本实用新型涉及锂电池技术领域,且公开了一种防冻的路灯锂电池,解决了目前路灯用锂电池在天冷时容易冻坏损坏,使得路灯无法使用,以及锂电池更换不便的问题,其所述箱体上端连接有箱盖,箱盖下端两侧均连接有插杆,本实用新型,通过第二电机工作带动第二滑块移动,使得挡板移动,锂电池本体位于第二螺纹杆上端,第一电机工作,使得第一滑块向上移动,带动电动伸缩杆向上移动,方便更换新的锂电池本体,且将锂电池本体固定于箱体内部;通过将箱盖放置于箱体上端,插杆插接于凹槽内部,保温层与防冻涂层能够使得锂电池本体能够保温,可提高锂电池本体的升温效果,使得能够提高锂电池本体的升温效果。
本实用新型提供一种具有防自燃功能的锂电池组,属于锂电池组技术领域,一种具有防自燃功能的锂电池组,包括用于放置锂电池组的壳体和设置有壳体上用于对壳体内锂电池组封装的壳盖,壳体上设置有用于对位于壳体内的锂电池组进行固定的固定组件,壳体的侧面上开设有用于使壳体内的气体流出的气流孔,气流孔内固连有纱网;气流孔可使壳体内的气体与外界的气体流通,进而也就把壳体内锂电池组所产生的热量废气排出,废气排出后也就解决了因废气易导致锂电池组发生燃烧爆炸的问题,纱网可以保证外界的杂物不会进入至壳体内,进而保证了壳体内部的清洁度,当锂电池组发生燃烧时,壳盖能够有效且及时的对锂电池组进行灭火,并且壳盖能够循环使用。
本实用新型公开了一种便携式计算机低温锂电池装置,包括锂电池组,该锂电池组安装于一保护框架内,所述保护框架包括两侧的保护板和设置于两保护板间的背板,所述锂电池组安装于两保护板之间,锂电池组的背部与背板相贴合,两保护板的宽度大于锂电池组的宽度,两保护板间形成第一卡槽,位于保护框架的顶部安装一顶板,所述顶板的顶部设有一滑槽,位于该滑槽内壁两侧各设置一滑轨,两滑轨内部设有一滑板,所述滑板的末端设置一勾板,所述顶板的下端开设有与计算机机箱顶面互相扣合的第二卡槽。本实用新型可拆卸的安装于计算机机箱上,携带方便,减少占用空间,且本实用新型的锂电池组可适用于低温条件下,适用范围更广。
本实用新型公开了一种散热效果好的电动汽车用锂电池散热装置,包括外壳,所述外壳底部外壁的四角均通过紧固螺栓连接有缓冲弹簧,四个所述缓冲弹簧远离外壳的一端均通过紧固螺栓连接有固定片,所述外壳底部内壁的四周通过紧固螺栓连接有同一个第二安装座,所述第二安装座顶部外壁的中间位置通过紧固螺栓连接有锂电池。本实用新型设置有固定片和缓冲弹簧,使得锂电池的安装缓冲、抗撞击能力更强,设置有温度传感器实时监测外壳内的温度高时第一电机开始工作进行散热,将锂电池通过第二安装座和外壳连接,且第二电机可促进锂电池底部的空气流通,提高散热效果,设置有散热片和导热硅脂,提高锂电池的散热效果,延长锂电池的使用寿命。
本发明提供一种锂电池健康状态检测方法和系统,方法包括如下步骤:根据锂电池运行的历史数据得到锂电池的健康特征指标;根据得到的锂电池的健康特征指标对锂电池健康状态模型进行训练,得到训练后的锂电池健康状态模型;在锂电池运行过程中检测其运行的实时数据,从其实时数据中获取锂电池健康特征参数,并结合训练后的锂电池健康状态模型,得到锂电池的健康状态;所述锂电池的健康特征指标包括锂电池的欧姆电阻、容量增量峰值、差分电压拐点、等时间充放电压差、等电压充放时间差和充放电次数,所述锂电池健康状态模型为基于Xgboost算法的模型。本发明提供的技术方案,能够解决现有技术中对锂电池健康状态检测结果不准确的问题。
本实用新型公开了一种用于平衡车的锂电池保护装置,包括外护壳和出线筒,外护壳上端左右两侧以及下端左右两侧均固定有固定耳,外护壳上端中部固定有出线筒,出线筒设置有两个,出线筒中部设置有锥孔,锥孔内放置有橡胶密封锥,上盖外沿设置有螺纹孔,上盖上的螺纹孔对应的出线筒上部位置处设置有螺纹孔,外护壳内部设置有锂电池本体,外护壳内侧壁与锂电池本体外侧壁之间连接有弹簧,外护壳内侧壁与锂电池本体外侧壁之间的间隙内填充有非牛顿流体。本实用新型通过设置外护壳和出线筒,解决了现有的平衡车用锂电池缺乏必要的缓冲保护机构,锂电池内部容易受冲击产生损坏的问题。
