一种分解白钨精矿的方法,采用草酸分解白钨精矿,过滤得到分解液和分解渣,对分解液进行萃取、反萃、蒸发结晶得到APT产品,分解渣采用硫酸处理得到再生的草酸,再生的草酸可返回分解白钨精矿,循环使用。本发明采用草酸直接常压条件下分解白钨精矿,白钨精矿中的三氧化钨的分解率可以达到99%以上,分解液经萃取后,钨的萃取率可达到99%以上,整个工艺可以得到零级APT产品。本发明能够显著降低白钨精矿的分解成本,简化分解设备,便于操作。
本发明涉及一种循环设备,尤其涉及一种冶金炼钢用厂房内空气快速循环设备。本发明要解决的技术问题是提供一种快速调节空气对流循环速度、合理调节设备的使用范围和增加空气湿度的冶金炼钢用厂房内空气快速循环设备。为了解决上述技术问题,本发明提供了这样一种冶金炼钢用厂房内空气快速循环设备,包括有第一安装板、滑轨、滑块、第二安装板等;第一安装板顶部左侧镶嵌有滑轨,滑轨顶部左右对称滑动式连接有滑块,左右两侧滑块顶端设有第二安装板,第二安装板顶部设有空气循环装置。本发明通过左右两侧第一叶片高速转动,加快空气对流循环速度,便于厂房内的空气与外界空气快速交换,为工人营造了舒适安全的工作环境。
本发明涉及一种反应釜,尤其涉及一种用于稀土冶金的反应釜。本发明要解决的技术问题是提供一种搅拌均匀、清洗完全、工作效率高的用于稀土冶金的反应釜。为了解决上述技术问题,本发明提供了这样一种用于稀土冶金的反应釜,包括有底板、左支架、反应釜、上盖体、混料箱、搅拌装置等;底板顶部左侧设有左支架,左支架右端设有反应釜,反应釜左侧上下两端铰接式连接有上盖体和下盖体,反应釜内设有混料箱,混料箱内设有搅拌装置,混料箱底部中间开有通孔,反应釜下部设有锁紧装置。本发明达到了的效果一种搅拌均匀、清洗完全、工作效率高的用于稀土冶金的反应釜。
本发明公开了一种从离子吸附型稀土矿中提取稀土的方法,通过浸取剂浸取离子吸附型稀土矿获得稀土浸出液,然后往稀土浸出液中加入钙碱性化合物进行除杂,在除杂母液中加入氯化镁、氯化钠、氯化钾中的至少一种,控制钙碱性化合物沉淀过程中氯离子浓度、温度和pH,以此达到增加硫酸钙溶解度的目的,减少沉淀过程硫酸钙的生成。同时在高盐度等相关条件下,钙碱性化合物沉淀体系中的稀土离子和氢氧根离子的迁移速度减弱,有效的控制了氢氧化稀土的过饱和度,有利于氢氧化稀土的晶型沉淀。该方法革除了氨氮污染,减少了钙碱性化合物沉淀过程硫酸钙的形成,降低生产成本的同时获得了纯度合格的产品。
本发明涉及一种提纯装置,尤其涉及一种用于稀土粉料的新式提纯装置。本发明要解决的技术问题是提供一种用于稀土粉料的新式提纯装置。本发明提供了这样一种用于稀土粉料的新式提纯装置,包括有管板、左右晃动装置、磨料装置、过滤网、电磁铁Ⅰ等;管板的上方设置有左右晃动装置,磨料装置与左右晃动装置相连接,过滤网位于管板内的下部,过滤网与管板的内壁通过螺钉连接的方式连接,过滤网的下方左右对称式设置有电磁铁Ⅰ,电磁铁Ⅰ与管板的内壁通过螺栓连接的方式连接。本发明所提供的一种用于稀土粉料的新式提纯装置,通过采用管板、左右晃动装置和磨料装置相分离的结构,极大的方便了工作人员对本装置的维护维修,省时省力,节约企业资源。
