本发明公开了一种阻燃型凝胶电解质锂离子电池的制备方法,包括:步骤一,将四溴双酚A与C原子数不大于17的烯基羧酸反应生成烯基羧酸四溴双酚A酯,用乙醇洗涤、干燥;步骤二,向非水电解液中加入烯基羧酸四溴双酚A酯、引发剂得非水凝胶电解液;其中,烯基羧酸四溴双酚A酯为1%‑9%,引发剂为0.1%‑1%;步骤三,在软包锂离子电池中加入所制的非水凝胶电解液,化成、聚合。本发明还公开上述方法制备的电池。本发明的阻燃型凝胶电解质锂离子电池的制备方法,用纯净的烯基羧酸四溴双酚A酯作为聚合单体形成了凝胶聚合物,提高了电池安全性,且不影响导电性,所制备的阻燃型凝胶电解质锂离子电池安全性好,电导率高,循环性能好。
本发明涉及一种低温型锂离子电池负极浆料及其制备方法、锂离子电池负极。该负极浆料主要由溶剂和以下重量份的组分组成:石墨93‑97.2份、导电剂0.5‑2份、分散剂0.8‑2.0份、ME 1209型乳液粘结剂1.5‑3.0份。本发明提供的低温型锂离子电池负极浆料,以ME 1209型乳液粘结剂作为低温型粘结剂,其与石墨、导电剂、分散剂以合适的比例复配后,可均匀细化分散在石墨和导电剂表面,电化学试验表明,在低温条件下,该负极浆料可有效降低电极材料的表面阻抗和电池极化,提高锂离子电池的低温充放电性能。
本发明涉及一种锂离子电池复合极片及其制备方法和锂离子电池。锂离子电池复合极片包括集流体和涂覆在集流体上至少一侧上的电极材料层,在所述电极材料层的表面上开设有孔,孔内填充有导电材料,所述导电材料包括随温度升高电阻增大的热敏导电材料。本发明提供的锂离子电池复合极片,在电极材料层上开孔,可以在高压实密度下,降低材料的局部应力,降低极片裂边的风险,提高极片合格率和循环性能;导电材料填充于孔内,这样在电池工作时导电材料处于被电解液包围的微环境中,热敏导电材料在温度正常时,起到填充、粘结及骨架作用,在温度异常升高时,电阻增大,使电池的化学反应中断,提高其安全性能。
本发明是有关于一种高性能锂离子电池正极材料镍钴锰酸锂的制备方法,该制备方法包括如下步骤:分别配制含有锂源化合物、镍源化合物、钴源化合物和锰源化合物的混合溶液以及碳纳米管分散液;将所述混合溶液加入到所述碳纳米管分散液中,并在35-80℃加热蒸发溶剂,得到凝胶状前驱体;将所述凝胶状前驱体干燥后,研磨得到前驱体粉末;将所述前驱体粉末烧结,得到所述镍钴锰酸锂正极材料。本发明提供的技术方案具有成本低,工艺路线简单,能耗低的优点,适合于工业化量产。
本发明涉及一种极柱型锂电池盖板及使用该盖板的极柱型锂电池,一种极柱型锂电池盖板包括基板和穿装在基板上的电极柱,还包括环设于电极柱上的通过注塑与基板和电极柱形成整体结构的以防止电解液从电极柱与基板的穿装孔之间渗出的注塑密封件。首先,相对对比文件中的密封结构对电极柱的外周面和基板的平面度的加工精度要求较高来说,本发明的注塑密封件对基板和电极柱的加工精度没有过高要求,有利于降低加工制造的成本。其次,本发明的一种极柱型锂电池盖板的密封结构简单,在操作时,只需将电极柱穿装在基板的穿装孔中后用注塑机注塑形成注塑密封件即可,操作方便,有利于推广应用。
