本发明提供了一种离子吸附型稀土的原地浸取方法,涉及湿法冶金技术领域。本发明将原地离子吸附型稀土按风化程度不同划分为强风化稀土层、中等风化稀土层和微风化稀土层;分别提取各稀土层的部分稀土作为样本,采用浸取液对每一类稀土层的样本进行浸出试验,通过EDTA滴定法测定每一类稀土层的样本浸出率最高时对应的浸取液pH值;根据浸出试验测定的浸取液pH值,调配每一类稀土层浸取所需pH值的浸取液,然后分别注入对应稀土层的浸取通道进行原地浸取。本发明针对不同风化程度的稀土层采用不同pH值浸取液,提高了中等风化层和微风化层的稀土离子浸出量,对于不同品位的稀土矿,可以有效地提高稀土的浸取效率,减少稀土矿物资源的浪费。
本发明涉及湿法冶金技术中浸出液除杂的新方法,特别是一种离子型稀土矿除杂的方法。本发明包括以下步骤:A、浸出液的配制:将稀土浸出剂、抑杂剂酒石酸溶于水,充分混合搅拌溶解得到浸出液,浸出液中稀土浸出剂质量百分浓度为1—6%,酒石酸的质量百分浓度为0.01—1.0%,稀土浸出剂与酒石酸的质量比为2—100;B、浸出过程的控制:用配制好的浸出液对离子型稀土矿进行抑杂浸出,浸出液的流速为0.5—10ml/min,原矿含水质量百分比:0—20%,液固比为:0.6:1—1.4:1。经过抑杂浸出后获得的浸出液中杂质离子的含量降低了90%以上,还具有能耗低、成本低、操作安全简单等优点。
本发明属于湿法冶金及化工生产技术领域,公开了一种废旧二次电池的处理方法,通过在回转窑内分二段燃烧,首先维持炉温在100~150℃内,废旧二次电池在炉前部焙烧停留30-60分钟,确保将废旧二次电池的密封圈充分热解破坏,使电池内的氢气和有机溶剂施放出来;然后物料在炉体燃烧室后部炉膛内进行焚烧,温度维持在300~500℃,将废弃物内的有机物充分氧化、热解、燃烧,并有效控制臭气及氮氧化合物的产生,使产生之气体达到无异味、无恶臭、完全燃烧的效果。本发明提供的处理方法设计合理,先焚烧后破碎,破碎率高,有价元素回收率高,且能够避免高温焚烧爆炸事故的发生,安全无污染,适合推广。
一种轻稀土矿预分萃取及负载有机相的中重稀土分离工艺方法,属稀土湿法冶金。本发明利用预分萃取轻稀土矿料液出口有机相含Sm‑Lu,Y及少量La‑Nd稀土,因有机相没经洗涤,负载稀土饱和,有机相稀土浓度高的特点。将这负载中重稀土的出口有机相直接作为中重稀土萃取分离的原料,进人中重稀土萃取分离工艺。中重稀土分离工艺中包含有Nd/Sm分离,其出口水相La‑Nd轻稀土进入预分萃取出口水相的下接LaCePrNd分离工艺。省去预分离萃取法分离轻稀土矿的预分离洗涤段和细分离工艺Nd/Sm分组。从而,使化工试剂酸碱消耗下降,工艺处理能力提高,萃取设备减少,并使萃取剂和稀土金属存槽量减少,生产成本降低,整体经济效益更好。同时工艺排放减少,利于绿色环保。
本发明涉及一种湿法冶金技术,尤其是一种从石煤钒矿浸出液中控制铁被萃取的萃取钒的方法。本发明的方法是通过浸出液制备、还原铁(Ⅲ)为铁(Ⅱ)以及萃取及反萃取步骤实现的。本发的工艺高效率、低成本、适用于规模化生产、不产生对环境有害及危险性气体的溶剂萃取法中控制铁被萃取出的工艺方法,从而达到不使铁被萃取到有机相中,不会造成萃取剂中毒及产品含铁偏高而不合格。