本发明公开了一种稀土料液除铈及非稀土杂质的方法,包括如下步骤:S1、对铈含量超标的稀土料液进行检测分析,测定稀土料液的稀土含量、酸度、稀土元素配分、非稀土杂质含量;S2、在沉淀桶中往步骤S1中所述铈含量超标的稀土料液加入中和吸附转型剂;S3、加入氧化还原剂;S4、陈化静置,过滤得到的滤液为合格的稀土料液,分析滤液的稀土含量、酸度、稀土元素配分、非稀土杂质含量;过滤得到的滤饼为高铈高杂质富集物,集中后回收其中稀土及有价元素。本发明可以实现降低产品中铈的含量,达到产品质量标准要求,并且可以降低料液中的Fe、Ca、Si、Al等非稀土杂质含量。
本发明涉及稀有金属分离科学领域,提供一种LX363树脂分离钨酸铵溶液中钨和钼的方法。包含LX363树脂预处理、钨酸铵溶液预处理、吸附、解吸、洗涤等步骤。该方法,首先将LX363树脂进行预处理,装入吸附柱中,然后将预处理好的钨酸铵溶液,通过吸附柱进行吸附,吸附完成,进行解吸,解吸完成,进行洗涤,完成1个周期后,进入下一个循环周期。通过LX363树脂对钨酸铵溶液中Mo优先吸附的性能,完成钨和钼的分离。本发明的钨和钼分离的方法,可以将钨酸铵溶液中的钨和钼高效分离,具有成本低廉、选择性高、无危险废物产生的特点。
本发明公开了一种将铅冰铜和锌铜渣联合处理的工艺。该方法的步骤为:称取铅冰铜破碎研磨成颗粒,将颗粒与含酸溶液混合,再加入添加剂a后进行加压氧化浸出,得到浆料;将得到的浆料放入常压反应釜中再投入锌铜渣,鼓入空气进行氧化浸出,得到酸浸渣和酸浸液,酸浸渣送至铅冶炼炉回收铅银;将得到酸浸液进行电积脱铜,得到国标阴极铜和脱铜后液,且所述脱铜后液能够作为铟和锌回收原料。该方法具有综合回收效果好,对原料适应性强,过程清洁环保,对设备要求低,操作简单,容易实现连续化等特点;铅冰铜中的铜浸出率达到96%,铟达到81%;锌铜渣铜浸出率达到98%,锌浸出率达到97%,电积脱铜得到满足国标要求的A级铜。
一种稀土碱法沉淀转化分解及分离方法,用碱转工序所得的氢氧化稀土皂化P507有机相,通过提高料液浓度、控制溶液pH以及调节相比、级数等条件解决直接皂化方法由于氢氧化稀土颗粒小、杂质含量高和表面含氟磷及浮选药剂导致的乳化分相困难等问题。利用较高浓度的稀土溶液与酸性膦类萃取剂接触萃取,产生的H+进入水相与氢氧化稀土反应,实现有机相连续皂化和氢氧化稀土溶解目标,使水相一直处于循环状态,不产生皂化废水。萃取平衡后出口有机相稀土负载浓度可以根据要求在0.16‑0.23mol/L范围调控。萃余水相pH值最低可降至‑0.5,可直接溶解碱转稀土。将氢氧化稀土酸溶解与有机相碱皂化联动,大大减少酸碱消耗和分离成本。
本发明公开了一种从锂离子电池正极材料中回收钴的方法,a)将钴酸锂与还原剂混合得到钴酸锂混合物;b)共晶溶剂作为浸出剂加入到钴酸锂混合物中,在搅拌的条件下与含有还原剂的钴酸锂反应;c)反应结束后过滤,固液分离得到浸出液;d)向浸出液中加入LIX984萃取液,定向萃取铜,得到萃余液和含铜有机物;e)向萃余液中加入萃钴萃取剂萃钴,得到含钴有机物和含锂、铝萃余液;f)向含锂、铝萃余液中加入萃铝萃取剂萃铝,得到含铝有机物和含锂萃余液;g)含锂萃余液通过添加沉淀剂回收金属锂。本发明采用上述结构的一种从锂离子电池正极材料中回收钴的方法,具有工艺流程简单,金属的浸出率、回收率高、浸出剂绿色环保等优点。
