一种海洋探测用2404nm、946nm双波长光纤输出激光器,整体光路设置为S型,设置信号光2404nm四波混频周期极化铌酸锂激光谐振腔,在闲频光946nm传输光纤上设置闲频光946nm分束光纤圈,信号光2404nm、闲频光946nm、泵浦光I?1208nm与泵浦光II?1550nm进入信号光2404nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,产生信号光2404nm输出,最后输出2404nm、946nm、1208nm三波长光纤激光。
一种激光雷达用2745nm、1550nm双波长光纤输出激光器,整体光路设置为S型,设置信号光2745nm四波混频周期极化铌酸锂激光谐振腔,在泵浦光II?1550nm传输光纤上设置泵浦光II?1550nm分束光纤圈,信号光2745nm、闲频光902nm、泵浦光I?1208nm与泵浦光II?1550nm进入信号光2745nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,产生信号光2745nm输出,最后输出2745nm、1550nm双波长光纤激光。
一种物联网用2710nm、1500nm双波长光纤输出激光器,设置2710nm四波混频的周期极化铌酸锂激光谐振腔,在1500nm激光输出光纤尾段设置1500nm分束光纤圈,分束一路1500nm输出,信号光2710nm、闲频光808nm、泵浦光I 1064nm与泵浦光II 1500nm进入2710nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,产生信号光2710nm输出,最后输出2710nm、1500nm双波长光纤激光输出。
本发明公开了一种发光的四配位梯形有机硼化合物及其制备方法和应用,其结构通式如下:其中,R的结构为:或n为1?18的正整数。其制备方法是以1, 4?二溴?2, 5?二碘苯原料,分别通过Sonogashira偶联反应、锂化反应、点击化学反应获得发光的梯形有机硼化合物。这类化合物中的分子内B?N配位作用,以平面方式有效的固定了π共轭骨架,有利于增大π电子的离域程度,可以作为一类非常有潜力的有机光电功能材料。该化合物合成步骤简单,在溶液状态下发弱蓝光,但在固体状态下具有较强的蓝光发射。该类四配位有机硼化合物可用于发光材料、F—探针及优异的电子传输材料。
一种海洋探测用630nm730nm1260nm2520nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ2520nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ515nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ1738nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ630nm的倍频谐振腔Ⅱ19,总体构成630nm、515nm、730 nm、1260nm、1030nm、2520nm、1738nm七波长光纤激光器。
一种海洋探测用542nm、515nm、698nm、1084nm、1030nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ2168nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ515nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ1962nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ542nm的倍频谐振腔Ⅱ19,总体构成542nm、515nm、698 nm、1084nm、1030nm、2168nm、1962nm七波长光纤激光器。
一种海洋探测用698nm763nm1396nm2792nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ2792nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ515nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ1558nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ698nm的倍频谐振腔Ⅱ19,总体构成698nm、515nm、763 nm、1396nm、1030nm、2792nm、1558nm七波长光纤激光器。