本实用新型提供了一种软包锂电池高温加压化成夹具,涉及锂电池制造技术领域。软包锂电池高温加压化成夹具包括用于设置在软包锂电池两侧面的夹板,夹板具有用于对软包锂电池加压的加压面,软包锂电池高温加压化成夹具还包括:调节垫片,所述调节垫片用于设置到所述软包锂电池边缘的较薄部位与所述加压面所形成的楔形空间内;垫片调节结构,设置在夹板上,用于使所述调节垫片的一侧抬升从而以倾斜状态对软包锂电池边缘的较薄部位形成支撑。上述方案能够使软包锂电池在两侧面厚薄不一致时也能够受到相对均匀的挤压力,防止高温化成时软包锂电池产生的气体聚集在其较薄部位,避免了软包锂电池容易出现黑斑、析锂的问题。
本发明公开一种双阴极结构及利用其制得的锂氧电池,双阴极结构包括内层阴极、气体阻挡层、外层阴极。双阴极结构应用在锂氧气电池中,内层阴极为液相催化剂的活化提供了新的电子传递通道,保障了电池持续性的低充电电压,进而减少副反应的发生。通过气体阻挡层来阻止Li2O2在内层阴极的沉积,保证了内层阴极与液相催化剂电子传递的有效进行。外阴极同时具有电子传递、存储Li2O2放电产物的作用。双阴极结构的锂氧气电池解决了副产物在传统锂氧气电池阴极上积累造成液相催化剂无法活化的难题、是迄今为止较为先进的锂氧气电池结构。
本发明提供了一种废旧锂离子电池电解液全回收方法,目的是回收废旧电解液中有价值的锂盐、有机溶剂和添加剂,并且对氟、磷等有害杂质进行无害化处理后回收。本发明经过清洗、清洗溶剂回收、有机溶剂和添加剂回收、氟和磷回收、锂盐回收工序,锂盐最终以碳酸锂的形式回收,有机溶剂、添加剂分离提纯回收利用,氟、磷以沉淀的形式回收利用。此工艺简单,方法可行,对废旧电解液进行充分的回收利用且对环境没有污染,利用此工艺回收废旧电解液各组分,回收率达95%以上,适合大规模工业化应用。
一种高温循环稳定的尖晶石锰酸锂合成方法,其特征在于,将原料锂化合物、锰化合物以及Al2O3、MgO、TiO2、Cr2O3的一种或多种按照化学式Li1+xMn2-x-yMyO4(0<x<0.3,0<y<0.2,M为Al、Mg、Ti、Cr的一种或多种)均匀混合。然后在500~750℃下保温5~20小时,冷却后的产物研磨后在800~1200℃下保温10~30小时,冷却后的产物与一定量的钴、镍、锂化合物(钴、镍、锂和产物中的锰摩尔比为0.02~0.2)均匀混合,再于500~750℃下保温10~30小时。最后产物经冷却后粉碎过筛得到成品。该方法能够有效抑制Jahn-Teller效应,降低锰溶解,降低氧缺陷,从而得到高温循环稳定性优良的尖晶石锰酸锂材料。
本发明涉及一种锂电池阳极材料,及其制作方法,该阳极材料包括碳芯和复合锂金属氧化物层,复合锂金属氧化物的分子式为Li4M5O12-MOx,其中,M为Ti或Mn,且1≤x≤2。上述锂电池阳极材料可适应快速充电。
本发明属于一种利用微乳液制备纳米三元复合锂离子正极材料的方法;包括如下步骤:一、将表面活性剂曲拉通X-100和助表面活性剂正丁醇与环己烷混合,制成乳化剂;二、将镍盐,钴盐和锰盐溶于去离子水中;三、制成镍钴锰盐微乳液;四、配制络合剂碱溶液;五、制备碱微乳液;六、将镍钴锰盐微乳液加入反应釜中;七、向镍钴锰盐微乳液中滴加碱微乳液,制成浊液;八、将浊液静置,制成NixCoyMn1-x-y(OH)2前驱体;九、将NixCoyMn1-x-y(OH)2前驱体与锂化合物球磨混合均匀,过筛;十、将过筛混合物制备为纳米球形的LiNixCoyMn1-x-yO2正极材料;具有良好的循环稳定性的优点。
