本发明涉及功能材料技术领域,具体涉及一种脱醇型导热室温硫化硅橡胶复合材料的制备方法。脱醇型导热室温硫化硅橡胶复合材料的制备方法,包括如下步骤:(1)制备107胶;(2)制备甲基三乙氧基硅;(3)制备脱醇型导热室温硫化硅橡胶复合材料。本发明制成的脱醇型导热室温硫化硅橡胶复合材料的导热性、拉伸性能、绝缘性和热稳定较好。
一种碳/碳复合材料SiC内涂层的制备方法,将碳/碳复合材料为基体试样,将碳/碳试样经两步喷砂处理,并经预氧化,用按一定摩尔质量比配制的SiO2:Si:C粉料包埋并在氩气气氛下反应得到SiC内涂层。本发明具有工艺简单、制备周期短、成本低、无尾气且该方法能够获得厚度均匀SiC内涂层的优势。另外,本发明制备的SiC内涂层与外涂层结合良好,涂层表面具有SiC纳米线且涂层呈网络多孔结构。
一种羟基磷灰石-聚乙丙交脂共聚物复合材料制备方法,属于医用复合材料制备领域。提供一种利用羟基磷灰石和聚乙丙交脂共聚物复合制备出羟基磷灰石-聚乙丙交脂共聚物复合材料的方法。采用该方法制备的羟基磷灰石-聚乙丙交脂共聚物复合材料,其弹性模量达到1.75GPa,比不锈钢等金属植入物更接近于自然骨的弹性模量,将有望作为骨替换材料,置入生物体后有利于骨的生长,避免应力屏障效应。
本发明公开了一种氮化硅增强铝基复合材料的制备方法,按重量百分比,将下述组分:氧化硅60~67.5%、碳黑22.5~30%、α-Si3N4晶种1~10%、Y2O31~10%,湿法球磨干燥后制备成混合粉末,过筛造粒后模压成形为坯件;将坯件在氮气压力为6个大气压条件加热到1750℃保温2小时烧结,获得相对密度为20-30%的多孔氮化硅预制体。将多孔氮化硅烧结体放入压铸机模腔内加热模腔至500~700℃,或者先单独预热烧结体至500~700℃后再放入压铸机模腔内;同时,将铝合金加热至熔融状态,倒入放置着预制体的模腔内,通过压力机将熔融铝合金液压入多孔氮化硅预制体中,最后待铸块冷却后从模腔取出进行热处理,即得到氮化硅增强铝基复合材料。
本发明一种废旧报纸-废旧聚丙烯复合材料的制备方法,包括以下步骤:利用废旧报纸进行脱墨处理,制备改性废旧报纸纤维;按照重量份数称取:20~40份改性废旧报纸纤维,60~80份废旧聚丙烯材料,以及1~5份相容剂;将称取的物质均放入高混机中充分混合,混合温度为80℃~100℃;将混合后的物质放入开放式双棍混炼机中进行混炼,混炼温度为170℃~180℃,混炼时间为5min~20min;将混炼得到物质用型模压制,冷却,脱模,即制得。本发明方法为废旧报纸和废旧聚丙烯的循环再利用提供了一种新途径,且制备的复合材料具有良好的加工性,吸水性低,力学性能优良。
本发明公开了一种三元复合材料内衬耐磨管及其制备工艺。它由外层钢管(1)和耐磨内衬(2)构成,耐磨内衬(2)由金属丝网(3)、陶瓷棒(4)和复合料(5)三种组元复合而成,陶瓷棒(4)镶嵌在金属丝网(3)的网孔中,用复合料(5)复合成一体。制成的复合材料内衬耐磨管,可以是直管、弯管和三通管。本发明的优点是:汇集了陶瓷材料高硬度、金属材料高韧性、高强度和有机聚合物的弹性和抗腐蚀性等各种优点,解决了大块陶瓷在冲击下的碎裂、单一金属材料抗腐蚀性差、纯有机物在磨损工况下成片撕裂和变形的难题。复合成型温度低、工艺可控性强,成品率高,生产质量稳定,不需要经过热处理等工艺即可获得很高的使用性能。
本发明公开了一种液固挤压金属基复合材料的自动控制装置,包括油箱(1)、油泵(2)、溢流阀(3)、压力传感器(13)、位移传感器(14)和温度传感器(15),其特征在于:还包括电液比例阀(5)、数字压力补偿器(4)、A/D转换器(16)、数字微分(17)、控制器(18)和D/A转换器(19);数字压力补偿器(4)的油路一端接油泵(2),另一端接电液比例阀(5)的油路,电液比例阀(5)的油路另一端接液压机(6);电液比例阀(5)和数字压力补偿器(4)的电路通过D/A转换器(19)与控制器(18)电连接,压力传感器(13)、位移传感器(14)和温度传感器(15)通过A/D转换器(16)与控制器(18)电连接。利用本发明装置制备的金属基复合材料质量得到提高,表面光滑无龟裂现象发生。