一种海洋探测用566nm515nm708 nm1132nm1030nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ2264nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ515nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ1889.7nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ566nm的倍频谐振腔Ⅱ19,总体构成566nm、515nm、708 nm、1132nm、1030nm、2264nm、1889.7nm七波长光纤激光器。
一种海洋探测用2055nm、985nm、1550nm三波长光纤输出激光器,整体光路设置为S型,设置信号光2055nm四波混频周期极化铌酸锂激光谐振腔,在泵浦光I?985nm传输光纤上设置泵浦光I?985nm分束光纤圈,在泵浦光II?1550nm传输光纤上设置泵浦光II?1550nm分束光纤圈,信号光2055nm、闲频光852nm、泵浦光I?985nm与泵浦光II?1550nm进入信号光2055nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,产生信号光2055nm输出,最后输出2055nm、985nm、1550nm三波长光纤激光。
本发明提供一种铸钢消失模用材料及其制备方法该材料中各成分的重量百分比为:纳米级(Na,Ca)(Mn,Fe,Mg,Al)[(Si,Al)2O6]复合粉体20-23%,炉渣粉体3-8%,十二烷基苯磺酸钠0.4-0.8%,锂基膨润土6-8%,3-甲基-2-丁烯-1-醇乙酸酯复合溶液29-31%,其余为棕刚玉粉;其中炉渣成分的重量百分比为:CaO15-20%,Al2O319-25%,MgO2-5%,FeO0.3-0.5%,其余为SiO2。
一种检测零值绝缘子的便携式无人机挂载装置,包括伸缩杆,吊舱和电场传感器阵列,伸缩杆采用多节结构,每两节伸缩杆的连接端头设有同轴电极,每节伸缩杆内部设有导线连接同轴电极;伸缩杆近吊舱的一端安装锂电池,作为电场传感器阵列的电源;电场传感器阵列在伸缩杆的另一端可360°旋转;检测时,吊舱驱动伸缩杆水平位移以调节电场传感器阵列的探测距离;到达探测距离后,对悬垂绝缘子串检测时,吊舱驱动电场传感器阵列旋转为垂直于伸缩杆方向时,对耐张绝缘子串检测时,吊舱驱动电场传感器阵列旋转为平行于伸缩杆方向时;利用伸缩杆将锂电池的电能供给电场传感器阵列。该装置具备可拆卸、便携的特点,对悬垂、耐张等绝缘子串进行零值检测。
本发明涉及一种基于(NH4)0.6V2O5层状钒氧化合物负极的水系储能电池,主要由正极片、负极片、隔膜及具有离子导电性的水系电解液组成,所述负极片包括质量百分比为65~80wt%的负极活性物质(NH4)0.6V2O5;本发明采用可脱嵌锂(钠)离子、低成本的(NH4)0.6V2O5层状化合物首次作为负极活性材料应用于水系电池中,采用循环稳定性好的锰酸锂化合物作为水系电池的正极,构建了一种新型的水系储能电池体系;该体系具有较高的比容量和良好的循环稳定性,具有安全、低成本的特点,可以为大规模储能提供一种价格低廉、安全的电化学储能体系。
本发明公开了一种基于四臂聚氧化乙烯‑聚合离子液体嵌段共聚物的固态电解质及其制备方法,其步骤为:a)用季戊四醇与2‑溴异丁酰溴反应制备四臂大分子引发剂,使用该引发剂进行聚乙二醇甲醚甲基丙烯酸酯和乙烯基氮化物的嵌段共聚,得到四臂支化聚合物,进而通过离子交换、离子化得到四臂聚氧化乙烯‑聚合离子液体嵌段共聚物;b)将上述四臂聚氧化乙烯‑聚合离子液体嵌段共聚物与锂盐共混,通过溶液浇铸法制备得到四臂聚氧化乙烯‑聚合离子液体嵌段共聚物电解质。该固态电解质室温电导率可以达到7.9×10‑5 S cm‑1,电化学窗口可达到4.87V,锂离子迁移数达到0.46,具有较大应用潜力。
本申请提供一种用于二次电池的负极材料,包括:硅氧化合物颗粒,包含锂元素及单质硅纳米颗粒;碳膜层,包覆在所述硅氧化合物颗粒表面;含铌包覆层,包覆在所述具有碳膜层的硅氧化合物颗粒表面,且含铌包覆层包括铌酸锂化合物。该种负极材料具有高比容量、高库伦效率、优异的倍率性能以及良好的循环稳定性。
本发明涉及一种制造聚合物溶液或乳液的方法 及其设备, 该方法包括以有机锂为引发剂, 在惰性溶剂中, 聚合或 共聚合共轭二烯和/或乙烯基芳烃, 在串联的第一低粘度聚合釜 和第二高粘度聚合釜或多个聚合釜中, 采用有效温控调节系统, 以及用溶剂和单体蒸发汽化热预热溶剂进行分段间歇聚合; 其 特点是聚合效率和产率高, 为传统间歇法的1.5-3倍; 温控系统 可靠平稳, 温升被控制在2℃/分; 设备结构独特合理; 适合制造各 种聚合物溶液或乳液。
