和三维石墨骨架组成,铜合金成分为Cu、MoS2、SiC。制备时,利用选择性激光烧结成形技术制备三维石墨骨架坯体,再进行石墨化处理获得三维石墨骨架,待表面镀铜处理后,将其组装到砂型铸型型腔中,最后采取铸造方式实现铜合金与三维石墨骨架的复合,获得所需的铜基-石墨自润滑复合材料。该方法实现了石墨分布范围可控,保证了铜合金基体的连续性,使之具有良好的导电导热性、抗冲击性能以及自润滑性能。本发明所述的铜基-石墨自润滑复合材料用于制备电刷、电极、受电弓滑板和自润滑轴承等,具有广阔的应用前景。
本发明是基于钒酸铋复合材料的制备方法及其应用,采用一锅法制备含钒酸铋和氧化铋的纳米复合材料,公开了一例基于钒酸铋的多功能型光催化剂的制备方法及其在CO2吸附及还原得到太阳能燃料、重金属离子Cr(VI)还原和气相NO去除中的应用。属于纳米材料制备技术及能源环保领域。本发明采用溶剂热法,利用五水合硝酸铋和钒酸铵为原料,通过一锅法合成桑葚状的钒酸铋与氧化铋的复合材料。得到的纳米复合材料结构良好,很好地提升了其对CO2的吸附性能,并且实现了光生载流子的加速迁移和有效空间分离。该纳米复合材料在能源及环境光催化中显示出优异的催化活性。
本发明公开了一种用于复合材料的碳纤维增强结构,该复合材料是采用按重量分计的以下材料制成:碳纤维50-55%,酚醛18-25%、丁腈橡胶22.5-30%,该复合材料的厚度为6-8mm;且其中的碳纤维以纬编针织结构存在。针织时,按碳纤维针织后的厚度选择碳纤维的规格型号,然后采用电脑横机将其编织成纬编针织结构,在编织过程中向碳纤维上喷洒乙醇,并控制纤维束张紧力:2N~36N。由于碳纤维采用了纬编针织结构,该复合材料能够大幅度提高材料的抗烧蚀性能,同时保持了绝热材料所需的弹性体特性。该复合材料用于发动机绝热层后,产品质量满足设计要求,彻底解决了绝热层失效的质量故障,目前已在多个产品中得到应用,通过了试验考核。
本发明提供了一种Co/CoSe/MoSe2复合材料的制备方法。具体过程为:将乙酸钴和钼酸铵按比例配制成混合溶液,通过共沉淀法形成钼酸钴。将钼酸钴加入到混有聚丙烯腈和聚乙烯吡咯烷酮的二甲基甲酰胺(简称DMF)溶液中。随后加入适量的硒粉,溶液分散均匀后通过静电纺丝制备得到纤维状的混合物。干燥后高温硒化得到Co/CoSe/MoSe2复合材料。作为钠离子电池负极材料,相较于MoSe2和Co/MoSe2,双金属硒化物表现出较好的电化学性能,在钠离子电池领域具有潜在的应用价值。
本发明公开了一种碳修饰MoS2/MoO2双相复合材料及其制备方法,属于电化学和新能源材料领域。本发明直接将氧化石墨烯与碳纳米管、钼酸铵、硫脲混合,用稀盐酸与氢氧化钠调节溶液的酸碱度,之后经搅拌、超声后水热。水热得到的产物用去离子水和无水乙醇清洗数次后进行常温真空干燥,之后在气氛保护下煅烧即得到目标产物。通过调节混合液酸碱度,可以一步制备出MoS2/MoO2双相的泡沫状复合材料。层状的石墨烯与棒状碳纳米管在材料内部形成稳定的三维导电网络,二硫化钼提供了高的比电容,二氧化钼提高材料的导电性。该泡沫复合材料作为锂离子电池负极材料,表现出了高的比容量和优异的循环稳定性。
中冶有色为您提供最新的湖北宜昌有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!