本发明公开了一种玻璃纤维增强热固性树脂基复合材料的制备方法,包括以下步骤:一、制备改性热固性树脂;二、制备改性热固性树脂胶液;三、将改性热固性树脂胶液涂刷于玻璃纤维布上;四、压制固化;五、后固化。本发明制备流程简单,适合工业化生产。采用本发明制备的玻璃纤维增强热固性树脂基复合材料具有优异的介电性能、出色的综合力学性能、耐高温性和耐湿热性,可用于高频数字印刷线路板、高性能透波结构材料以及航空航天结构材料。
提供一种碳纤维复合材料红外热成像分层缺陷面积自动计算方法,步骤A为碳纤维复合材料红外热像分层缺陷智能识别,步骤B为将识别后缺陷面积的自动计算。本发明与现有的缺陷面积计算方法相比,采用目标检测网络结合自动化面积计算算法的方式,具有缺陷识别精度高、速度快,缺陷面积计算自动化程度高等优点。此方法适用于碳纤维复合材料产品的缺陷检测,能够提高碳纤维复合材料内部质量控制的自动化和定量化水平。
一种相变可控复合材料吸波体及其制备和性能调控方法,相变可控复合材料吸波体包括高性能树脂制备的壳体,壳体内填充有由溶剂液体、纳米吸波颗粒所制备的相变可控复合材料;先制备相变可控复合材料,再测量相变可控复合材料的固、液相的电磁参数和热学参数,依据电磁参数和热学参数进行相变可控复合材料空间结构与高性能树脂壳体设计,进行仿真分析,再通过增材制造技术制备高性能树脂壳体,最后将熔融后的相变可控复合材料填装入高性能树脂壳体中;吸波性能调控通过控制吸波体温度,改变对应单元材料相态,进行不同温度下的电磁波反射、透射测试;本发明实现对相变可控复合材料吸波体吸波性能的调控。
本发明公开了一种钨丝原位生成碳化钨颗粒铁基复合材料,它包括由生成的碳化钨颗粒,未反应完全的钨丝以及灰铁基体组成,其特征是:所述生成的碳化钨颗粒以未反应的钨丝为中心,分布在钨丝周围,并镶嵌于基体中;所述生成碳化钨颗粒的复合层为钨丝网与铁基中的石墨型碳发生反应而生成的。本发明还公开了该钨丝原位生成碳化钨颗粒铁基复合材料的制备方法。该复合材料碳化钨颗粒与基体铁的界面是反应形成的,不存在污染问题,能够达到复合材料与基体的良好结合。
本发明公开了一种复合材料壁板。其中,该壁板包括:蒙皮、泡沫芯、双向帽形加筋复合材料铺层、双向帽形加强件和紧固件,其中:蒙皮上设置有双向梯形的泡沫芯,泡沫芯的外表面包覆有双向帽形加筋复合材料铺层,双向帽形加筋复合材料铺层形成加筋网格,双向帽形加筋复合材料铺层内部设置有加强件,紧固件设置在加筋网格的节点处。本发明实施例可以发挥复合材料整体成型的优势,具有优异的比强度、比刚度性能,便于检测和修补,且能以普通铺叠方法制造,特别适用于结构高度受限位置,作为舱门或者口盖的主体结构。
一种Cf/C-MC超高温陶瓷基复合材料及其制备方法,选取碳纤维预制体作为增强体,以生物质碳为碳源,采用均相水热法在纤维预制体内沉积碳微球,然后经微波水热法在碳纤维预制体内沉积氧化物,并重复上述碳微球及氧化物沉积的步骤;最后在氩气气氛中煅烧得Cf/C-MC超高温陶瓷基复合材料。本发明方法制备的Cf/C-MC超高温陶瓷基复合材料密度为1.20~2.05g/cm3,孔隙率为6~13%。该方法操作简单、制备周期短、成本低;制备过程中对碳纤维无损伤,且环境友好。