一种制备聚吡咯/石墨烯复合薄膜材料的方法,首先将石墨烯粉末与吡咯单体按一定的比例,加入到一定浓度的琥珀酸二辛脂磺酸钠(AOT)水溶液中,超声分散得到均匀的电解液,实验在电化学工作站控制的三电极体系中进行,采用电化学方法,在导电电极上电聚合得到聚吡咯/石墨烯复合薄膜材料。本发明工艺简单、操作流程可控、时间短、成本低廉,制备的复合薄膜材料中石墨烯很好地被聚吡咯材料包裹,该复合薄膜材料可以作为防腐蚀材料,还可以应用在电容器、锂离子电池、传感器、电子器件、燃料电池等领域。
本发明公开了一种智能轮廓标及其信息采集控制系统,分为轮廓标主机及若干个轮廓标从机,主机包括固定支架、立杆、太阳能膜板以及灯光模组,灯光模组包括外壳、定位模块、LED同步闪烁及温湿度检测的主控板、锂电池、LED灯板和面罩,从机包括梯形固定支架、太阳能膜板和灯光闪烁模组,灯光闪烁模组包括锂电池、定位模块、LED控制板、带LED灯透镜的壳体以及贴附在壳体表面的梯形反光膜片,基于GPRS通讯网络自动采集智能轮廓标安装位置、环境温湿度信息并上传至交通管理智能管控云平台和APP端,与车辆导航平台对接实现轮廓标阴雨天气感知发光警示,引导车辆减速避让,降低交通事故发生概率,提高行车安全性。
本发明公开了一种半导体负极材料及其制备方法,一种半导体负极材料,为一种碳包覆钛酸盐半导体负极材料,为实心棒状结构,该棒状长度介于10~100μm,直径介于2~10μm;一种半导体负极材料制备方法,包括以下步骤:S1:制备钛乙二醇前躯体:利用溶剂热反应制备钛乙二醇前躯体,得到钛源材料;S2:制备碳包覆钛酸盐半导体负极材料:将步骤S1中的钛源材料退火,得到碳包覆氧化钛微米棒,再与锂盐、钠盐或钾盐于微水溶液中混合,冷冻干燥后的产物在氩气下退火后,得到超大尺寸棒状碳包覆钛酸盐半导体负极材料,半导体负极材料为一种具有实心的棒状结构,制备方法中,合成工艺简便,可批量制备,能够应用于锂离子电池、钠离子电池以及钾离子电池中。
本发明公开了一种一锅法制备磷、氮共掺杂的石墨化多孔碳的方法,本发明采用简单的溶液共混、冻干辅助高温焙烧的方法,一锅法制备磷、氮共掺的石墨化多孔碳材料。利用磷酸铁铵作为活化剂,同时实现碳材料的磷、氮杂原子共掺杂、石墨化以及造孔。该多功能碳材料具有高的比表面积,良好的石墨化程度以及高的磷、氮杂原子掺杂量,可以作为锂硫电池正极载体材料,超级电容器的负极材料,锂离子电池、钠离子电池负极材料,可显著提高这些电源器件的电化学性能。
本发明提供一种改性聚合物、聚合物电解质及其制备方法和应用,所述改性聚合物通过甲氧基聚乙二醇单甲基丙烯酸酯和改性单体反应得到;改性单体为含有乙烯基和磺酸基的化合物。所述改性聚合物中形成柔性支链结构,有利于在聚合物电解质中形成更加稳定的聚合网络,并增强锂盐的解离程度,从而得到离子电导率更高、机械性能和稳定性更好的聚合物电解质。使用所述改性聚合物的聚合物电解质中,改性聚合物和交联剂发生聚合反应,在聚合物电解质的内部形成致密稳定的三维交联网络,将锂盐电解质溶液限制于聚合物结构中,解决了漏液和短路的问题,同时具有优异的柔韧性、机械强度和稳定性,尤其适用于高性能的电致变色器件。
本发明公开了一种睡眠呼吸暂停综合症治疗手环,包括橡胶材料制成的腕带、设置在腕带外的指夹式脉搏血氧饱和度监测仪,腕带内封装有miniUSB端口、锂电池、贴片振动马达、单片机及闪存芯片、微型电刺激器,指夹式脉搏血氧饱和度监测仪、miniUSB端口、闪存芯片、贴片振动马达、微型电刺激器分别接入单片机,锂电池分别供电至单片机、指夹式脉搏血氧饱和度监测仪。本发明在不干扰使用者睡眠状态的情况下,可使使用者保持呼吸通畅,能有效治疗使用者睡眠过程中的呼吸暂停症状。
一种海洋探测用614nm726nm1228nm2456nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ2456nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ515nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ1774nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ614nm的倍频谐振腔Ⅱ19,总体构成614nm、515nm、726 nm、1228nm、1030nm、2456nm、1774nm七波长光纤激光器。
本发明公开了一种可长时间待机的无人机控制装置,包括装置本体,所述装置本体的顶部安装有主显示屏,且所述主显示屏与所述装置本体固定连接,所述主显示屏的后侧设有显屏收容架,且所述显屏收容架与所述主显示屏紧密连接,所述显屏收容架的顶部安装有收容锁口,且所述收容锁口与所述显屏收容架固定连接,所述主显示屏的右侧设有旋转轴,且所述旋转轴与所述主显示屏活动连接,通过太阳能电池板的发电作用,使该装置有源源不断的电能供应,并且多余的能量可以储存起来,同时在电量存储方面,采用的是锂电池,通过锂电池的使用,有效的减少了该装置的重量,进而降低了该装置转运时的负担,从而提高了该装置的机动性。
