本发明属于化工分离领域,具体涉及一种工业废酸除杂回收工艺。本发明方法包括以下步骤:a、预净化:除去工业废酸中的固体杂质;b、吸附:将除去固体杂质的工业废酸通过树脂色谱柱进行吸附,流出液即为高盐废水;c、解吸:再用水淋洗上述树脂色谱柱进行解吸,流出液即为低盐净化废酸。本发明方法可以将工业废酸中所含金属盐类杂质有效的去除,从而最终实现对工业废酸净化和利用。
本发明涉及一种钛精矿快速还原分离的方法,属于冶金技术领域。本发明的钛精矿快速还原分离的方法包括:在钛精矿或/和尾渣中添加催化剂,所述催化剂包含氧化亚铁、氧化镁、PVA、环状酯卤化物和煤;所述氧化亚铁和氧化镁、PVA、环状酯卤化物的质量比为2.5~3.5:3.75~6.25:1.5~2.5;所述氧化亚铁:氧化镁质量比4~7:6~7;所述氧化亚铁、氧化镁、PVA、环状酯卤化物的质量之和与煤的质量比400:100。本发明反应快速,产品质量高。此外,本发明的催化剂分解后剩余的少量灰分具有促进钛铁晶核形成的效果,犹如促进还原反应产物开始出现的引发剂,使反应快速且易于进行。总之能够大幅缩短还原时间和增大还原反应进行的程度。
本发明公开了一种、高铁高铝低镍型红土镍矿的综合利用方法,涉及冶金技术领域,提供一种够得到高镍含量的镍铁的红土镍矿综合利用方法。本方法步骤为:A、进行干燥,脱除红土镍矿中的水;再进行破碎、粉磨,得到粉状红土镍矿;B、在红土镍矿粉中配加还原剂煤粉、添加剂和粘结剂,再进行造块,然后进行干燥;C、对红土镍矿块进行还原焙烧,红土镍矿中的铝转化为可溶性的铝盐,铁部分被还原为金属铁,镍全部被还原为金属镍;D、将红土镍矿块进行破碎粉磨;E、加水加热浸出,然后过滤,得到含铝溶液和滤渣;F、含铝溶液采用提铝工艺进一步提取铝,滤渣通过磁选得到磁性镍铁精矿和尾矿。本发明适用于成分为TFe?57%、Al2O3?11.73%、NiO?1.36%的红土镍矿处理。
本发明涉及红土镍矿的综合利用,具体是一种红土镍矿的钠化还原焙烧分离方法,包括钠化还原?焙烧、化学浸出、磁选分离、熔分分离等步骤,属冶金化学领域。本发明所解决的技术问题是提供了采用红土镍矿的钠化还原焙烧分离方法对红土镍矿进行综合利用,尤其是针对高铁高铝低镍型红土镍矿,其矿物成分包括TFe?55%~58%、Al2O3?10%~12%、NiO?1%~1.5%;以及不可避免的杂质。可得到含镍6%~10%的镍铁产品,镍的收率80%以上,尾矿中TFe品位达到了54%以上,为处理高铝型红土镍矿提供了一种新的选择。
本发明涉及一种加快钛精矿还原的催化剂及其制备方法,属于冶金技术领域。本发明的加快钛精矿还原的催化剂,所述加快钛精矿还原的催化剂包含氧化亚铁、氧化镁、PVA、环状酯卤化物和煤;所述氧化亚铁和氧化镁、PVA、环状酯卤化物的质量比为2.5~3.5:3.75~6.25:1.5~2.5;所述氧化亚铁:氧化镁质量比4~7:6~7;所述氧化亚铁、氧化镁、PVA、环状酯卤化物的质量之和与煤的质量比400:100。本发明的催化剂能加快反应效率和速率,解决了现有工艺存在的钛精矿在还原过程熔融结块,导致还原效率低下,且尾渣量多等问题。
本发明涉及一种钒钛磁铁精矿综合利用的方法,特别涉及湿法与火法冶金相结合处理钒钛磁铁精矿的方法,属于钒钛磁铁矿的冶炼领域。本发明的钒钛磁铁精矿综合利用的方法,包括如下步骤:1)将钒钛磁铁精矿与盐酸在75~95℃下进行酸解、浸出,过滤获得酸浸液和钛中矿,其中酸浸反应的液固质量比为5:1~8:1,反应时间60~100min;2)利用雾化焙烧法将步骤1)获得的酸浸液进行雾化焙烧,通过气固分离得到钒铬铁精矿和盐酸,其中焙烧温度为500~700℃,喷雾压力为0.1~0.3MPa,气液体积比为0.4~0.6。本发明能实现钒钛磁铁精矿中钛、铁、钒、铬的综合回收利用,解决了从钒钛磁铁精矿中回收钛资源的难题,工艺简单、成本低、产品附加值高,工艺过程环境友好。