本发明提供一种含草酸溶液的萃取方法,属于湿法冶金技术领域。该方法首先将三辛基甲基草酸铵、磷酸三丁酯和磺化煤油按比例混匀,得到有机相;采用氢氧化钾将含草酸溶液pH调节至1~4,得到萃原液;将有机相和萃原液按体积比为1∶(1~6)混合,逆流萃取1~5级,得到负载有机相和萃余液;将负载有机相和硫酸按体积比为1∶(1~6)混合,逆流反萃1~5级,得到富金属溶液和贫有机相;将贫有机相与氢氧化钾溶液混合,反萃2~5次,得到三辛基甲基氢氧化铵;将三辛基甲基氢氧化铵与草酸溶液混合,反萃2~5次,得到再生有机相,返回萃取使用。本发明具有萃取剂用量小、成本低、萃取能力强、萃余液可循环利用和绿色环保的特点。
本发明属于稀土湿法冶金技术领域,具体涉及一种低松装密度稀土氧化物及其制备方法。本发明提供的制备方法:将稀土草酸盐进行分步煅烧,得到所述低松装密度稀土氧化物;所述分步煅烧包括:由室温按照第一升温速率升温至第一温度进行第一保温,由第一温度按照第二升温速率升温至第二温度进行第二保温,由第二温度按照第三升温速率升温至第三温度进行第三保温,由第三温度按照第四升温速率升温至第四温度进行第四保温。本发明提供的制备方法不仅有效降低了稀土氧化物的松装密度,且制备的稀土氧化物纯度高、比表面积大;且制备过程简单,无需更改装置,生产成本低。
本发明公开了一种镨钕氧化物的制备装置,涉及到稀土湿法冶金技术领域,包括容器组件,所述容器组件内部设置有多重驱动机构,所述多重驱动机构外侧顶部设置有研磨机构,所述研磨机构位于容器组件内腔顶部,所述多重驱动机构中驱动轴带动研磨机构中研磨块旋转,所述多重驱动机构外侧底部设置有搅拌过滤机构,所述搅拌过滤机构位于容器组件内腔底部,所述多重驱动机构中环形连接块带动搅拌过滤机构中滤板升降,所述多重驱动机构中第一螺纹套管带动搅拌过滤机构中升降板升降。本发明可以使高锰酸钾更均匀后的分布于少铈溶液中,并更快速的与少铈溶液进行反应,有效提高了无铈氧化稀土溶液的制备效率,更加适用于工业化生产。
一种风化壳淋积型离子稀土矿的浸出方法,涉及一种湿法冶金浸出稀土工艺的改进。其浸出过程包括加入浸出剂进行浸出,其特征在于其浸出过程还加入富里酸作助浸剂。本发明的一种风化壳淋积型离子稀土矿的浸出方法,在减少硫酸铵用量的条件下显著促进了稀土的柱浸效果,在提高稀土浸出率的同时降低了浸出剂硫酸铵的用量,有效降低了稀土提取的成本和氨氮废水的生成。
本发明提供了一种降低高硫酸钙含量料液中钙含量的方法,属于湿法冶金技术领域。本发明提供的降低高硫酸钙含量料液中钙含量的方法,包括以下步骤:将高硫酸钙含量料液与硫酸钙晶种混合,依次进行沉淀处理、陈化和固液分离;其中,所述高硫酸钙含量料液中硫酸钙的含量为2.30~2.56g/L,pH值为4.0~4.5;所述硫酸钙晶种的粒径为11~18μm。本发明采用特定粒径的硫酸钙晶种诱导沉钙,能够有效地降低料液中硫酸钙的含量,避免后续萃取除钙工序中频繁清理萃取槽中的硫酸钙沉淀,节省人力、物力,提高生产效率。此外,本发明提供的方法步骤简单,可操作性强,易于规模化生产。