本发明属于电池技术领域,具体涉及一种锂电池电解液添加剂、电解液和锂电池。该锂电池电解液添加剂按照下述方法制备得到:(1)将聚氨酯丙烯酸酯和丙烯酸单体混合均匀;(2)向经步骤(1)处理所得的混合物中加入石蜡和硅藻土并混合均匀;(3)向经步骤(2)处理所得混合物中加入2,2‑二甲氧基‑2‑苯基苯乙酮和石墨粉,混合均匀后造粒;(4)向经步骤(3)处理后所得产物中加入卤化锂‑硅藻土‑石墨混合物并混合均匀;(5)在紫外光照射下固化,即得所述锂电池电解液添加剂。该锂电池电解液添加剂可显著改善电池的循环容量保持率。
本发明公开了一种锂离子电池凝胶电解质,制备该凝胶电解质的原料中包括凝胶因子和非水电解液;凝胶因子包括凝胶单体、交联剂和引发剂;凝胶单体为甲氧基乙烯基吡啶类化合物,其吡啶环上的R1为氢原子或烷基;R2‑R5独立地选自氢原子、甲氧基乙烯基和烷氧基中的一种,且R2‑R5中至少一个为甲氧基乙烯基。本发明的锂离子电池凝胶电解质中吡啶提高六氟磷酸锂的热稳定性、抑制正极过渡金属离子溶出;且单体中氮原子和甲氧基构建锂离子反复脱嵌的近程传递的连续通道,减小了相邻结构单元间锂离子传递的阻力,形成了对锂离子反复脱嵌且近程锂离子传递连续的、可远程传导的具有长链的网状通道,提高了电池的循环性能、高温性能和低温性能。
本发明属于电池材料技术领域,具体涉及一种锂离子电池电解液添加剂二氟磷酸锂的制备方法、锂离子电池电解液和离子电池。所述二氟磷酸锂的制备方法为采用偏磷酸锂与六氟磷酸锂为原料,在惰性气氛条件下合成二氟磷酸锂。所述锂离子电池电解液包括二氟磷酸锂1?3%、电解质盐15?23%和有机溶剂75?82%。本发明偏磷酸锂与六氟磷酸锂为原料,通过一步法制备出具有较高收率、高纯度的二氟磷酸锂,收率达92%以上,纯度达93%以上,省略了非水溶剂的使用,工艺简单,原料来源丰富、廉价,二氟磷酸锂具有较好的界面相容性,提高了锂离子电池的循环稳定性。
本实用新型涉及锂离子动力电池盖板组件及使用该组件的锂离子动力电池。其中锂离子动力电池盖板组件包括盖板和极柱,所述极柱上设有暴露在所述盖板上表面的供相应温度采集模块的温度传感器贴合配合的温度传导结构,所述盖板上设有用于固定温度采集模块的固定安装结构。使用时,温度采集模块通过盖板上的固定安装结构固定在盖板上且其温度传感器能够与温度传导结构贴合配合,由于温度传导结构是设在极柱上,而极柱为金属材料具有较好的导热性能,并且与电芯连接,因此能够准确地反映锂离子动力电池内部电芯的温度,从而提高温度采集模块温度检测的准确性。
本发明提供了一种利用高锂电解质制备氟盐和锂盐的方法,包括步骤:将高锂电解质、硫酸盐和硫酸溶液均匀混合,得到原料混合浆液;先对所述原料混合浆液进行雾化处理,再进行煅烧处理,制得煅烧产物;对所述煅烧产物进行水洗处理,得到氟盐滤渣和含锂滤液;干燥所述氟盐滤渣,制得电解铝用氟盐;对所述含锂滤液进行处理,制得锂盐。上述方法能够实现回收高锂电解质中的氟及锂,转化为高附加值的氟盐及锂盐,回收率高;另外,由本发明提供的方法制备的氟盐及锂盐市场需求大,工艺过程中无废物、废水、废气排出,环保无污染。