本发明属于火法冶金技术领域,特别涉及一种硫钴精矿金属化球团的制备方法。步骤如下,(1)氧化焙烧;(2)压力成型;(3)干燥;(4)直接还原;(5)保护冷却;最终得到金属化球团。本发明提供了一种处理硫钴精矿的新工艺方法,解决了目前硫钴精矿中有价资源回收率低、湿法冶炼钴镍行业工艺过程复杂、能耗高、副产品多、污染大等问题,具有工艺简单、成本低廉、周期短、效率高等优点,能高效地将硫钴精矿中的铁、钴、镍、铜等金属元素进行高温快速还原,得到金属化率较高的硫钴精矿金属化球团,该球团可经磨矿磁选或电炉熔炼分离提取其中的钴镍铁等有价资源,以提高硫钴精矿和攀枝花钒钛磁铁矿资源的综合回收率。
本发明属于化工和冶金领域,具体涉及一种钒渣预处理脱硅及介质循环的方法。针对钒渣除硅时流程复杂、成本高、脱硅效率低等问题,本发明提供一种钒渣预处理脱硅及介质循环的方法,其特征在于,包括如下步骤:a、将粗破钒渣与含钙物料、碱性介质混合,进行湿法球磨,球磨后将钒渣与铁粒进行分离;b、对步骤a分离得到的含钒渣的料浆进行浮选脱硅处理,得到脱硅后的料浆;c、对步骤b得到的脱硅后的料浆进行自然沉降,分离得到碱性介质和精钒渣。本发明的方法可将钒渣中硅脱除至Si<0.5%,脱硅效果好,并且工艺简单、成本低,适宜推广使用。
本发明属于火法冶金技术领域,特别涉及一种硫钴精矿的处理方法。步骤如下:(1)氧化焙烧;(2)压力成型;(3)干燥;(4)直接还原;(5)保护冷却;(6)磨矿磁选:最终得到合金化铁粉和炉渣。本发明方法提供了一种硫钴精矿综合利用新工艺技术,解决了湿法冶炼钴镍行业工艺过程复杂、能耗高、副产品多、污染大、效率低、钴镍回收率低等问题,具有工艺简单、周期短、效率高等优点,能高效的从硫钴精矿中分离出铁、钴、镍、铜、硫等有价资源,资源回收率可达95%以上,具有较高的经济效益。同时,所制得的合金化铁粉既可作为炼钢和铸铁的添加剂,也广泛用于制备磁性材料、高温合金等,磁选尾料可用于制备水泥、混凝土、地砖等建筑材料。
本发明属于火法冶金技术领域,特别涉及一种从硫钴精矿中综合回收其中钴镍铜铁资源的方法,步骤包括(1)氧化焙烧;(2)压力成型;(3)干燥;(4)直接还原;(5)保护冷却;(6)熔炼深还原;最终得到含钴镍铜生铁和炉渣。本发明方法解决了湿法冶炼钴镍行业工艺过程复杂、能耗高、副产品多、污染大、效率低、钴镍回收率低等问题,具有工艺简单、成本低廉、周期短、效率高等优点,资源回收率均在95%以上。
本发明涉及一种亚铁盐溶液的提纯方法, 本法是 先用炼钢转炉污泥铁粉和碳酰胺将钢板酸洗溶液的pH值调至 3~5, 然后鼓空气氧化, 加入阴离子型或非离子型有机絮凝剂搅 拌混合, 静置过滤沉淀, 即可得到纯化的亚铁盐溶液。本发明的 优点在于工艺简单, 去硅效果较好, 并能充分利用冶金二次资源, 增加高档氧化铁粉产量, 可将亚铁盐溶液中SiO2含量从600ppm降至10ppm以下, 同时还能有效的去除Al、V、Ti、Ca、Mg等杂质, 铁损较少, 所得纯化液可进而用湿法结晶沉淀或喷雾焙烧法制取高纯氧化铁粉。