本发明涉及一种纳米‑微米氮化硼/聚酰亚胺复合材料的制备方法。该复合材料的制备方法为先将微米氮化硼通过水热反应制备成纳米氮化硼,然后先填充微米级氮化硼,在复合材料中形成大的导热网络,随后加入纳米级氮化硼,使其填充进微米级氮化硼的空隙,形成纳米‑微米氮化硼复合填料,再向体系中加入二元胺的四羧酸二酸酐单体,原位制备聚酰胺酸,最后将添加有纳米‑微米氮化硼的聚酰胺酸溶液烘干溶剂后高温脱水亚胺化得到纳米‑微米氮化硼/聚酰亚胺复合材料。通过同时调控微米氮化硼与纳米氮化硼的比例调控填料的微观结构,从而调控复合材料的导热性能,本发明所制备得到的复合材料热导率大于1W/mK,电阻率大于1×1012Ωm。
本发明公开了一种氧化铝纤维增强镁基复合材料的制备方法,该方法按照以下步骤实施:步骤1、确定纤维预制体混合料中的各个组分含量,包括Al2O3纤维、石墨粉、硅溶胶三者;步骤2、制备纤维浆;步骤3、模压得到湿态纤维预制体;步骤4、对湿态纤维预制体进行干燥和焙烧,得到纤维预备体型件;步骤5、首先将纤维预制体型件置于坩埚底部,将经打磨去除了氧化皮的浸渗合金置于纤维预制体型件上,将坩埚放入真空钼丝炉中,抽真空;然后在氩气保护气氛下浸渗,最后随炉冷却,即得复合材料。本发明方法能够获得Al2O3纤维分布均匀、组织致密、蠕变性能得到提高的氧化铝纤维增强镁基复合材料。
兼具巨介电常数和高磁化强度的铁氧体复合材料及其制备方法,将BaCO3和Fe2O3球磨均匀,烘干,过筛,压块,预烧后得BaFe12O19粉体;将Y2O3和Fe2O3球磨均匀,烘干,过筛,压块,预烧后得Y3Fe5O12粉体;将BaFe12O19粉体和Y3Fe5O12体混合均匀得混合粉体;向混合粉体中加入PVA粘合剂造粒,得到所需复合材料的混合粉末;将复合材料的混合粉末按需要压制成型,加热排除PVA粘合剂,在1350-1380℃下烧结成瓷,得兼具巨介电常数和高磁化强度的铁氧体复合材料。该复合材料的化学通式为xY3Fe5O12/(1-x)BaFe12O19,其中x为Y3Fe5O12的质量百分数,且0.1≤x≤0.4,该复合材料在100赫兹时的介电常数达12000~60000,饱和磁化强度为29~36emu/g。
本发明公开了一种基于voronoi的纤维增强复合材料3D打印机翼及其设计方法,所述机翼主要由外轮廓及轮廓内部的框架结构组成,所述框架结构由区域内的一组初始站点通过构造voronoi结构并对其进行质心化处理和等比例映射的方式得到若干个映射后的泰森多边形组成,所述外轮廓外部被蒙皮包裹,框架结构则和蒙皮的内表面连接,所述框架结构填充在整个机翼内部,在保证承载能力的前提下通过对框架结构的纤维打印路径进行合理规划进而实现复合材料机翼的一体化成型制造,本发明提供了一种结构形式简单,承载能力强,稳定性良好且可以通过纤维增强打印技术一体化成型的复合材料机翼结构,从而降低复合材料机翼的制造时间和生产成本。
本发明涉及一种复合材料结构件成型模具补偿方法及系统,涉及复合材料结构成型领域,方法包括获取复合材料结构件的三维模型并根据所述三维模型确定模具型面;根据实际成型过程中的固化工艺曲线对所述三维模型进行固化变形仿真,得到仿真计算结果;根据所述仿真计算结果对所述模具型面进行节点提取,得到所有节点的初始坐标和变形量;根据所述所有节点的初始坐标和变形量利用镜像补偿原理进行补偿,得到补偿模具型面;将所述补偿模具型面和所述三维模型进行对比,确定复合材料结构件模具型面。本发明通过数值模拟和镜面补偿结合,提高模具型面的设计周期,节约成型成本。
本发明公开了一种以Fe为活性元素快速润湿陶瓷基复合材料中碳纤维的方法,即以Fe基或含有足量Fe的合金型钎料作为高温活性钎料,通过活性元素Fe与碳纤维发生共晶反应的方式实现对碳纤维的快速、致密润湿。其优点在于:利用共晶反应实现快速润湿碳纤维,以及近缝区复合材料母材内原有孔隙与钎缝的致密化,避免界面反应形成连续的界面反应相;使钎缝中的溶解进来的碳充分石墨化,可降低热应力;钎焊温度达1154℃以上,可使钎焊接头的服役温度提高;无需长时间保温,无需焊前对复合材料表面进行改性处理;不含或含少量贵金属。本发明解决了传统Ag基活性钎料、Ni基钎料在用于钎焊陶瓷基复合材料时分别存在的接头耐热温度低、保温时间长的问题。
