一种用高级碳/碳复合材料制作发射弹头用的发射架、发射管装置,其发射架分为主体架、支筒架、护筒板组成,发射筒由内筒、外筒、发射筒体组成,其主体架前端上架设有支筒架、支筒架后设有护筒板、支筒架上架设发射筒、发射筒体坐落固定镶嵌在主体架中后部位置,发射筒下部与发射筒体呈一体组成。其发射架和发射筒与金属发射弹头的各种发射架、发射筒构造基本相同,只是在体积方面根据用途不同相应的按照比例进行了缩小,因高级碳纤维/碳纤维复合材料的材质各项性能较优于金属材质。优点:材质轻,质量和使用效果优于金属材质,成型工艺好,容易产业化。以此方法可完全实现稳定的产品数量与质量和产业化生产服务于国防现代化为目的。
本实用新型涉及保温隔热材料技术领域,特别是一种定型炭纤维复合材料。本实用新型主要由炭毡、炭布和石墨纸构成,炭毡与炭布、炭布与石墨纸间采用粘合剂粘合,再经固化剂固化,冷、热压使其成型。该定型炭纤维复合材料具有比重小、热导和膨胀系数低、洁净度好、表面无短纤维脱落、耐热冲击、耐腐蚀、耐高温,具有一定刚性,使用寿命长等优点,广泛应用于高压高流率真空气淬炉、铆焊炉、钎焊炉、真空电阻炉、感应炉、烧结炉、单晶硅炉、热等静压炉等,是目前国内真空炉行业最理想的保温隔热材料的更新换代产品。
本实用新型提出的是环型碳/碳复合材料气相渗透装置。包括沉积室、沉积室石墨盖板、料柱,料柱具有料柱Ⅰ和料柱Ⅱ两种结构形式;在石墨托板Ⅰ上叠放有多组预制体,顶部预制体上设有石墨盖板Ⅰ,石墨托板Ⅰ与预制体、相邻的预制体和预制体与石墨盖板Ⅰ之间间隔有外径垫环,形成料柱Ⅰ;在石墨托板Ⅱ上叠放有多组预制体,顶部预制体上设有石墨盖板Ⅱ,石墨托板Ⅱ与预制体、相邻的预制体和预制体与石墨盖板Ⅱ之间间隔有内径垫环,形成料柱Ⅱ。本实用新型通过交替使用料柱Ⅰ与料柱Ⅱ叠放预制体分段沉积,控制改变气态前驱体气体流向,提高产品密度的均匀性及缩短致密化时间,实现高密度复合材料的快速沉积。适宜作为气相渗透装置使用。
本实用新型公开了一种新型复合材料支架疏散平台,包括平台本体,所述平台本体底部的两侧均固定安装有安装架,所述安装架的底部固定安装有限位板,所述平台本体底部的中间部位活动安装有固定板。本实用新型通过固定块的设置便于对连接件进行固定及连接,通过连接件的设置便于对加固板进行安装,通过固定盘的设置便于对加固板进行连接,通过加固板的设置可以有效地对固定板和防护块进行加固,通过螺纹孔的设置便于使用螺钉对连接板进行安装及固定,通过防护罩的设置便于对人员进行防护,通过防护杆的设置便于提升安装架的稳定性,同时解决了市场上常见的复合材料支架疏散平台普遍存在稳定性较差的问题。
本发明涉及纳米羟基磷灰石/聚六亚甲基单胍盐酸盐/硅胶复合材料制备方法,所述复合材料是将纳米羟基磷灰石经胶黏剂聚六亚甲基单胍盐酸盐负载在硅胶上制备而成,首先将硅胶活化,然后按纳米羟基磷灰石与活化硅胶的质量比为1:5‑1:30,加入到浓度为0.25‑1.0%的聚亚甲基单胍盐酸盐溶液中,超声震荡,离心,真空干燥箱烘干即得成品。本发明为固相萃取吸附材料,避免了单一纳米材料在使用过程中易流失、易堵塞管路等缺点。对Cr(Ⅵ)的富集效果理想,可用于环境水样中铬的形态分析。可重复使用至少20次。
本发明属于工艺装备设计及制造技术领域,提供了一种复合材料壁板类工装模板的分区数控加工拼接制造方法。该方法根据模板型面的特征属性,将整块模板分成不同的小型块,需要数控加工的型块通过数控机床加工出型面,型面留足整体加工余量供后期整体加工使用,并加工出焊接坡口,标记特征符号加以区分各个小型块;各型块加工完成后,根据支撑结构支撑面及各型块的标记整体拼接;拼接完成后施焊,注意控制变形与气密性。本发明在原来单一的人工加工方案上,引入数控加工,简化了模板的制造过程,降低制造难度,减少人工工作量,提升成型型面的精度,提高了复合材料零件生产的质量,缩短制造周期。