本发明涉及用于浸取离子吸附型稀土矿物的浸取剂浓度的测定方法,其特征在于,包括以下步骤:将原生稀土矿物样品分散在水溶液中,得到待分析液,其液固比预设为R1;将浸取剂溶液分若干次加入所述待分析液中以滴浸稀土离子,每次滴浸后分析所述待分析液的上清液的稀土浓度;当第N次滴浸后所述上清液的稀土浓度相较于第N‑1次滴浸后所述上清液的稀土浓度增加幅度小于1%时,停止滴浸,从而得到该浸取剂对该原生稀土矿物样品在所述液固比下平衡浸取的最优浸取剂浓度C1,所述最优浸取剂浓度C1为第1次至第N次所用浸取剂溶液之和在所述待分析液中的浓度;根据公式,计算得到该浸取剂对该原生稀土矿物样品的所属矿物在用于非平衡浸取时的浸取浓度C2。本申请方法步骤简单,流程短,消耗少。
本发明公开了一种高硫冶炼渣的处理方法,包括以下步骤:将高硫冶炼渣与溶液混合,送入反应釜中加热至一定温度后停止加热,待温度降低至105‑115℃时开启保温,并维持一段时间,然后停止保温,待温度降低至室温后取出釜内物料,先过20~30目筛网,筛上物为粗硫磺,筛下物进行固液分离,得到滤渣和滤液,滤渣为铋、铅、铜、锌、镍等有价金属富集物,送有价金属回收,滤液送废水处理。本方法可将高硫冶炼渣中的单质硫分离,使冶炼渣中的有价金属得到显著的富集,成为具有提炼价值的金属精矿,具有流程短、单质硫分离效果好、成本低、简单易实施等特点。
本发明涉及锂离子电池领域,特别涉及一种废旧磷酸铁锂材料再生方法、废旧磷酸铁锂材料再生装置、电子设备、计算机可读存储介质。其中,废旧磷酸铁锂材料再生方法包括:将含有废旧磷酸铁锂材料的待回收物进行前处理,得到第一回收物,其中,第一回收物包括废旧磷酸铁锂材料;将第一回收物中加入再生液进行反应,得到第二回收物,其中,再生液包括含有还原性的有机酸、锂盐、无机酸;再生液的pH值为7.0±0.5;将第二回收物进行后处理,得到再生磷酸铁锂材料。解决了在废旧磷酸铁锂材料湿法再生过程中,使用大量酸液和碱液、回收效益低,污染环境的问题。本发明还提供一种废旧磷酸铁锂材料再生装置、电子设备和计算机可读存储介质。
本发明提供了一种从废旧锂电池全面回收有价元素的方法,属于锂电池材料回收技术领域,本发明将废旧锂电池进行简易拆解,利用废旧锂电池正负极片中的铝和石墨将正极材料钴、镍、锰的氧化物熔融还原后形成合金,正极材料中的氧化锂与助剂反应后以烟灰的形式回收,少量未被还原的氧化物与助剂形成熔渣,从而实现废旧锂电池有价元素的全面回收,制备工艺简单且不会产生废水等物质,同时生成的熔渣可以作为水泥或其他建筑材料的添加剂,有价元素的回收率较高。实施例的结果显示,采用本发明的回收方法,镍、钴、铜的回收率达到99%以上,锂的回收率达到90%以上,锰的回收率达到84%以上。
本发明涉及从稀土萃取分离第三相中回收稀土和有机相的方法。包括渗滤、破乳、反萃、洗涤部分。萃取第三相经过自然渗滤及振动渗滤后,回收夹带的稀土料液和有机相返回使用;分离液相后的固相与3~5wt%可溶性碳酸氢盐(或碳酸盐)溶液,按照体积比V第三相∶V碳酸盐=1∶1~5∶1混合,在搅拌罐中加热至50~80℃搅拌0.5~3小时破乳,经静止分相1-3小时后分离水相和有机相;有机相用3~6N酸按照体积比V有机相∶V酸=1~5∶1混合后搅拌1~3小时反萃,有机相再经水洗至洗涤水pH=2~3后返回使用。本发明特点操作简单,稀土和有机相回收率高;回收的稀土和有机相保持原有性质。