本实用新型涉及一种升降式合格液布料器,属于湿法冶金生产设备技术领域。包括升降装置(4)和布料筒(3),所述布料筒(3)的下端封口,升降装置(4)和布料筒(3)设置在合格液罐(1)内,且布料筒(3)可通过升降装置(4)在合格液罐(1)内沿合格液罐(1)高度方向运动,合格液进料管(5)出口端伸入布料筒(3)的中下部。本装置取代以增加自然沉降罐来降低合格液浑浊度,实现单罐即可降低合格液浑浊度,满足高纯五氧化二钒生产要求,提高合格液沉降效率效率。解决现有自然沉降的合格液呈现的状态不一,自然沉降周期长、效率低、占地面积大的问题。
本发明属于湿法冶金领域,主要涉及一种高纯硫酸氧钒溶液的制备方法。本发明提供一种高纯度硫酸氧钒溶液的制备方法,包括如下步骤:a)Fe2+的氧化;b)Fe3+的去除;c)铬离子的去除及氢氧化氧钒的制备;d)高纯度硫酸氧钒溶液的制备;所述粗硫酸氧钒溶液为铬含量≥550.3mg/L,铁含量≥269.6mg/L的硫酸氧钒溶液。采用该方法得到的硫酸氧钒溶液中的铬含量为≤0.002%,铁含量≤0.0027g/L。
本发明涉及钒的湿法冶金技术领域,具体涉及钒渣低钙焙烧酸浸提钒的方法。本发明所要解决的技术问题是提高能够实现钒渣低钙焙烧,降低二次残渣中的钙、硫含量的钒渣低钙焙烧酸浸提钒的方法。该方法是:a、钒渣和石灰石按CaO/V2O5重量比为0.15~0.25混合,焙烧,得焙烧熟料;b、向焙烧熟料中加入浸出剂1进行一次浸出,固液分离得一次含钒浸出液和一次残渣;c、向一次残渣中加入浸出剂2进行二次浸出,控制浸出终点的pH值,固液分离得二次含钒浸出液和二次残渣;所述二次含钒浸出液作为浸出剂1返回步骤b使用。采用本发明方法可实现回收利用钒渣中的钒、锰资源,同时降低尾渣中钙、硫含量。
本发明涉及湿法冶金技术领域,公开了一种萃取法制备高纯草酸氧钒的方法。该方法包括:(1)将四氯化钛精制尾渣浸出,得到含钒浸出液,然后将含钒浸出液的pH值调节至1~2,过滤,得到一次萃原液;(2)将一次萃原液与萃取剂混合萃取,得到一次负载有机相;(3)将一次负载有机相用水洗涤,用盐酸溶液反萃,得到一次反萃液;(4)将一次反萃液的pH值调节至1~2,过滤,得到二次萃原液;(5)将二次萃原液与萃取剂混合进行萃取,得到二次负载有机相;(6)将二次负载有机相用水洗涤,用草酸溶液反萃,得到二次反萃液;(7)将二次反萃液蒸发浓缩后结晶,得到固体草酸氧钒。该方法实现了浸出液的深度除杂,制备出高纯草酸氧钒。
本发明公开了一种酸性低浓度钒液制取氧化钒的方法,属于湿法冶金技术领域。本发明为更高效、低成本的回收酸性低浓度钒液中的钒,提供了一种酸性低浓度钒液制取氧化钒的方法,包括:将酸性低浓度钒液与水混合,加酸,对钙化提钒尾渣进行浸出,固液分离,得酸性钒液,将酸性钒液分为两份,一部分返回循环浸出钙化提钒尾渣,一部分用于熟料浸出和洗涤,得到钙化提钒尾渣和合格液,合格液经沉钒‑煅烧得到氧化钒。本方法将酸性低浓度钒液进行循环浸出,同时利用钙化提钒回用水控制循环体系pH,并将酸性钒液分为两部分,从而基本实现了水循环利用,使整个提钒工艺无废水产生,减少资源浪费。
本发明提供了一种用烟气硫酸生产硫酸铵的方法。所述方法包括以下步骤:(1)制备pH值为11~13的氨水溶液;(2)向所述氨水溶液中加入烟气硫酸直至所得混合液的pH值为3~5;(3)通入氨气直至所得混合液的pH值为11~13;(4)反复进行步骤(2)和(3),直到反应生成的硫酸铵溶液过饱和析出硫酸铵晶体,过滤得到硫酸铵。本发明的方法合理利用工业烟气硫酸,并且得到的硫酸铵可以作为湿法冶金的原料,具有操作简单、硫酸与氨气利用率高、节约成本以及促进环保和废弃资源综合利用的优点。