本发明提供一种基于逆有限元与微元动态响应法的复合材料板壳结构健康监测方法,包括选用合适的逆壳单元对复合材料板壳结构进行离散;基于mindlin板理论计算每个逆壳单元的膜应变、弯曲应变以及剪切应变;在逆壳单元的上下表面选取应变测量点,并在应变测量点上粘贴应变传感器实时测量应变,得到应变测量数据;根据得到的应变测量数据计算每个逆壳单元的膜应变以及曲率;基于最小二乘方法构造泛函,对节点自由度求导得到逆壳单元的类刚度矩阵和载荷矩阵并组装,赋予恰当的边界条件,计算结构振动位移;根据重构的位移信息构建损伤指数DI,识别结构的损伤大小及位置,实现对结构的状态和损伤信息的监测。本发明方法具有精度高、准确、抗噪能力强等优点。
本发明涉及Cu2O@PI‑COF复合材料的制备方法及其在电还原二氧化碳中的应用。将氧化亚铜和三聚氰胺置于Schlenk管中混合,然后加入均苯四甲酸酐,以DMF为溶剂,在氮气保护下,于150℃加热反应15h,所得固体物用乙醇和热水洗涤后,进行梯度加热,所得固体产物用丙酮和热水洗涤,烘干,得到Cu2O@PI‑COF复合材料。本发明得到了一种结构稳定,原料简单易得,重复性好的二维片层结构材料;由该法制备的材料可以提高Cu基催化剂的转化效率,提高二氧化碳电还原产物的选择性,在二氧化碳电还原领域有广阔的应用前景。
本发明提供一种适应桌面加工环境的滑石粉增强尼龙复合材料及其制备方法和应用。该滑石粉增强尼龙复合材料包含以下重量份的组分:尼龙80份~94份,滑石粉5份~10份、表面活性剂0.5份~7.5份,抗氧化剂0.5份~2.5份。根据本发明提供的技术方案得到的产品,具有普通尼龙材料所不具备的易于在桌面级挤出机制备成3D打印线材的优良性能,同时可以保证制备的线材线径均匀、横截面圆度高、力学性能佳,可以应用于3D打印耗材领域,且打印制品表面状态良好。解决了现有的尼龙材料在3D打印线材制备过程中线径难以控制,线材成品横截面圆跳度较大、力学性能较差的问题,进一步推动尼龙在3D打印领域的应用。
本发明属于无机材料制备领域,尤其涉及一种增韧改性PC/PBT复合材料的制备方法。本发明选取POE—g—GMA、PTW、MBS相容增韧剂,对PC/PBT合金材料进行相容增韧改性,并对制备得到的材料性能进行检测分析,研究发现本发明增韧改性的复合材料性能优越,兼备PC(聚碳酸酯)和PBT(聚对苯二甲酸丁二醇酯)的优点。
本发明公开一种氮掺杂石墨烯限域的Pt纳米复合材料及其制备方法和应用。所述氮掺杂石墨烯限域的Pt纳米复合材料为CN@Pt/GO;首先经湿化学还原法直接将Pt纳米粒子负载到石墨烯上,得到Pt/GO;然后采用CVD法,在Pt/GO的Pt纳米粒子表面快速沉积氮掺杂的石墨烯层制得。本发明制备的CN@Pt/GO表现出较好的CO低温氧化的催化性能。由于Pt纳米粒子与石墨烯以及氮掺杂石墨烯的限域作用,提高负载型Pt纳米粒子的电子密度,增强CO的解吸,使CN@Pt/GO的CO低温催化性能比Pt/GO好,从而提高了CN@Pt/GO催化剂的CO低温催化性能。
一种铁铝基复合材料的制备方法,按以下步骤进行:(1)将粒度≤200目的钨矿石粉、铁粉、铝粉和碳粉混合,置于球磨机中混合2~3h,获得混合粉料;(2)在400~600MPa压力条件下压制成压坯;(3)采用CO2激光加工机发射高能激光束点燃压坯表面,引发压坯自蔓延烧结,生成原位铁铝基复合材料。本发明的方法在一种基体上同时生成两种陶瓷颗粒增强相,制备手段先进,原料利用率高,增强颗粒生长可控、尺寸细小分布均匀,且在基体中原位生成,与铁铝合金基体形成的界面结合牢固,提高材料的综合性能。