本发明提供了一种锂离子电池循环寿命预测的方法,包括以下步骤:(1)制备锂离子电池正极片,并控制涂布后正极片的失重比小于0.2%;(2)使用四探针阻抗测试仪测量步骤(1)中正极片的阻抗值R1,随后测试用步骤(1)中的正极片制备的电池的循环测试寿命次数L1;(3)制备与步骤(1)为不同批次的锂离子电池正极片,并控制涂布后正极片的失重比小于0.2%;(4)使用四探针阻抗测试仪测量步骤(3)中正极片的阻抗值R2;(5)通过计算预测出用步骤(3)中的正极片制备的锂离子电池的循环寿命L2。本发明的优点是通过测量碾压后正极片的阻抗值和封装后电池的循环寿命,预测封装后电池寿命,从而在电池制备前预知其寿命,缩短研发、生产周期。
本发明涉及一种应用于锂硫电池的复合粘结剂及其制备方法,属于锂硫电池技术领域。本发明的应用于锂硫电池的复合粘结剂,包括过渡金属有机配位化合物和粘结剂;所述过渡金属有机配位化合物由有机配体和可溶性过渡金属盐反应制得。本发明的应用于锂硫电池的复合粘结剂中的过渡金属有机配位化合物在极片烘干过程中通过自组装形成具有分子内孔隙的有机‑无机杂化材料,使得电解液通过孔隙能够很好地浸透极片,从而改善极片的离子传导性,在极片活性层较厚的情况下,保证离子传导能够到达整个活性层;同时形成的有机‑无机杂化材料中的金属元素对硫化物的化学反应有催化作用,能够提升电池的能量密度。
本发明公开了一种耐高温循环型锰酸锂正极材料的方法,采用纳米二氧化锰和电池级碳酸锂作为主原料,再加入纳米氧化钇或纳米氧化钴中的一种或多种作为添加剂,将主原料与添加剂在斜式混料机中混合均匀,再将混合均匀的物料于720~850℃预烧结18~23小时,烧结后加入纳米氢氧化铝、纳米氢氧化镁、纳米氧化锌或纳米二氧化钛中的至少两种进行包覆处理,然后于650~750℃烧结12~17小时,最后均化过筛得到耐高温循环型锰酸锂正极材料。本发明制得的锰酸锂材料颗粒均匀,粒度呈正态分布,加工性能优越,具有较高的克比容量,25℃,1C克容量可达105mAh/g以上,在具备超高克比容量的同时兼顾优越的循环性能,1C循环可达1000次以上。
本发明提供了一种镍钴锰酸锂薄膜材料的制备方法,包括如下步骤:(1)将镍源、钴源、锰源、锂源的金属粉末加入含有乙基纤维素的松油醇溶液中球磨均匀后,用丝网印刷法在氧化铝薄板上制备薄膜后烘干;(2)将步骤(1)得到的氧化铝基板薄膜材料放在马弗炉中经过煅烧后制得镍钴锰酸锂薄膜材料。用发明的材料做正极材料,金属锂为负极,组装扣式电池,电性能和循环性能均有较大幅度的提升。
本发明涉及一种多孔硅碳复合负极材料及其制备方法、锂离子电池,属于锂离子电池技术领域。本发明的多孔硅碳复合负极材料的制备方法,包括以下步骤:将金属盐、有机配体、纳米硅和改性碳纳米管在溶剂中分散均匀,反应生成金属有机框架化合物后,除去溶剂,得到金属有机框架化合物/硅/改性碳纳米管复合材料,碳化处理,即得。本发明的制备方法,以金属有机框架化合物为碳源,和改性碳纳米管共同形成对纳米硅的包覆,金属有机矿框架化合物在碳化后能够为锂离子扩散提供通道、并缓解嵌锂过程中硅体积的膨胀,改性碳纳米管形成的网络结构不仅能够提高硅碳复合负极材料的导电率,还能够进一步缓解纳米硅的膨胀,降低硅碳复合负极材料的膨胀率。
本发明公开了一种含碳纳米管的钛酸锂浆料的均匀混料方法,属于高倍率锂离子电池混合浆料的制备技术领域。本发明的技术方案要点为:一种含碳纳米管的钛酸锂浆料的均匀混料方法,以粘结剂和溶剂为原料制备胶液,加入碳纳米管制备导电胶液,再将导电剂与主料形成的混合干料与导电胶液按照特定的工艺混合即得含碳纳米管的钛酸锂浆料。本发明有效解决了高比表面钛酸锂与碳纳米管的应用造成浆料无法均匀混合,进而造成涂布工序出现较多干粉和划痕,烘烤过程出现极片起皮现象,影响电池性能等问题。