本发明提供一种三氧化二钇稀土氧化物还原工艺,涉及湿法冶金工艺领域。该三氧化二钇稀土氧化物还原工艺,包括以下步骤:料液浓度为3‑200克/升的三氧化二钇,煤油为稀释剂组成有机相,将钇萃入有机相;盐酸溶液为洗涤液,对负载钇的有机相进行萃取洗涤;将洗涤后的有机相以2‑8M的盐酸为反萃液,将钇反萃至水相中。通过利用三氧化二钇为料液,将钇萃入有机相,对负载钇的有机相进行萃取洗涤,将钇反萃至水相中,经分馏萃取、洗涤、溶解、净化、沉淀与灼烧,大大提高了分离过程的速率和效率,改善钇产品的质量,实现产品颗粒超细化并且粒度分布均匀,产品质量高而且稳定。
本发明属于湿法冶金领域,具体涉及一种酸性富钒溶液无氨沉钒的方法,包括有以下步骤:1)酸性富钒溶液控制硫酸浓度在1‑10%,加入氧化剂至钒氧化完全后,加一定量的聚合多钒酸作晶种,通入CO2加温沉钒;保温,沉钒完全过滤;2)过滤渣用0.5‑5%硫酸水溶液在加温搅拌条件下通入CO2洗涤过滤,洗涤过滤渣用清水淋滤洗涤、灼烧得工业五氧化二钒。本发明的有益效果在于:采取本发明方法无氨沉淀,钒沉淀完全,从源头上解决氨氮废水和含氨有毒废气的排放,无环保之扰。
本发明涉及一种含有高价值元素氢氧化铁基原料的制备方法,属于资源回收再利用及湿法冶金技术领域。将铁基废料通过配料、反应、干燥等工序制成包括铁的氢氧化物、高价值元素化合物、可燃性有机物的含有高价值元素氢氧化铁基原料主要由,其中铁及高价值元素主要呈氢氧化物。本发明制备的产品呈粉状或易粉碎团块,在≤200℃时不自燃,具有质地均匀、不易自燃、使用方便、安全、化工原料消耗少、高价值元素溶出率高等优点。消除了铁基废料在运输、装卸、贮存及生产过程中的火灾隐患。本发明制备方法和设备简单,易于控制,充分利用反应热,反应速度快,安全稳定性高,处理能力大,生产成本低,大量节约动力、人力、能量的消耗量,适合工业化生产。
本实用新型涉及湿法冶金萃取槽设备,提供一种新型萃取槽混合室,包括槽体,槽体内设有搅拌轴、搅拌桨,搅拌轴连接槽体顶部外电机,所述水相进料管、油相进料管分别从槽体外侧下部平直通入槽体内,所述水相进料管与油相进料管的出口在槽体内从相对的方向伸至槽体底部中心搅拌桨位置两侧,所述搅拌桨设在搅拌轴靠底部位置,所述搅拌轴最底端、贴近槽体底面位置一侧设有一刮板,所述槽体靠上端内壁设有环形缓冲板。本实用新型通过刮板在反应的同时清理混合室中待沉积的钙渣,减少了大量的清槽工作,减轻了操作人员的工作强度;此外,通过软质环形缓冲板的设计,解决反应过程中液体漩涡的产生,起到阻流的效果,实用效果强。
本发明提供一种一步萃取分离和回收稀土与铁的方法,属于湿法冶金技术领域。该方法首先将三辛基甲基草酸铵、磷酸三丁酯和磺化煤油混匀,得到有机相;将有机相和萃原液按体积比为1∶(1~5)混合,逆流萃取1~5级,得到负载有机相和萃余液;将萃余液过滤,得到草酸稀土;将负载有机相和反萃剂按体积比为(1~5)∶1混合,逆流反萃1~5级,得到富铁溶液和贫有机相;将富铁溶液过滤,得到氢氧化铁;将贫有机相与草酸溶液混合,分相,得到再生有机相,再生有机相返回有机相使用。本发明具有萃取工艺简单、流程短、稀土和铁能同步高效分离与综合回收的特点。
一种淋浸法从石煤钒矿中回收钒的方法,涉及湿法冶金技术领域,具体涉及一种用淋浸法从石煤中回收钒的方法。本发明的淋浸法从石煤钒矿中回收钒的方法,其特征在于该方法包括以下步骤:第一步,石煤钒矿石粉碎;第二步,配制淋洗剂;第三步,淋洗;第四步,石煤钒矿粉洗涤;第五步,淋洗后液处理。本发明的有益效果是:1、回收率较高,2、因采用了常温淋洗浸出,浸出过程中不需要加热及搅拌,节省了燃料及电耗,生产成本较低;3、不产生HCl、Cl2等有害气体,且还减少了排放量,很少量的废水可采用石灰中和处理后达标排放,对环境基本无污染。