本发明属于锂离子电池技术领域,具体涉及一种锂负极及其制备方法、锂离子电池。本发明的锂负极由金属锂层和设置在金属锂层表面的固态电解质保护层,所述金属锂层为金属锂或锂合金;所述固态电解质层包括聚合物电解质,所述聚合物电解质由聚合单体聚合而成;所述聚合单体中含有不饱和碳‑碳键,醚键以及可与锂发生反应的锂反应性基团,所述聚合物电解质通过锂反应性基团与金属锂层中的锂反应复合在金属锂层的表面上。本发明的锂负极中保护层与金属锂层之间通过化学键相结合,不易脱落。并且保护层的存在避免了金属锂层直接与电解质接触,防止了副反应的发生,有利于提高锂离子电池的性能。
本发明公开了一种十四面体形纳米镍锰酸锂的制备方法,所述方法先通过微波加热法制备得到镍锰酸锂晶种,然后再用水热法制备得到纳米级的镍锰酸锂;该方法利用微波的快速加热效果,得到的晶种细小均匀,作为后续水热步骤的晶体生长基点,有助于得到粒径小并且尺寸均匀的产物,而在水热过程中,选用L‑精氨酸或L‑赖氨酸作为沉淀剂以及软模板剂,得到具有十四面体结构的纳米级镍锰酸锂。本发明得到的十四面体形纳米镍锰酸锂作为锂离子电池正极材料,由于其特殊的形貌对离子扩散的影响以及对颗粒堆积的影响,提高了功率密度和电池比容量,具有广阔的应用前景。
一种用于TFT‑LCD玻璃的低锂氧化铝制备方法,包括以下步骤:(1)挑选出锂含量不超过150ppm的氧化铝粉料;(2)除去氧化铝粉料中的铁;(3)得到的氧化铝粉料需要采用高铝质匣钵进行煅烧,对选用的高铝质匣钵进行脱锂;(4)向得到的氧化铝粉料中加入矿化剂并混合均匀,然后将其装入选用的高铝质匣钵中;(5)将盛装氧化铝粉料及矿化剂的高铝质匣钵送入隧道窑内进行煅烧;(6)分拣出高铝质匣钵内的氧化铝;(7)对得到的氧化铝进行破碎,并进行研磨均化处理;(8)对得到的氧化铝进行检测,挑选出锂含量不超过10ppm的氧化铝,并对其进行包装入库。本发明能够有效降低氧化铝中锂的含量、生产效率高、生产质量好。
本发明涉及一种从铁锂云母中提取锂钾铷铯的工艺。上述从铁锂云母中提取锂钾铷铯的工艺采用分阶段提取,能够依次提取得到锂盐、铯盐、铷盐和钾盐,从而能够从铁锂云母矿石中综合提取锂钾铷铯,实现了锂钾铷铯的有效回收,资源利用率高。
本发明涉及一种锂离子电池用固态复合电解质膜及其制备方法、固态锂离子电池,属于锂离子电池技术领域。本发明的锂离子电池用固态复合电解质膜,由锂盐、锂离子传导聚合物和非晶态固体电解质组成;形成所述锂离子传导聚合物的聚合单体和所述锂盐的摩尔比为14~18:1;所述非晶态固体电解质占锂离子电池用固态复合电解质膜的质量百分比为60%~90%。本发明的锂离子电池用固态复合电解质膜,利用锂离子传导聚合物和非晶态电解质的优势进行互补,能够大大提高提高固态电解质的电导率,同时采用本发明的锂离子电池用固态复合电解质膜做成的锂离子电池具有能量密度高、安全性好的优点。
本发明涉及一种微波烧结制备锂离子电池负极材料Li4Ti5O12的方法。该方法包括将Li、Ti的摩尔比为4:4.5~5.0d化合物分别计量,搅拌均匀,得到混合物A;以目标产物为基准,计量6~30%的碳源化合物和60~120%的纯净水,将碳源化合物加入纯净水中,搅拌均匀,得到水溶液B;将A、B混合均匀,得到膏状前驱体;将前驱体置于非金属器皿中,经工业微波炉进行微波热处理,制备出Li4Ti5O12。本发明利用湿法混料有效控制了Li4Ti5O12的化学成分、相成分和粒径,提高了其均匀性和导电性能;通过包覆碳,在大幅度地提高Li4Ti5O12电导率的同时,有效地提高其充放电容量和循环次数。同时利用微波技术缩短了Li4Ti5O12的处理时间,提高了产量,降低成本和能耗,提高锂电池的工业生产效率,易于在工业上实施。