本发明公开考虑纳米复合材料界面作用的空间电荷分布二维仿真方法,该方法包括如下步骤:建立不同掺杂率的纳米复合材料及其界面的二维模型;对二维模型进行空间电荷注入;对二维模型进行空间电荷输运和积聚;对二维模型添加物理场,并进行多物理场耦合;对二维模型进行仿真参数设定;基于有限元方法对二维模型进行仿真并得到不同掺杂率的纳米复合材料空间电荷分布结果。采用本发明方法可获得纳米复合材料在不同材料、不同温度、不同场强和不同掺杂率下的空间电荷二维分布特性,可以探究纳米颗粒对空间电荷的抑制机理。
本发明公开了一种石墨烯包覆磷酸铁锂复合材料及其制备方法,属于锂离子电池技术领域。所述制备方法包括:采用喷雾干燥或蒸发干燥,将氧化石墨烯和磷酸铁锂进行包覆,制得石墨烯包覆磷酸铁锂固体,将所得石墨烯包覆磷酸铁锂固体经热处理,制得石墨烯包覆磷酸铁锂复合材料;其中,氧化石墨烯的片径与磷酸铁锂的D50的比值为0.05~40。所述制备方法通过控制氧化石墨烯片径和磷酸铁锂颗粒大小的匹配,有效的控制所得石墨烯包覆磷酸铁锂复合材料的比表面积,极大的改善包覆后材料的加工性能。同时,制得的石墨烯包覆磷酸铁锂复合材料的电阻率降低,能够改善材料的大倍率下充放电性能。
表面具有碳化硅和硅涂层的B4C/石墨复合材料,组分包括:B4C材料,石墨材料;Al2O3粉末;Y2O3粉末;制备方法的步骤为:步骤1,将碳化硼粉末和石墨粉末相混合,得到B4C/石墨复合粉末;加入Al2O3粉末和Y2O3粉末并球磨,加入无水乙醇和玛瑙磨球混合,通过球磨制成浆料,浆料干燥得到B4C/石墨混合粉末;步骤2,将B4C/石墨复合粉末装入石墨模具中,热压烧结制备出B4C/石墨复合材料圆片,真空条件下热压烧结;步骤3,将步骤2制备出的B4C/石墨复合材料圆片制成条状试样,条状试样放入石墨坩锅中并在条状试样表面覆盖上粗硅粉后,将石墨坩埚放入高温渗硅炉中进行渗硅工艺,通过渗硅反应得到B4C/石墨复合材料渗硅试样,具有提高表面硬度和耐磨损性能以及抗高温氧化性能的优点。
本发明提供了一种针对复合材料铺放缺陷识别定位系统,它是由工业摄像机、后台分析服务器、系统客户端组成,其特征在于工业摄像机实时采集复合材料铺放过程中的实时铺丝图像,通过有线网络设备将实时铺丝图像发送至后台分析服务器,后台分析服务器配置有复合材料铺放缺陷智能识别算法平台,后台分析服务器针对实时铺丝图像进行缺陷分析,并将有铺放缺陷的铺丝图像实时反馈至客户端。本发明能够满足飞机复合材料铺丝缺陷检测的效率和精度,实时智能识别铺丝过程中缺陷类型、坐标等信息,为产品质量提供依据,具有高效、可靠等优势。
本发明公开了一种PBO/高模CF复合材料,包括有复合材料骨材及包裹复合材料骨材的复合树脂网状体。该复合材料在强日晒环境下保持着优异的高强性能。其制备方法如下:步骤1、按照如下配比称取复合纤维层用原料:PBO纤维与高模CF纤维质量比为3:1~5:1;按照如下配比称取复合树脂网状体用原料:环氧树脂与聚酰胺改性酚醛树脂的质量比为2:1~1:2或环氧树脂与丙烯酸丙烯腈共聚树脂的质量比为2:1~1:2;步骤2、在模具内涂好脱模剂,将步骤1中称取的PBO纤维与高模CF纤维按照交织方式放置模具内,按质量比将复合树脂网状体用原料混合好后向模具内加注,待模具注满后,进行固化反应,固化反应完成后,即得。