离子型稀土矿除杂沉淀新工艺,属湿法冶金领域。其技术要领是在浸矿池或原地浸矿过程中,同时加入浸矿剂和除杂剂,浸出液加混合剂沉淀稀土,经过滤灼烧得混合氧化稀土产品,滤饼也可不经灼烧直接酸溶后进行稀土分离。
本发明属于有色金属湿法冶金技术领域,具体涉及到一种分离回收阳极泥分金液中碲的方法。该方法通过选择性还原使复杂溶液的碲保留在溶液中,然后再以还原方式回收溶液的碲,得到粗碲粉。本发明的优点和产生的积极效果是:本发明提供的一种分离回收阳极泥分金液中碲的方法无需复杂的操作而能够高效分离阳极泥分金液中碲,并实现溶液中碲高效回收;该方法通过选择性还原使复杂溶液的碲保留在溶液中,然后再以还原法方式回收溶液的碲,选择性分离效果好,回收率高。
本发明属于湿法冶金领域。要点在于先用第一 段机械分级机对稀土原矿进行分级,返砂进入第二段 机械分级机中,在分级机内加入洗提剂,第一段机械 分级机溢流与第二段机械分级机溢流合并进入矿浆 树脂吸附作业,吸附稀土的树脂,装入交换柱内,用淋 洗剂淋洗分离,淋洗所得稀土母液,经草酸沉淀、过 滤、灼烧,即可获得含钇不同品级的混合稀土氧化 物。本发明机械化程度较高,生产效率和稀土收率也 较高,可广泛地适用于各种离子型稀土矿提取稀 土。
一种从中钇富铕离子型稀土矿全分离稀土工艺, 属湿法冶金领域。本发明控制环烷酸皂化度为0.4 ~0.5N,洗液酸度0.6~0.7N,料液120g/L的条件 下,镧钇同留于水相中而与其它稀土分离,对非镧钇 稀土,经三段分组再进行萃取色层,可得高纯钐、铕、 钆、铽等单一稀土氧化物。本发明简单易行,可降低 生产成本,经济效益显著。 本发明适用于中钇富铕离子型稀土矿全分离稀 土。
本发明公开了一种离子吸附型稀土堆浸的可生长式堆体结构及堆浸方法,涉及湿法冶金技术领域,包括堆体本体,堆体本体的底部设置在底层基岩上,堆体本体的竖向一侧与堆场端部基岩之间设置有注液管网,注液管网用于向堆体本体进行侧向喷射浸取剂,堆体本体沿横向堆置方向分为若干级堆体,堆体的顶部用于进行植被修复。本发明设置可侧向喷射浸取剂的注液管网,提高了布液方式的可控性,并且在侧向进行注射,堆体本体的顶部不会受到浸取剂影响,为堆体本体顶部的植被修复保留了一定的空间;逐级进行稀土的可生长式堆浸(堆置浸取),可以保证每一级堆体的浸取效率,提高了稀土的利用率,保证稀土在堆浸过程中的稳定浸取,减少资源浪费。
本发明属湿法冶金,具体涉及一种盐酸体系中钒的回收方法,采取PMBP用溶剂溶解完全萃取盐酸体系中的钒,负载有机相用稀硫酸+双氧化水作反萃剂反萃回收盐酸体系中的钒,贫有机相用萃余液转型返回萃取工段循环使用,含钒反萃液按常规工艺回收钒。本发明有益效果在于:该有机相配比可在盐酸体系高酸、杂质元含量高不经任何预处理的条件下,有效回收钒。
一种提高石煤钒矿中钒浸出率的方法,涉及湿法冶金技术领域,具体地说是一种提高石煤钒矿中钒的浸出率的方法。本发明的方法是通过石煤钒矿石破碎、陈化反应、真空泵过滤和浸出液净化后经萃取、反萃、沉钒后制得五氧化二钒实现的。本发明的工艺能较好的浸出效果,因而能大大提高此类石煤钒矿中钒的浸出率。