本发明涉及一种锂离子电池极片的制备方法及锂离子电池的制备方法。该锂离子电池极片的制备方法包括:根据极片的设计参数,确定涂布时涂布头垫片的理论开口尺寸和理论倒角尺寸,双面涂布时,第一涂布头垫片的开口尺寸与所述理论开口尺寸一致,倒角尺寸与所述理论倒角尺寸一致,第二涂布头垫片的开口尺寸小于所述理论开口尺寸。本发明提供的锂离子电池极片的制备方法,通过对第二涂布头的开口尺寸进行调整,对第二面涂布时的不均衡涂布条件进行补偿,有效改善第二面涂布时的边缘削薄效果,进而避免辊压时涂覆区的边缘区域过压掉料;该方法可提高削薄区N/P比,提高极片的一致性,提高产品质量并降低生产成本。
本发明公开了一种高压实锂电池正极材料镍钴锰酸锂的制作方法,属于锂离子电池正极材料镍钴锰酸锂技术领域,包括以下步骤:(1)备料:选取氢氧化镍钴锰、电池级碳酸锂和氢氧化锶;(2)锂化混合:将三种原料混合均匀;(3)高温煅烧:混合后产品放置在高温窑炉进行煅烧;(4)煅烧后产品进行破碎粉碎后得到成品。本发明提供一种在常规生产过程中,进行氢氧化锶掺杂,提高镍钴锰酸锂压实的方法,结合生产镍钴锰酸锂过程中的高温固相反应,提高产品单晶粒径,增强各单晶结合的紧密性,具有较高经济使用性和安全性。
本发明公开了一种高容量VNb9O25纳米片锂离子电池负极材料及其制备方法,包括以下步骤:将五氯化铌溶于乙醇中,向该溶液中添加一定量的乙酰丙酮氧钒粉末,将这种混合溶液超声震荡完全溶解后,再将四甲基氢氧化铵水溶液滴加到该混合溶液中,并匀速搅拌使其完全溶解。之后将所得溶液装入高压反应釜加热反应;冷却后经洗涤、干燥、焙烧即得VNb9O25纳米片锂离子电池负极材料。本发明制备的VNb9O25纳米片锂离子电池负极材料为纳米尺度、分散性好,作为锂离子电池负极材料应用时具有比容量高、循环性能好等优点。
本发明涉及一种含氮纳米钛酸锂复合材料及其制备方法、锂离子电池,属于锂离子电池材料技术领域。本发明的含氮纳米钛酸锂复合材料的制备方法包括如下步骤:将有机锂化合物、丁二腈、表面活性剂加入有机溶剂中制得有机锂混合液,然后加入纳米钛酸锂,分散均匀,喷雾干燥,即得;所述有机锂化合物、丁二腈、表面活性剂、纳米钛酸锂的质量比为5‑20:1‑5:0.5‑2:100。本发明的含氮纳米钛酸锂复合材料包覆层中含有机锂化合物,能够为电极反应提供充足的锂。而且包覆层中含有氮原子,能够提高充放电过程中电子的扩散速率,提高其倍率性能。
本发明涉及一种对金属锂负极稳定的锂离子电池固体电解质及其制备方法,属于锂离子电池技术领域。本发明的对金属锂负极稳定的锂离子电池固体电解质,化学组成为Li6+x+zP1‑xAxM5+zX1‑z;式中,x为0~0.35,且x不为0;z为0~0.5;A为Sn、Ti或Si;M为第四主族非金属元素中的一种或两种以上;X为卤族元素中的一种或两种以上。该固体电解质具有优良的锂离子电导性能和稳定的热力学性能,锂离子电导率均远大于1mS cm‑1的行业标准,在与锂负极接触时,可原位生成一层锂表面修饰层,弥补电解质与锂负极之间的电位差值,大幅提升该固体电解质与锂负极在电池循环过程中的稳定性。