本发明涉及一种钒渣钠化提钒的方法,属于湿法冶金技术领域。本方法包括步骤:a、将硫酸氢钠与钒渣按摩尔比Na:V=1~3:1进行配料,混合均匀后在氧化气氛中煅烧1~3h得到熟料;b、熟料以液固比(ml/g)=1~3:1,在温度80~100℃进行浸出、过滤得到含钒溶液和提钒尾渣;c、检测提钒尾渣的残钒含量,计算钒的提取率;d、含钒溶液提钒处理,并处置提钒尾渣。本方法焙烧时,钠化添加剂只有硫酸氢钠一种;且硫酸氢钠来自废水处理工序,只需要将现有工艺中废水处理工序蒸发结晶产物有硫酸钠改为硫酸氢钠便可实现,实现了钠盐的循环利用。解决现有工艺成本高,不能实现钠盐循环使用,产生的废水成本高的问题。
本发明属于湿法冶金处理领域,具体涉及一种以除磷泥为原料制备钒酸铁的方法。本发明所要解决的技术问题是提供以除磷泥为原料制备钒酸铁的方法,包括以下步骤:a、酸浸:用硫酸酸浸除磷泥,固液分离得到含钒酸浸液;b、沉淀:将铁盐加入含钒酸浸液中,调整体系pH至1.5~2.0进行沉淀,即得钒酸铁。本发明方法具有生产流程短、环保节能、钒收率高等优点。
本发明公开的是湿法冶金设备领域的一种连续式片碱溶液制备装置,包括预混罐和溶解罐,所述预混罐和溶解罐的顶盖上设有除盐水进料管和蒸汽进料管,内部设有搅拌器,底部设有出料管,所述预混罐的顶部还设有片碱进料管,溶解罐的顶部还设有碱液进料管,所述碱液进料管与预混罐的出料管通过输送泵连通。本发明的生产流程是:首先将片碱和除盐水送入预混罐进行混合,并在高温蒸汽和搅拌器的作用下快速溶解,然后将初步混合的溶液送入溶解罐进行精确配置,得到满足要求的片碱溶液,最后再通过出液泵送出,整个配置过程可连续进行,提高了生产效率,同时避免了溶解不完全、溶液飞溅和浓度准确性低等问题。
本发明属于湿法冶金领域,具体涉及一种水解沉淀含钒溶液的方法。本发明一种水解沉淀含钒溶液的方法,包括以下步骤:a、反应管预处理:取一根耐酸性材质的管子,其中填充五氧化二钒;b、含钒溶液预处理:将待处理的含钒溶液进行预加热,加热至95~100℃,调节含钒溶液的pH;c、含钒溶液过滤沉淀:将预处理后的含钒溶液从下至上,逆流通过a步骤处理后的反应管,并且对反应管下半部分进行加热,上半部分进行冷却,得到五氧化二钒晶体。本发明方法,通过增大过滤压力、预加晶种、设置差异温度带等有效手段,使沉钒过程与多钒酸铵的过滤同时进行,并且使所得到的五氧化二钒颗粒大小均与一致。
本发明属于钒的湿法冶金技术领域,具体涉及一种钙化焙烧酸浸液保温制备高密度多钒酸铵的方法。针对钒渣钙化焙烧酸浸液沉钒产物多钒酸铵密度低等问题,本发明提供一种制备高密度多钒酸铵的方法,步骤包括:a、取钒渣钙化焙烧酸浸液,调节至pH值为2.2~3.8,温度为20℃~75℃,控制NH4+浓度为酸浸液中钒浓度的0.22~0.44倍;b、调节溶液pH值至1.7~2.1,温度83℃~91℃,搅拌条件下保温60min~90min;c、保温结束后,升温至沸腾,进行反应;d、固液分离、洗涤,干燥,得到高密度多钒酸铵。本发明采用钒渣钙化焙烧酸浸液制备得到了密度0.5g/cm3以上的多钒酸铵,密度较现有方法提高了2倍,同时酸浸液中的钒得到充分回收,经济效益显著。
本发明公开了一种制备高纯度二氧化钒的方法,采用湿法冶金的方法直接合成四价钒水合物,经超声波和微波协同热处理得到二氧化钒颗粒。首先将钒的铵盐与还原剂进行混合加热,过滤得到四价钒水合物,经过超声波和微波协同热处理得到纯度为99.5%以上的二氧化钒颗粒。本发明工艺简单易用、设备要求低、操作方便、适应范围广、成本低,具有很好的社会效益和经济效益。