本发明属于稀土湿法冶金技术领域,尤其涉及一种综合回收氟碳铈矿中稀土和氟的方法,具体步骤为:S1.氟碳铈矿氧化焙烧分解,得到熟矿;S2.熟矿盐酸浸出,得到浸出料浆;S3.向经过S2处理后得到的浸出料浆中加入絮凝剂,经固液分离得到含氟稀土溶液和酸浸渣;S4.在除氟剂作用下,含氟稀土溶液除氟,得到氟化稀土沉淀和氯化稀土溶液;S5.氯化稀土溶液经除杂后,进入萃取体系分离,得到相应稀土产品和萃余液。本方法的稀土精矿的总稀土氧化物浸出率大于65%,镨钕浸出率大于95%,实现了氟碳铈矿中高值稀土元素的高效浸取,氟以氟化稀土的形式得到利用,具有绿色高效、流程简单、成本低的优点。
本发明涉及有色金属湿法冶金领域,特别涉及一种从红土镍矿中提取镍、钴、锰的方法。本发明包括步骤:将矿样破碎研磨过筛,矿样的粒度控制在0.074~0.15mm;将氯盐溶解到盐酸中,配制成盐酸氯盐溶液;采用盐酸氯盐溶液直接浸出红土镍矿,控制浸出温度和浸出时间,同时从底部通入氧化性气体来强化有价金属的浸出和抑制杂质金属的浸出。本发明可以浸出有价金属镍、钴的同时抑制铁的浸出,防止后续工序中浸出液中的铁生成沉淀而造成镍钴的损失,镍浸出率达到83%以上,钴的浸出率达到72%以上,锰的浸出率达到89%以上,而铁的浸出率只有11—19%,很大程度上降低了铁的浸出。
本发明属于湿法冶金技术领域,涉及了一种分解氟碳铈矿的方法,该方法具体包括以下步骤:S1)氟碳铈矿氧化焙烧;S2)熟矿低温络合酸浸;S3)絮凝沉淀固液分离,得到含氟稀土料液和酸浸渣;S4)含氟稀土料液脱氟处理,得到稀土氟化物和氯化稀土溶液;S5)稀土氟化物利用碳酸钠碱转后酸溶,得到氯化稀土溶液;S6)将S4)得到的氯化稀土溶液与S5)得到的氯化稀土溶液混合后除杂,通过萃取分离得到相应稀土产品。稀土精矿REO浸出率可达71.5%,镧浸出率95%,铈浸出率48%,镨钕浸出率高达97%。大幅降低碱转过程碱消耗、减少碱转废水的排放量,节约能源,同时能够获得较高的稀土浸出率,经济效益显著。
本发明提供了一种反萃废酸的回收方法,涉及废水处理技术领域。本发明以三辛癸烷基叔胺和磺化煤油作为萃取剂(即有机相)对含铁反萃废酸进行逆流萃取,所得回收反萃酸中铁的浓度<0.01g/L,铁杂质的去除率在99.5%以上,铁含量低,回收反萃酸能够循环再利用,降低了湿法冶金反萃段,尤其是P507萃取体系反萃段的酸的用量,大大降低了生产成本。而且,本发明提供的回收方法操作简单,成本低,安全环保。进一步的,经过反萃剂对含铁萃取剂进行反萃后得到的再生萃取剂能够循环利用,从而能够实现含铁反萃废酸的连续处理,含铁反萃废酸的处理成本低。
本发明提供一种将溶液中铂钯富集的方法,涉及到湿法冶金中稀贵金属的分离与回收。本发明以含铂钯的溶液为原液,通过控制电位进行选择性还原,将溶液中的铂钯转变成单质并沉淀出来,获得富含铂钯的精矿。其特征是采用不含重金属元素的物质为还原剂,控制反应液电位,将溶液中铂钯选择性地还原并沉淀至1mg/L以下,达到富集铂钯的效果。与传统的活性金属置换法相比,本发明方法成本低,易操作,对组成不同的原液具有良好的适应性,所得铂钯精矿的渣量少、铂钯富集度高。
中冶有色为您提供最新的江西有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!