本发明公开了一种从医疗垃圾含锂废液中回收利用锂的工艺方法,包括以下步骤:(1)原料来源;(2)蒸发浓缩,得湿碳酸锂粗品;(3)干燥;(4)焙烧得粉状碳酸锂粗品;(5)加水浆化,通入CO2酸化;(6)树脂净化,得碳酸氢锂净化液;(7)加热分解,洗涤分离得湿碳酸锂纯品;(8)干燥可得粉状碳酸锂纯品,或经过盐酸酸化转型,浓缩结晶干燥可得粉状氯化锂纯品,本发明工艺过程简单、回收率高、成本可控,易于产业化推广应用;回收再生利用医疗垃圾行业的含锂废液资源,节约了国家宝贵的稀有资源。
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池正极材料及其制备方法、锂离子电池。本发明的锂离子电池正极材料的制备方法包括以下步骤:(1)将三元前驱体、锂源和助剂混合均匀,然后于600~980℃温度下保温5~15h,得中间产物;所述三元前驱体的化学式为NixCoyD(1‑x‑y)(OH)2,其中0<x≤1,0<y≤1,0<x+y<1,D为Mn、Al元素中的一种;所述助剂为AlF3、KF、LiF、NaCl、KCl、H3BO3、B2O3中的一种或多种;(2)将中间产物与锂源混合均匀,然后于650~980℃温度下保温5~15h,即得。根据本发明的制备方法制备的正极材料,晶型结构较好,颗粒一致性较高;作为正极活性物质用于锂离子电池时,锂离子电池具有较高的能量密度。
本发明涉及一种以预锂化Ti‑MWW分子筛作为锂离子电池负极材料的制备方法,属于锂离子电池领域。该制备方法,包括以下步骤:(1)预处理,将Ti‑MWW分子筛洗涤、过滤、干燥后焙烧,制得固体S1;(2)预锂化,将固体S1与氯化锂溶液混合后进行加热回流反应,结束后,过滤、洗涤、再过滤、干燥,制得固体S2;(3)制备负极材料,将固体S2与炭黑、聚偏二氟乙烯混合并研磨,制得固体S3,将固体S3分散到N‑二甲基吡咯烷酮中制得负极浆料,将负极浆料涂覆到铜箔上,经烘干、碾压后即得。本发明以预锂化分子筛作为锂离子电池负极材料,具有优异的放电比容量;该锂离子电池负极材料以报废Ti‑MWW分子筛为原料,有助于实现固体废弃物的回收和再利用,降低成本。
本发明公开了一种铝电解质脱锂提纯和回收锂的方法,包括以下步骤:(1)铝电解质脱锂提纯;(2)脱出的锂再回收利用,具体包括:滤液蒸发浓缩、中和、除杂、回收锂制备锂盐。旨在解决铝工业电解槽长期运行过程中电解质锂含量富集引起的能耗增高问题。经过该方法处理后的铝电解质锂含量不大于0.5%,可返回电解槽循环利用;脱出的锂可回收利用。本发明制备得到高附加值锂盐产品,一方面开辟了新的锂资源,一方面缓解了目前市场对高端锂产品的需求状况,促进了我国在新能源行业和高端锂应用行业的技术进步,社会效益显著;原料来源广泛,综合成本较低,工艺简单易行,生产工艺清洁环保,具有良好的经济、社会效益。