本发明提供一种制备碳陶基复合材料的微结构设计及性能控制方法,包括下述步骤:(a)对二维碳纤维布进行处理以获得不同表面活性能的二维碳纤维布;(b)将a获得的二维碳纤维布浸入到酚醛树脂胶液中进行充分浸渍,干燥后,在模具中对获得的纤维布进行连续叠加铺层,并在叠加铺层后进行固化和后固化处理,制备不同纤维/树脂结合强度的纤维增强素坯体;(c)将b获得的纤维增强素坯体置于高温石墨炉内,在氮气氛围中加热到900℃以上进行高温裂解,制备不同微结构的碳/碳预制体;(d)将c获得的碳/碳预制体置于高温石墨炉内,在1450-1550℃进行液硅渗透,制备不同微观形貌、基体组织成分和性能的碳陶基复合材料。
一种中孔碳/硅复合材料,其孔径为4.0-11.0nm、 比表面积为300- 1000m2g- 1、孔容为0.4- 1.0cm3g- 1。该材料的制备方法是首先通过水热合成法制 备出中孔氧化硅分子筛,然后在惰性条件下原位碳化或用浓硫 酸预处理后再在惰性条件下碳化,将分子筛孔道中的表面活性 剂直接转变为碳材料。碳化后的产品,一方面能将原粉的结构 有序性完美地保存下来,同时孔径可以在一定范围内能被调 变。
本发明提供一种 Al2O3弥散强化Ti2AlN陶瓷复合 材料,由Ti2AlN基体和 Al2O3强化相组成, Al2O3颗粒弥散分布在Ti2AlN基 体中, Al2O3颗粒为0.8~1.2微米, Al2O3的体积分数为25~50%。其制备方法是:在0.8~1.2个大 气压的N2、 H2和Ar混合气氛中, N2占总气量的2~15%, H2与Ar之体积比为1∶0.8~ 1.2,在连续供给母合金棒的条件下,用氢等离子金属反应制备 方法合成纳米合金粉;再用真空热压方法将纳米合金粉致密 化,温度为800℃~1200℃,压力为40~60MPa,时间为4~ 6h,真空度为2×10-2~5× 10-3Pa。该材料的优点在于:显 微硬度是Ti2AlN的2.5倍,强化 效果显著;呈现金属特性电阻率曲线,室温电阻率是0.5μ Ω·m;热压温度低,时间短可以节约大量能源。
本发明公开了一种气凝胶复合材料的制备工艺。该气凝胶复合材料的制备工艺,包括以下步骤:步骤1、制备纳米纤维素和纳米纤维素悬浮液;步骤2、形成凝胶,将质量分数1%的纳米纤维素悬浮液缓慢倒入异丙醇中,异丙醇和纳米纤维悬浮液按照1:1的体积比例进行反应,混合后静置得到纳米纤维素凝胶块;步骤3、活化凝胶,通过在纳米纤维素凝胶块加入活化液,密封加压超声,得到活化后的凝胶块;步骤4、固化交联,将金属前驱体乙醇溶液倒入步骤3中活化的凝胶块中,进行化学还原反应,得到纳米纤维素‑金属气凝胶块;步骤5、溶剂置换,使用叔丁醇水溶液为置换溶剂;步骤6、干燥得到纳米纤维素‑金属气凝胶材料。
本实用新型涉及包装材料领域,特别是一种加强纤维镁质复合材料垫块。该垫块包括表面包布层,两侧加强木板外夹层和夹在此加强木板外夹层内的纤维镁质复合料内层。所述的加强木板厚度和复合料层的宽度比为4~10∶75,表面包布层为纯棉布、混纺布或化纤布,所述的的木板这三合板、五合板或实木板,可根据用户要求在纤维镁质复合料内层底侧设一纵向凹槽或在加强纤维镁质复合材料垫块顶面设2~5个横向凹槽。这种垫块强度完全能满足重货物运输的要求,而且防滑性能好,表面平整美观,可根据用户选择制作垫块的尺寸和包布的颜色,这种产品符合可持续发展循环经济的趋势。
本实用新型公开了一种镶嵌多沟槽水润滑复合材料轴承,其特征在于,包括轴承外套(1),所述轴承外套(1)内壁均匀设有多个沿平行于所述轴承外套(1)轴线方向延伸的沟槽,所述沟槽上镶嵌有条状塑料(2),所述轴承外套(1)两端设有与所述条状塑料(2)端部贴合且用于轴向固定所述条状塑料(2)的挡圈(3),所述挡圈(3)外沿嵌入所述轴承外套(1)内壁。本实用新型具有良好水润滑性能、抗泥沙、自润滑、耐磨损、尺寸稳定、具有较大的过水面积进行水润滑和水冷却等特点,是一种结构简单新型水润滑复合材料轴承。