本发明属于湿法冶金和钒钛磁铁矿球团浸钒领域,特别是涉及一种钒钛磁铁矿碱性氧化球团酸浸后处理的方法。针对采用钒钛磁铁矿碱性氧化球团提钒酸浸后,球团中氯含量或硫含量不能满足高炉炼铁对球团杂质含量的要求,同时浸后球团强度下降等现象。本发明对浸后球团进行焙烧后处理,脱去了球团中的酸根,改善了球团的质量,增加了球团的强度。同时,降低浸前球团的焙烧温度和减少制球时膨润土的配比,增加了钒的浸出率。
本发明涉及含钒溶液的萃取提钒方法,属于湿法冶金领域。本发明提供了含钒溶液的萃取提钒方法,包括如下步骤:a、萃取分离硫酸:取含钒溶液,用含有胺类萃取剂的有机相A逆流萃取,得到萃原液和负载有机相A;b、萃取分离钒:取萃原液,用含有磷类萃取剂的有机相B逆流萃取,得到萃余液和负载有机相B;c、反萃回收钒:采用硫酸水溶液作为反萃剂,对负载有机相B进行反萃,得到贫有机相B和富钒液,收集富钒液,即可;其中,所述含钒溶液是由钒钛磁铁矿冶炼产生的钒渣和/或钒页岩经硫酸浸出后得到的浸出液。本发明具有钒萃取率高、钒杂分离效果好、生产连续性强以及环境友好的优点,具有广阔的推广应用前景。
本发明公开了一种钠化焙烧水浸净化液盐酸沉钒的方法,属于湿法冶金领域。钠化焙烧水浸净化液盐酸沉钒的方法为在净化液中加盐酸,调节溶液的pH值,在加热和不断搅拌下,析出沉淀,将沉淀洗涤后升温熔化得到五氧化二钒,本发明方法可生产五氧化二钒含量为98.0%、99.0%和99.5%牌号的产品。本发明方法工艺简单、工序较少、生产效率高。在相同条件下,盐酸较硫酸沉钒率高,所得五氧化二钒更纯,有效解决了现有硫酸水解沉钒方法得到的钒产品纯度和沉钒率较低的问题。
本发明属于湿法冶金领域,具体涉及一种偏钒酸钾的制备方法。本发明偏钒酸钾的制备方法,包括以下步骤:a、将偏钒酸铵与碳酸钾、碳酸氢钾或氢氧化钾加入到水中溶解,微波加热同时抽真空进行脱氨反应;b、将a步骤脱氨后的溶液搅拌蒸发结晶,当其中结晶的晶体占溶液体积的1/3~1/2时,加入反应溶液体积的1/2~1体积的乙醇,使固体析出;c、将b步骤得到的固液混合物过滤,并用乙醇淋洗,得到偏钒酸钾固体,真空干燥,即得。本发明具有工艺简单、反应时间短、操作方便;乙醇能经过精馏循环利用,物料消耗少;滤液可归入钒厂沉偏钒酸铵再利用,污染少;工艺能耗低,成本相对较低等特点。
本发明属于湿法冶金技术领域,具体涉及含钒溶液制备五氧化二钒的方法。本发明所要解决的技术问题是提供一种能够从源头消除氨氮废水,并且能够保证产品纯度的含钒溶液制备五氧化二钒的方法。该方法包括如下步骤:a、调节含钒溶液的pH值至2.0~2.8,加热至30℃~60℃,通入SO2气体得到还原后含钒溶液;b、调节还原后含钒溶液的pH值为3~7,反应,固液分离得到沉钒母液和沉钒固体,沉钒固体煅烧得到五氧化二钒。本发明方法钒的回收率可达98%以上,制备得到的五氧化二钒的纯度可达99%以上。
本发明属于湿法冶金领域,特别是涉及酸逆流循环多级浸出钒钛磁铁矿碱性氧化球团的方法。针对浸出钒钛磁铁矿碱性氧化球团浸钒的生产工艺,为提高母液中钒的浓度和降低硅凝胶对浸钒的影响,本发明提供了一种逆流循环酸浸钒钛磁铁矿碱性氧化球团的方法。本发明通过调整与控制浸取液酸浓度的方法,采用二级(多级)浸取液循环逆流浸取的方法,达到了增加母液中钒的浓度和控制铁的浸出率在0.4%以下的目的。本发明的硅和铝浸出率远高于铁的浸出率,在提高浸后球团铁品位的同时,也降低了硅和铝在球团中的含量,浸后球团更适合于作为高炉炼铁的原料。本发明采用定期外排浸取液进行脱硅处理的方法,防止了硅凝胶对球团浸钒的影响。
中冶有色为您提供最新的四川攀枝花有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!