一种海洋探测用520nm、533nm、704 nm、1040nm、1064nm七波长光纤激光器,谐振腔设置为四方形环形光纤激光腔,在四方形环形光纤激光腔的四个角上设置深刻蚀光纤直角反射镜,在上边光路的中间位置设置信号光λXⅠ1900nm波长周期极化铌酸锂四波混频激光谐振腔,在左边光路的中间位置设置倍频ⅠλBⅠ533nm的倍频谐振腔Ⅰ,在右边光路的中间位置设置闲频光ⅡλlⅡ2186nm的周期极化铌酸锂光学参量振荡器1,在下边光路的右段设置倍频光ⅡλBⅡ520nm的倍频谐振腔Ⅱ19,总体构成520nm、533nm、704nm、1040nm、1064nm、2080nm、2186nm七波长光纤激光器。
一种海洋探测用1753nm、1106nm、1208nm三波长光纤输出激光器,整体光路设置为S型,设置信号光1753nm四波混频周期极化铌酸锂激光谐振腔,在闲频光1106nm传输光纤上设置闲频光1106nm分束光纤圈,在泵浦光I?1208nm传输光纤上设置泵浦光I?1208nm分束光纤圈,信号光1753nm、闲频光1106nm、泵浦光I?1208nm与泵浦光II?1550nm进入信号光1753nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,产生信号光1753nm输出,最后输出1753nm、1106nm、1208nm三波长光纤激光。
本发明提供了一种基于硅嗪单元的光电功能材料及其制备方法和应用,该光电功能材料的结构式如式I或式II所示:其中R1是苯基,R2是甲基或苯基。其制备方法是将咔唑与邻溴碘苯或1,4‑二溴‑2,5‑二氟苯反应,再将含溴中间体与正丁基锂反应,然后加入二苯基氯硅烷或甲基苯基氯硅烷,最后将硅氢衍生物与叔丁基过氧化氢反应,得到基于硅嗪单元的光电功能材料。本发明的光电功能材料有高的三线态能级,具有较好的空穴传输性能的同时具有一定的电子传输性质,且合成原料廉价。利用本发明材料制备的有机电致磷光器件具有较低的启亮电压,较高的效率和稳定的发光性能。
本发明涉及一种JAK抑制剂Momelotinib的合成方法,属于药物化学、化学工程与工艺技术领域。包括以下步骤:(a)将4?吗啉?苯胺与50%单腈胺水溶液溶于有机溶剂中,逐滴加入浓盐酸后,在80?90℃下加热回流得到中间体C1;(b)以对乙酰基苯甲酸甲酯为原料在DMF?DMA溶液中加热回流得到中间体C2;(c)将中间体C1与C2加入到有机溶剂中,然后加入氢氧化钠,回流反应得黄色固体C3。然后在氢氧化锂水溶液中水解得中间体C4;(d)C4与氨基乙腈盐酸盐经酰胺化反应得到目标产物momelotinib。该制备方法原料易得,工艺简洁,经济环保,适合工业化生产。
一种海洋探测用2391nm、985nm、1550nm三波长光纤输出激光器,整体光路设置为S型,设置信号光2391nm四波混频周期极化铌酸锂激光谐振腔,在泵浦光I?985nm传输光纤上设置泵浦光I?985nm分束光纤圈,在泵浦光II?1550nm传输光纤上设置泵浦光II?1550nm分束光纤圈,信号光2391nm、闲频光805nm、泵浦光I?985nm与泵浦光II?1550nm进入信号光2391nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,产生信号光2391nm输出,最后输出2391nm、985nm、1550nm三波长光纤激光。
一种海洋探测用2404nm、946nm、1550nm三波长光纤输出激光器,设置信号光2404nm四波混频周期极化铌酸锂激光谐振腔,在闲频光946nm传输光纤上设置闲频光946nm分束光纤圈,在泵浦光II?1550nm传输光纤上设置泵浦光II1550nm分束光纤圈,信号光2404nm、闲频光946nm、泵浦光I?1208nm与泵浦光II?1550nm进入信号光2404nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,产生信号光2404nm输出,最后输出2404nm、946nm、1550nm三波长光纤激光。
一种激光雷达用2970nm波长光纤输出激光器,整体光路设置为S型,设置信号光2970nm四波混频周期极化铌酸锂激光谐振腔,信号光2970nm、闲频光880nm、泵浦光I?1208nm与泵浦光II?1550nm进入信号光2970nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,产生信号光2970nm输出,最后输出2970nm波长光纤激光。
中冶有色为您提供最新的江苏南京有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!