本发明公开了一种基于碳纤维为造孔剂和增强体制备多孔镁掺杂HA基复合材料的方法,依次对碳纤维进行酸处理和热处理,以T‑CF为造孔剂;在CF表面沉积一层Si保护涂层得到Si‑CF,以Si‑CF为增强体,再以Mg掺杂羟基磷灰石为基体,通过将一定比例T‑CF、Si‑CF和Mg‑HA均匀混合,使用模具成型得到短切T‑CF和Si‑CF与Mg‑HA混合坯体,然后通过低温造孔结合高温致密化烧结两步法获得多孔Si‑CF增强Mg‑HA复合材料。使用纤维造孔的方法制备出结构和孔隙率可控的微孔,通过Si‑CF有效提高多孔复合材料的强度和韧性等力学性能指标,所制备的多孔CF增强镁掺杂HA基复合材料中微孔结构有助于提供有效的营养物质以促进细胞响应。
本发明涉及一种真空浸渍结合反应熔体浸渗RMI制备C/SiC‑Diamond复合材料的方法,以金刚石作为高热导相,通过真空浸渍的方法将配置好的金刚石浆料引入到已经用CVI法沉积至半致密的C/SiC多孔预制体中,最后用RMI法完成对C/SiC‑Diamond复合材料的致密化工作。该方法可解决C/SiC‑Diamond复合材料制备过程周期长、工艺复杂的问题,而且可以有效提高Diamond与SiC的界面结合强度,从而有效提高复合材料的热导率以及力学性能。
本发明提供一种超级电容器用石墨烯/碳复合材料及其制备方法,包括以下步骤:步骤1,将导向剂和氢氧化钾分别加入焦油沥青和半焦混合物中,充分混合均匀,得到混合物粉末;步骤2,将步骤1得到的混合物粉末转移到惰性气氛高温管式炉中,分别在120℃~250℃和600℃~900℃煅烧,得到反应后的混合产物;步骤3,将步骤2得到的混合产物取出,经洗涤,烘干,研磨,制得石墨烯/碳复合材料。本发明以焦油沥青和半焦混合物为碳源,实现了石墨烯/碳复合材料的制备。该复合材料具有高的比表面积,作为超级电容器电极,具有比电容高、倍率特性好、循环寿命长等优点。
本发明涉及一种具有电磁功能的SiC纤维增韧SiBCN陶瓷基复合材料及制备方法,首先选用具有一定形状的SiC纤维预制体,然后通过CVI法在SiC纤维表面原位自生一定含量的SiC纳米线,形成SiC纳米线多孔界面,最后采用CH3SiCl3‑BCl3‑NH3‑H2‑Ar气体体系在适合的温度范围内CVI沉积SiBCN基体,进而获得具有多孔弱界面结合的SiC纤维增韧SiBCN陶瓷基复合材料。本发明方法可以有效地调控界面相和基体相的成分和电磁性能,可根据不同纤维预制体选取合适的制备组合,从而获得高性能的结构功能一体化的复合材料。所制备的SiBCN陶瓷基体不仅致密均匀有利于承载和保护纤维提高复合材料强度,而且陶瓷化程度和纯度高,电磁性能优异。
本发明提供了一种水热法制备二氧化铈/二维层状碳化钛复合材料的方法,包括:高纯度三元层状Ti3AlC2粉体的高能球磨细化晶粒;二维层状纳米材料MXene-Ti3C2的氢氟酸腐蚀制备;水热法使MXene-Ti3C2表面与层间形成CeO2,使其负载MXene-Ti3C2,即得CeO2/MXene-Ti3C2纳米复合材料;本发明具有制备过程简单,工艺可控,成本低,具有二维层状MXene-Ti3C2的片层均匀,CeO2分布均匀等特点,比表面积大,导电性良好,光催化性良好,有利于在光催化、锂离子电池、超级电容器等领域的应用。
一种阻燃改性苎麻增强环氧树脂复合材料制备方法,属于环氧树脂制备领域。针对目前环氧树脂(EP)的力学性能和阻燃性能低,应用受到限制的问题,提供一种力学性能和阻燃性能提高的阻燃改性苎麻增强环氧树脂复合材料制备方法。所述制备方法用紫外光接枝的方法将GMA接枝到苎麻织物上,再胺化、磷酸化处理,与EP复合,制得阻燃改性苎麻增强EP复合材料。该制备方法制备的阻燃改性苎麻增强EP复合材料,其力学性能和阻燃性能得到提高,具有良好的应用前景。
中冶有色为您提供最新的陕西西安有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!