本发明涉及锂电池技术领域,具体揭示了一种锂电池浆料制备箱及其操作方法,包括制备箱体,制备箱体底部的中心处固定连接有伺服电机,伺服电机的输出端固定连接有转轴,转轴的顶部贯穿至制备箱体的内腔并固定连接有外搅拌机构,转轴两侧的底部均固定连接有内搅拌机构,内搅拌机构位于外搅拌机构的内侧。本发明通过振动电机的工作使筛板在凹槽的内部滑动,通过筛板的移动使弹簧发生形变,随后在筛板晃动下通过筛孔对原料进行过滤筛选,达到了过滤功能的优点,解决了现有的锂电池浆料制备箱在使用时不具备过滤的功能,往往锂电池原料中会伴有杂质,以至于搅拌混合出的锂电池浆料质量降低,因此不便于人们使用的问题。
本发明公开了一种锂离子电池固体电解质界面添加剂的制备方法,包括:冰水浴下将聚乙二醇与甲基丙烯酸甲酯溶解并除氧,通氮气引发聚合;加石油醚分离沉淀,洗涤、干燥后得锂离子电池固体电解质界面添加剂。本发明还公开了以上制备的锂离子电池固体电解质界面添加剂的应用:将其溶解在二氧戊环中,加入2倍质量的纳米Li7La3Zr2O12调成浆料,涂覆在锂离子电池固体电解质膜的一面,干燥;将锂带贴在锂离子电池固体电解质涂覆上述浆料的一面,正极极片贴在另一面,热压在铝塑膜中得全固态锂离子电池。本发明制得锂离子电池固体电解质界面添加剂杂质少、阻抗小、机械强度高。由本发明的锂离子电池固体电解质界面添加剂制备的全固态锂离子电池循环性能好。
本发明涉及一种高倍率石墨负极材料及其制备方法、锂离子电池。该高倍率石墨负极材料包括石墨内核和包覆在石墨内核表面的硬碳材料层,所述硬碳材料层掺杂有氮化锂。本发明提供的高倍率石墨负极材料,利用氮化锂对硬碳材料进行掺杂改性,一方面可以利用内核和硬碳材料的亲锂性,建立内核和包覆层的结构联系,提高内核和包覆层的亲和性和结构稳定性;另一方面,利用氮化锂掺杂可在碳层中形成晶格缺陷,提高电子的流动性,增加储锂结合点,同时还可以增加碳基材料的层间距,提高锂离子的迁移速率,该石墨负极材料具有结构稳定性好、层间距大、储锂结合点多、锂离子和电子传输速率快的特点,可以极大程度改善锂离子电池的快充能力。
本发明涉及一种金属锂复合电极及其制备方法,属于电池的电极领域。该金属锂复合电极包括集流体和金属锂复合材料,集流体提供三维多孔网络骨架,金属锂复合材料通过粘接剂粘接在所述三维多孔网络骨架的孔中以及外表面上;所述金属锂复合材料由惰性锂粉、导电剂、无机快离子导体材料构成;所述金属锂复合材料中,导电剂的质量含量为0.5‑10%,无机快离子导体材料的质量含量为1‑20%。本发明提供的金属锂复合电极,集流体、粘接剂与金属锂复合材料形成类混凝土网络结构,这种类混凝土网络结构可以保证金属锂充分反应的同时使整个电极保持稳定的结构。
本实用新型公开了一种海水中锂离子高效分离装置,包括圆桶形并设有阳极电极和阴极电极的电透析槽,该电透析槽中由内向外设置有与所述电透析槽形成同心圆结构的第一锂离子选择透过膜和第二锂离子选择透过膜,第一锂离子选择透过膜和第二锂离子选择透过膜由支撑柱支撑,所述支撑柱以电透析槽的中轴线为中心呈圆周阵列。本实用新型采用圆形的渗透膜,并且能够双向分离,提高了锂离子的分离效率。
本发明提供了氯化物型含钾地下卤水联合提取钾、硼、锂的方法,采用蒸发工艺析出氯化钠,富集卤水;浓缩一定倍数后,采用离子交换法提取硼酸;吸附后液用芒硝沉淀钙,消除钙对后续提锂工序的影响;沉钙母液经高温蒸发析出钠盐,低温冷却结晶析出钾盐;析钾母液采用沉淀法提取碳酸锂,提锂后的老卤返回至起始蒸发阶段循环利用。本发明通过前期蒸发析出氯化钠,使钾、硼、锂得到富集和浓缩,经离子交换法分离和提取硼酸,有效解决了地下卤水中硼、钾高浓度共存下不易有效分离的技术难题。