本发明涉及一种锂离子电池电解液、锂离子电池,属于锂离子电池技术领域。本发明的锂离子电池电解液,包括有机溶剂、电解质锂盐、低阻抗添加剂和功能性添加剂,所述低阻抗添加剂由二氟磷酸锂和二氟双草酸磷酸锂组成,所述功能性添加剂为三(三甲基硅烷)硼酸酯、三(三甲基硅烷)磷酸酯中的任意一种或组合;所述功能性添加剂占锂离子电池电解液总质量的0.1~4%。本发明的锂离子电池电解液,可参与负极成膜,降低电解液的界面阻抗,提升电解液的低温性能;还可以在高容量硅碳复合负极材料表面形成柔韧、高温稳定的电极界面膜,并在循环过程中及时修补由硅膨胀而引起的SEI膜破裂,改善硅碳负极锂离子电池循环性能。
本发明涉及一种软包锂离子电池注液加速吸收方法及软包锂离子电池,属于锂离子电池技术领域。本发明的软包锂离子电池注液加速吸收方法包括:在干燥惰性气体保护下,在45-50℃的手套箱内,将电解液分三次注入锂离子电池软包中,每次注液后对软包锂离子电池依次进行挤压和负压循环静置;将软包锂离子电池封口;所述负压循环静置时的真空度在-0.08~-0.01MPa之间连续变化,所述负压静置的时间为2-8s;封口后的软包锂离子电池在70-80℃下静置4-5h,在静置过程中至少对软包锂离子电池进行一次施压并上下翻转。本发明的方法促进了电解液在电芯内部的吸收,提高了软包锂离子电池中电解液吸收的一致性。
本发明公开了一种锂离子电池正极材料及正极的制备方法,以及采用该正极材料的锂离子电池,属于能源材料技术领域。本发明通过在水系锂离子电池正极加入化学分散剂,解决了正极纳米活性物质及纳米碳混合导电剂均匀分散的问题,同时结合机械分散法,优选机械搅拌公转速度为15~35HZ,自传速度为10~30HZ,可以在较短时间内实现纳米活性物质的均匀分散。本发明锂电池正极材料及制备方法为解决水系纳米活性物质均匀分散提供了技术途径,生产效率高,成本低,制得电池的放电容量高,低温、倍率和循环性能均得到了明显改善,为解决领域内纳米锂电池仅限于高成本、高污染油性体系的规模化应用提供了一条新的途径。
本发明涉及一种低温复合磷酸铁锂材料、正极极片、锂离子电池,属于锂离子电池技术领域。本发明的复合磷酸铁锂材料采用包括以下步骤的制备方法制备:以质量百分比计,将90~95%的磷酸铁锂、0.5~1%的石墨烯、1~4%的碳纳米管和1~5%的导电炭黑混合均匀,然后在600~750℃,氮气气氛下保温4~8h,即得。本发明的复合磷酸铁锂材料通过磷酸铁锂、石墨烯、碳纳米管和导电碳黑的复配,保温,得到的复合磷酸铁锂材料具有优良的超低温性能。采用本发明的复合磷酸铁锂的锂离子电池低温性能优异、安全性能高、循环寿命长。
本发明提供了一种钛酸锂复合材料的制备方法及钛酸锂电池,将钛酸锂与硬碳材料加入球磨罐中高速球磨混合,将机械球磨混合的材料放入微波真空炉中进行加热,自然冷却后取出,得到硬碳包覆的钛酸锂复合材料。本发明利用钛酸锂复合材料制备负极极片,之后制备钛酸锂电池,正极片面容量过量的情况下,负极片尺寸大于正极片,钛酸锂极片边缘Li+的扩散有利于提高整个体系的能量密度,正极材料采用镍钴锰酸锂、钴酸锂、锰酸锂,其制备的钛酸锂软包全电池能量密度高达到140 Wh/Kg,且循环寿命高,平均使用寿命成本低,适用于大规模的风光储能系统。
中冶有色为您提供最新的河南有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!