本发明涉及一种离子型稀土矿浸矿除杂沉淀的新方法,它由离子型稀土矿的浸出、稀土浸出液的除杂、除杂后稀土溶液的沉淀和稀土灼烧等工序所组成。其特征在于:在离子型稀土矿池浸或原地浸矿中加入由(1-10%)氯化钙和(0.5-2%)氯化铵所组成混合浸矿剂;对稀土浸出液用重量比为氧化钙∶水=1∶(2~20)的氧化钙进行调浆制得的石灰乳调整PH(5.0~5.4)进行除杂;除杂后,稀土溶液用氧化钙或用氧化钙和晶种组成混合剂作沉淀剂沉淀稀土(用量为稀土量∶氧化钙、晶种为1∶(2~3)∶(1/3~3),在新加入晶种或留有晶种的沉淀池中,用石灰乳调溶液PH8.0~9.0来沉淀稀土。本发明稀土沉淀率高,对废水进行回收利用,有利于环保,同时进一步降低生产成本。
一种利用铌钽含氟废水制备稀土抛光粉并回收铵盐的方法,所述含氟废水是用氨水沉淀钽或铌后的滤液,主要含氟化铵和硫酸铵。往该废水中加入过量的稀土镧铈的可溶性盐,包括硫酸盐、氯化物、醋酸盐和硝酸盐中的一种或多种的组合,使氟充分被沉淀,再加入碳酸氢铵沉淀过量的稀土。过滤得到的沉淀为稀土碳酸盐和氟碳酸盐,经烘干、煅烧、粉碎分级得到合格稀土抛光粉;滤液经浓缩结晶、离心分离得到相应的铵盐,可以用作离子吸附型稀土的浸矿剂。本发明在解决铌钽生产废水中氟、铵的环境污染问题的同时开发出了含氟稀土抛光粉和稀土浸矿剂两类产品。实现了物质的高值化应用和环境保护双重目标,对铌钽生产和稀土的应用以及环保产业的发展有着十分重要的意义。
本发明公开了一种合成仲碳伯胺N1923的工艺,酮化反应原料为以C10-12为主要成分的精制脂肪酸,酮化反应温度为290-340℃,采用[Fe]-ZrO2-MnO2复合催化剂催化酮化反应;[Fe]-ZrO2-MnO2复合型催化剂中含铁物质、ZrO2和MnO2活性组分占催化剂总质量的5-30%,三组份的物质的量之比依次为0.5-1:1-2:1-3。本发明采用复合型催化剂催化脂肪酸酮化反应,反应温度低、速率快、时间短,收率大大提高,解决了脂肪酸酮化困难的问题。高真空分馏技术可提高原料C10-12脂肪酸的纯度,达到去除杂质,改善最终产品N1923质量的目的。
一种利用水葫芦从低浓度稀土溶液中富集回收稀土的方法,包括:在10℃以上,pH3-7之间的低浓度稀土溶液中放养水葫芦,使溶液中的稀土以及部分氨氮能被水葫芦吸收并富集在其根茎叶中;将开始泛黄的吸收稀土达到饱和的水葫芦取出,经压榨脱水,干燥;将所得的水葫芦用作燃料或生物质能转化,然后从灰尘或残渣或渣液中回收稀土。根据溶液中稀土和氨氮含量范围,分别采用单级和多级处理模式,使排放水中稀土和重金属离子以及氨氮等指标均达到国家排放标准。该方法尤其适合于从大量的离子吸附型稀土尾矿渗淋废水中回收低浓度稀土,操作简单、成本低,具有显著的经济和环境效益。
一种铜电解液沉淀脱杂的方法,是往铜电解液中加入锑化合物作为沉淀剂,将铜电解液中的砷、锑、铋共沉淀脱除,脱杂后铜电解液直接返回电解系统,含砷、锑、铋的沉淀采用梯度控温火法综合回收。沉淀首先在惰性气体保护下,进行低温分解得到低温分解气体和低温分解渣,低温分解气体经冷凝得到砷化合物,低温分解渣在气氛控制下进行高温分解,得到铋化合物和高温分解气体,高温分解气体经冷凝得到锑化合物,作为沉淀剂返回铜电解液沉淀脱杂工序。本发明将铜电解液中砷、锑、铋高效脱除同时,将砷、锑、铋以高纯化合物形式分别单独回收,具有流程短、操作简单、脱除率高、无“三废”排放、沉淀剂可重复使用、成本低廉等特点,适合大规模工业生产。