一种液态浸渗挤压复合材料过程的速度控制系统,采用在普通液压机中接入电液比例流量阀,并使用PID反馈与数字补偿相结合的控制策略设计出了满足液态浸渗挤压复合材料工艺自动控制要求的速度控制系统。该速度控制系统具有高灵敏度、高精度且有很强的抗负载干扰能力,从而为实现该工艺的自动化生产奠定了基础。
本发明提供了一种硅灰石改性的热塑性树脂复合材料,按照重量百分数计原料中包含以下组分:55%~75%的硅灰石,20%~45%的聚丙烯,4%~8%的马来酸酐改性聚丙烯,1%~5%的钛白粉及1%~3%的抗氧剂。本发明的硅灰石改性的热塑性树脂复合材料,原料易得,制备过程无需高能耗长时间烧制,能耗大幅降低,机械自动化程度高,劳动强度也减轻,成品率高。
本发明属于微波吸收及应用领域,具体涉及一种具有包覆型复合材料吸波贴片及其制备方法。本发明以磁性金属材料为内核材料,外层包覆介电材料制备而成的具有包覆型微波吸收材料,并将材料与聚酯胶黏剂混合涂刷于双面胶带,形成吸波贴片。所述磁性金属材料是Fe、Co、Ni及其合金中的任一种或几种;所述介电材料是SiO2、SiC及金属氧化物等介电材料中的任一种;所述聚酯胶黏剂包括聚醋酸乙烯酯、聚丙烯酸酯中任一种。本发明所制备的包覆型复合材料吸波贴片,具有制备工艺简单、成本低、绿色环保、易于规模化生产等优点。该材料在高频电子设备、防电磁污染、电磁屏蔽等领域具有广阔的应用前景。
一种用于监测复合材料液体成型工艺的传感器及制备方法,其特征在于,制备方法包括以下步骤:(1)将MXene粉末加入到去离子水中,超声剥离得到MXene片层单分散水溶液;(2)将MXene片层单分散水溶液喷射在PU薄膜上,真空烘干得到MXene基体薄膜;(3)将CNT单分散水溶液喷射在MXene基体薄膜上,真空烘干得到MXene‑CNT复合基体薄膜;(4)将MXene片层单分散水溶液喷射在MXene‑CNT复合基体薄膜上,真空烘干得到MXene‑CNT‑MXene三明治结构薄膜;(5)将MXene‑CNT‑MXene三明治结构薄膜从PU膜上剥离,剪裁成圆形,并在直径两端设置电极,得到MXene/CNT传感器。本发明方法制备的MXene/CNT传感器能够布控在任意形状复合材料预成型体的不同位置,进行LCM工艺充模过程的实时在线监测。
本发明涉及一种金属基石墨烯复合材料的制备方法,包括如下步骤:S1、制备氧化石墨烯粉体。S2、向氧化石墨烯粉体中加入金属粉末后一起放入球磨罐中,然后将球磨罐送入旋转式高温能量球磨机中。S3、将旋转式高温能量球磨机升温至金属粉末的熔点以下300℃以内,并保温5~8h。S4、将步骤S3保温结束后得到的物料进行压制成型,然后进行烧结得到金属基石墨烯复合材料。本发明中的制备方法通过石墨烯和金属基体进行球磨的同时,外部施加高温场,借助于旋转式高温能量球磨机,在整个高温场和机械力的作用下,大大增加材料的润湿性和分散性,进而提高了大大提高了材料的强度和导电率,且制备方法简单,适合大规模生产。
本发明属于复合材料结构疲劳测试技术领域,公开了一种基于反向共振的复合材料动态疲劳试验装置及方法,试验装置包括双悬臂梁振动测试系统、电子采集系统和测量与控制系统;本发明采用偏心电机带动待测梁振动,相较于激振器体积小、耗能少,具有方便携带的特点,本发明利用双悬臂振动梁反向共振带动待测梁振动,提高了测试效率,节省了能源,并且相较于现有的测试设备,拓宽了待测梁的振幅范围,本发明对偏心电机进行了精确控制,使用了多种精密仪器对待测材料疲劳特性从光学、声学、时域波形等多个方面进行了测量分析,具有极高的测试精度,本发明设备简单,部件多采取可拆卸式的设计,拆卸方便,便携性好,易操作。