本发明涉及一种硬壳锂离子电池的浸润方法,属于锂离子电池制备技术领域。本发明的硬壳锂离子电池的浸润方法,包括以下步骤:1)将注液后的硬壳锂离子电池内抽真空至表压为‑70~‑30KPa,保压,卸真空;2)按照以下方式进行循环静置:将硬壳锂离子电池抽真空至表压比相邻前一次抽真空时表压低不超过30KPa,保压,卸真空,注入惰性气体保压,卸压。本发明的浸润方法,通过控制注入电解液后的硬壳电池内的表压逐渐减小,既能在初期电芯内溢出气体较多时避免电解液溢出,还能在循环静置过程中随着溢出气体减少而减小抽真空的表压,加快浸润过程而不致电解液溢出,在提高浸润效率的同时,大大减少了电解液的溢出。
本发明属于镁锂合金材料技术领域,具体涉及一种镁锂合金箔材及其制备方法和应用。本发明通过大变形量热挤压开坯,将镁锂合金铸锭卷曲成1.5~3.5mm厚的合金卷带,然后通过采用配有张力辊组和卷曲机的四辊铝箔轧机进行多道次卷式降温轧制,即获得镁锂合金箔材,其厚度最薄可轧至0.014mm。本发明所述箔材的制备流程短、效率高、残余应力少、晶粒细小,箔材平整无毛刺,成品率高,可达80%以上。上述镁锂合金箔材用于制备振膜或振膜球顶基材,且具有良好的减震性能和高保真性。
本实用新型公开了一种锂电池加工用的夹持工装,包括定位杆、固定底座和固定腿,所述固定底座底端的两侧均固定连接有固定腿,所述卡块的一侧固定连接有连接轴,且连接轴的一侧固定连接有磁力板。本实用新型通过将连接板先和定位杆进行固定,然后在连接板的一侧固定好固定槽,并且将连接轴的一侧与磁力板相互连接,将其另一侧与卡块相互连接,紧接着将卡块卡入固定槽的内部与其内部的连接键相互固定,同时被限位块进行限位固定,然后滑动定位杆之后,使得磁力板会发生位移,由于磁力板具有磁性,会与锂电池发生反应,将锂电池吸引固定,从而使得在夹持的过程中更加稳定,且不易对锂电池造成损坏。
本实用新型公开了一种锂电池处理回收装置,包括废料处理室,所述废料处理室的内部两侧安装有喷液头,所述废料处理室的一侧安装有取液头,所述废料处理室的内部安装有搅拌器,所述晃动挤压板的一端安装有偏心轴结构,所述碾碎室的顶部安装有破碎室,所述破碎室的一侧安装有第二电机,所述破碎室的一侧安装有送料带,所述送料带上设置有锂电池放置槽,所述送料带的一侧安装有第一电机,所述送料带的一端上方安装有进料斗。本实用新型安装有送料带,在送料带上设置有锂电池放置槽,通过其大大方便了锂电池的输送,方便了送料,且中和液储存箱安装在支撑架上,方便使用,方便处理液的储存。
本实用新型涉及一种锂电池模组的连接结构,电池单体纵向排2列形成电池组,多个电池组横向以正、负极相间的形式排列,在纵向排列的电池组的正极和负极焊接极连接片,极连接片包括镍带和铜条,铜条比镍带长,焊接好的极连接片的铜条折弯后焊接到锂电池模组顶面和底面的绝缘板上,两个极连接片为一组,一组内的2个铜条的上端和下端通过焊接回路连接片实现电性相连,一个极连接片输出模组总正,另一个极连接片输出模组总负,整个锂电池模组通过极连接片和回路连接片形成一个完整的回路。本实用新型的连接片无需开模定制,可适应多种不同排列方式的锂电池模组的连接,通用性强,极大节约了企业生产成本,并提高了生产效率。
本实用新型公开了一种锂电池前处理装置,包括预冷装置和暴力短路放电装置;预冷装置包括传送组件和冷媒射流装置,冷媒射流装置设置于传送组件之上,用于冷却置于传送组件之上的锂电池;暴力短路放电装置包括安装板、伸缩机构和V形传输机构,伸缩机构固定安装于安装板上,伸缩机构的自由伸缩端朝下,且伸缩机构的自由端安装有一暴力破碎刀具;本实用新型先通过预冷装置对待回收的锂电池进行低温处理,从而使吸收冷量后的锂电池在短路放电过程中吸收化学反应所产生的热量,使短路放电过程后电池的稳定在安全可控范围内,降低电池发生爆炸的风险,使短路放电过程更加安全,而且提高了工作效率。
中冶有色为您提供最新的河南有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!