本发明采用甲酸钠等做络合剂,通过选择合适的络合剂对盐酸溶液中的铁进行优先络合,改变其离子存在形态,避免在沉淀阶段铁快速大量水解沉淀及由此带来的铬夹带损失。本发明通过调整络合剂及其用量、初始溶液pH、络合温度、络合时间等来提高铁离子的络合效果,进而通过氧化镁等碱性介质调整溶液pH值,实现铁优先水解沉淀以及与铬的有效分离。固液分离后的铬溶液可直接用于制备不同铬盐。与现有其他技术相比,操作工艺简单,无需特殊复杂设备,是一种经济有效、易于操作的新方法。
本发明公开了一种采用溶剂置换结晶法从水溶液中结晶氯化钙的方法,包括以下步骤:(a)配置氯化钙溶液,通过泵将有机溶剂和氯化钙溶液同时加入至结晶器中并开启搅拌连续搅拌一段时间;(b)从结晶器底部将料液放出,固液分离得到氯化钙结晶和有机滤液;(c)洗涤氯化钙结晶;(d)通过低温或真空蒸馏分离有机滤液,回收有机滤液中的有机溶剂;(e)步骤(d)中蒸馏的有机溶剂返回结晶器循环使用。本发明采用上述结构的一种采用溶剂置换结晶法从水溶液中结晶氯化钙的方法,能够解决传统蒸发结晶高能耗、对设备腐蚀性要求高的问题,而且得到的结晶产物纯度高,整个工艺流程操作简单、分离效率高、设备投资低、运行成本低、环保无污染。
本发明公开了一种络合‑离子交换协同作用从稀土料液中吸附除铝的方法,通过采用水杨酸衍生物作为有机配体对稀土溶液进行处理,随后采用D290型阴离子交换树脂对铝离子与有机配体反应生成的络合阴离子进行吸附,实现从料液中去除铝离子。通过对有机配体的用量、反应温度、溶液的pH值、稀土料液通过树脂柱的流速的控制可以实现稀土料液中铝离子的去除率达70%以上,而稀土的损失不超过5%。与现有的技术相比,络合‑离子交换协同作用从稀土料液中吸附除铝的方法对设备要求低,操作简单,无需萃取法要进行多级萃取从而需大量厂房面积,同时避免了氢氧化铝絮状沉淀难以过滤且夹带严重的问题,并且所用D290型阴离子交换树脂可循环使用,降低了生产成本。
本发明公开了一种反加料沉淀‑分段焙烧制备低硫含量稀土氧化物的方法,通过往碱性沉淀剂中缓慢加入硫酸稀土溶液,控制沉淀反应温度,沉淀后进行水洗,固液分离,获得氢氧化稀土,根据氢氧化稀土中硫含量来控制焙烧条件,最终得到稀土氧化物。该方法采用反加料沉淀的方式,使体系一直处于碱过量的状态,同时控制沉淀反应温度,最终通过改善焙烧制度,从引入控制和焙烧去除两个方面降低稀土氧化物中的硫含量,最终获得硫含量低于0.2 wt.%的稀土氧化物。
二进三出分馏萃取分组分离中钇富铕矿和高钇矿的方法。在1个分馏萃取体系中设有2个稀土料液进料口和3个稀土产品溶液出口,第三出口设于洗涤段或萃洗段。以P507为萃取剂,同时处理中钇富铕矿和高钇矿2种稀土矿的氯化稀土溶液,获取轻稀土元素“La~Nd”产品、重稀土元素“Ho~Lu+Y”产品和中重稀土元素“Sm~Dy”富集物3种产品。与现有相应的稀土分馏萃取工艺相比较,以P507为萃取剂,二进三出分馏萃取~Nd/Sm~Dy/Ho~分组分离中钇富铕矿和高钇矿工艺,其皂化碱的消耗量下降15%~65%、洗涤酸的消耗量下降16%~70%、萃取槽级数下降28%~48%,稀土分离的成本明显下降,工艺的绿色化程度显著提高。