本发明公开一种高强度钢基复合材料滑道,有钢基体(1),钢基体(1)上有纵向凹槽(2),纵向凹槽(2)内固定连接有球形铜粉层(3)、金属丝螺旋簧层(4)及塑料层(5),所述金属丝螺旋簧层(4)由多个金属丝螺旋簧有序排列而成,每个金属丝螺旋簧的螺旋直径为2.6~4.0MM、螺距为2.6~4.0MM,金属丝直径为0.35~0.5MM,相邻金属丝螺旋簧径向相交且中心线间距大于等于螺旋半径,小于螺旋直径。可采用注塑方法复合塑料摩擦表面,代替了传统的模压工艺,增强了复合层致密度、均匀度,产品合格率高、生产效率高、成本低,适合批量生产。
本发明涉及复合材料制备方法,是将基体经过预处理后置入常规电镀槽中,通过超声发生器和脉冲电源为镀槽施加电场和超声场;脉冲超声电沉积的过程一般有以下步骤组成:第一步:电镀前处理:包括a)基体的前处理b)电镀液的配制;第二步:电沉积过程:将第一步经过前处理的基体放入所配置好的电镀液中进行电沉积;第三步:镀件的后处理:主要包括将第二步沉积完成的镀件进行超声清洗,无水乙醇清洗工序。本发明在含有镍、铁离子和不溶性纳米颗粒的电镀液中,利用超声搅拌使纳米颗粒在溶液中均匀分布,施加正负脉冲电流或电压的状态下使纳米颗粒和基质金属离子共沉积而得到由基质金属镍铁与纳米颗粒共同构成的铁磁性纳米复合材料。
本发明公开一种光致发光复合材料及其制备方法,本发明首先对(x=0.01~0.05mol;y=0.01~0.05mol)粉体进行改性,改善其与有机物的相容性,然后再与PVB进行复合。其关键技术在于以硬脂酸为改性剂对进行表面改性,然后与高分子材料PVB复合制备复合发光材料。试验表明,PVB能有效增强的发光强度,按质量比时,复合材料的发光性能及化学稳定性较好。
本发明公开了一种碳纳米纤维/铜复合材料及其作为热电池能量转换器件的应用,首先,对铜片表面进行打磨处理,获得高比表面的铜片材料,使得碳纳米纤维与铜能有很好的接触,利于导热;再在铜表面生长碳纳米纤维获得碳纳米纤维/铜片复合材料。该方法生长的碳纳米纤维在近乎全太阳光波段内具有很高的吸收率,可将太阳辐射能转化成热能;而铜基底具有较好的热导率,能将碳纳米纤维吸收的热量快速传导给热电池的半导体热电材料,集成太阳能‐热电池器件,实现高效率的太阳能‐电能转换。该发明具有良好的工业应用前景及基础科学研究价值。
本发明公开了一种水合物控温储能磁性复合材料及其制备方法,所述的水合物控温储能磁性复合材料包括水合物和水合物支撑体,水合物的支撑体有两层,内层为单质碳,外层为聚合物。制备过程首先利用高压釜以二茂铁颗粒为模板,用无定形碳包裹颗粒;然后用盐酸除去其中的四氧化三铁,除去部分后,将初始材料浸泡到四氢呋喃水溶液中,直到材料中充满四氢呋喃水溶液,制得基底材料颗粒;再将单体、阳离子表面活性剂、引发剂,在基底材料颗粒表面交联形成聚合物层,稳定材料结构,制成最终产物。本发明制得的产品具有控温储能性能,可周期使用,同时具有磁响应功能,可用于电磁屏蔽功能的电子设备及其元件的控温。
本发明提供一种大型复合材料加筋薄壁支架结构的压塑工艺加工方法。本发明方法,包括如下步骤:将模具安装在油压机上;模具预热,当模具到达预设温度后,开模填充物料;物料填充完毕后,上模总成与下模总成半合模,继续加热直至物料达到熔融态;保温一定时间后,材料完全融化后,上模总成与下模总成合模,停止加热;保压一端时间后取出产品。本方法采用的模具结构简单,生产成本低,周期短。适用于生产各种形状复杂大型加筋薄壁高强度纤维复合材料,生产出来的产品可替代应用于某些场合的金属部件,极大减轻了重量,降低生产成本。
中冶有色为您提供最新的辽宁有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!