本发明涉及回收钴技术领域,且公开了一种全捞萃取分离回收钴的方法,包括以下步骤:物料氧化:原料与盐酸按重量比为1:0.06‑0.18的比例配料,加入1.0‑2.5mol/L盐酸搅拌均匀,平铺于潮湿环境的地面10‑15cm厚;碾磨粉碎:将步骤①所得的原料粉碎至粒度为120‑150目;优溶浸出:将氧化灼烧后的物料加入盐酸进行优溶浸出,对浸出产物进行固液分离,分离后得到优溶浸出液和优溶废渣。该一种全捞萃取分离回收钴的方法,通过采用物料氧化、碾磨粉碎、优溶浸出、萃取分离、加酸沉淀、加碳酸盐沉淀、清洗烘干,最终得到纯度较高的钴元素,且消除了草酸或碳铵沉淀洗涤废水对环境污染的现象,从而达到了使用氨水消除水污染现象的效果。
本发明公开了一种净化钨酸钠溶液的净化工艺,包括如下步骤:S1:钨酸钠溶液的调酸中和,调酸中和所用的酸为无机稀酸,优选为稀硫酸;S2:镁盐溶液加入,加入镁盐的量的按照钨酸钠溶液中P、As、Si按摩尔比例计算公式为n(Mg)=X×n(P)+Y×n(As)+Z×n(Si);其中X值的范围为1‑30,Y值的范围为1‑30,Z值的范围为1‑20;S3:加热保温,钨酸钠溶液加热的温度为40‑100℃,优选为70‑80℃;S4:冷却过滤,对S3中加热保温之后的钨酸钠溶液冷却过滤。本发明所述的一种净化钨酸钠溶液的净化工艺,通过该方法净化的钨酸钠溶液中P≤0.007g/L,As≤0.01g/L,SiO2≤0.1g/L,再由萃取法制得仲钨酸铵中P≤5ppm,As≤5ppm,Si≤5ppm,不仅加入不可溶性镁盐的除杂效果更好,而且试剂的价格也更便宜,节省成本。
本发明涉及废旧锂离子电池处理技术领域,提供了一种高效剥离废旧锂离子电池材料的方法,包括以下步骤:将废旧锂离子电池拆解后所得极片进行微波烧结,冷却后将极片表面的粉状物分离,分别得到金属箔片和电极材料;其中,所述微波烧结的温度为350~500℃,保温时间为30~120min。本发明利用有机粘结剂分子在高频磁场(微波)中发生震动,分子间相互碰撞、磨擦而产生热能,物料吸收能量后由内而外快速升温,使有机粘结剂短时间分解,达到正负极材料与金属箔片分离的目的;本发明提供的方法流程短、操作简单、无污染,剥离速度快、效率高,能得到完整的金属箔片和干净的正负极材料。
本发明提供了一种浸前预酸化置换脱水系统,所述系统包括高效浓密机,所述高效浓密机底部设有排矿通道,所述排矿通道正下方设有过滤机,所述过滤机末端正下方设有造浆槽;所述过滤机包括中性液脱水区和酸性溶液洗涤区两个作业区;所述酸性溶液洗涤区和所述造浆槽中的酸液来自浸出作业后的CCD浓密机溢流,所述酸性溶液洗涤区产生的滤液返回至所述CCD浓密机;所述高效浓密机池壁顶部分别设有给料装置和溢流槽,所述溢流槽中的溢流液作为工艺水循环利用,所述中性液脱水区产生的滤液返回至所述给料装置,所述酸性溶液洗涤区产生的滤饼传送至造浆槽,滤饼经过所述造浆槽预酸化后进入浸出作业。
本发明涉及通式I的含磷氨基酸化合物及其用于萃取分离钇的用途,其中,R1和R2各自独立地选自C1~C14烷基,且R1和R2的总碳原子数为10或更大;R3选自氢、C1~C6烷基或C6~C12芳基;Z为C1~C12亚烷基,R4和R5各自独立地选自氢、C1~C10烷基、C3~C10环烷基和C6~C12芳基,或者R4和R5和与其相连接的碳原子共同形成C3~C10环烷基。本发明的含磷氨基酸化合物作为萃取剂的萃取分离好,分离系数大,合成方法简单,原料简单易得,成本低廉,具有较高的工业应用价值。
中冶有色为您提供最新的江西有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!