本发明一种尿素热解炉出口产品气净化装置,热解炉与箱体内部连通,箱体顶部连通净气室再连通至后续喷氨管道,箱体底部设与其内部空腔连通的灰斗,箱体内、位于灰斗上方设滤袋,箱体内、位于灰斗上方选择性设导流板,滤袋上方设置吹扫管,吹扫管上设电磁阀,电磁阀与控制器输出端连接,控制器输入端与差压测量器连接。本发明提供的尿素热解炉出口产品气净化装置,在热解炉出口设置除尘用的箱体,通过箱体内的多个滤袋将热解炉输送至后续喷氨管道的产品气内的灰尘、结晶物等脱除,避免在后续喷氨管道产生磨损、累积、堵塞等,避免出现出口NOx浓度分布不均的情况,降低脱硝出口氨逃逸,保证设备正常运行,延长设备寿命,减少维护成本。
本发明公开了一种使用复合型金刚石锯头的排锯及其金刚石锯头的制备方法。包括复数个的条形的锯片,所述锯片的刃口方向的边沿的锯齿位间隔地安装有多个金刚石锯头;所述金刚石锯头外突于所述锯片的刃口方向的边沿;所述金刚石锯头包括至少四个的刀片坯体和多个金刚石颗粒,所述刀片坯体的右侧面或右侧面设有多个盲孔;所述盲孔由上至下间隔有序地排布于所述刀片坯体的左侧面或右侧面;所述金刚石颗粒嵌装于所述盲孔;所述刀片坯体为一体成型的;包括有刀片坯体和金刚石颗粒的所述金刚石锯头通过压合烧结熔合成为无间隙的一体。本发明还提出了一种复合型金刚石锯头的制备方法,制得的金刚石锯头具有良好的切割效率和使用寿命,并且能耗低。
本发明提供了一种岩石研磨性的测定及评价方法,属于石油天然气勘探开发领域。所述方法包括:步骤一:制备标准岩样和制备磨损件;步骤二:将磨损件安装在微钻头上;步骤三:利用磨损件对标准岩样进行岩石研磨性测定;步骤四:根据岩石研磨性测定的结果对岩石研磨性进行评价。本发明的岩石研磨性测试方法钻磨岩石的破岩机理与金刚石类钻头的破岩机理一致,能够真实、准确的反映岩石的研磨特性,而且本发明岩石研磨性指标及其评价方法能够对具有不同研磨性的岩石进行有效区分和评价。
本申请涉及永磁材料领域,具体公开了一种耐腐蚀高矫顽力型钕铁硼永磁材料包括下列重量百分比的元素:1~8%的稀土氢化物颗粒,10~15%PrNd、1.0~1.5%B,2~3%Co,0.1~0.3%Cu,0.5~1.0%Nb,0.1~0.2%Zr,1~2%Al,0~1%Ga,剩余余量为Fe,所述稀土氢化物颗粒粒径为1000目。本申请在保温烧结前,先通过高温环境使金属铝为还原剂,直接还原氧化镁制取金属镁,通过添加镁元素,在热和潮湿的环境下,与氧反应从而降低Nd的氧化,使磁体保持良好磁性,由于镁具有较低的熔点,能够促进磁体液相烧结,使富钕相分布更加均匀,均匀的富Nd相能够提高磁体的磁性能,同时改善了永磁材料内部的腐蚀性能。
本发明提供一种5G基站环形器专用磁铁,包括整体为矩形的磁铁本体,所述磁铁本体的转角处设有第一圆弧角,所述磁铁本体的内部设有矩形的通孔,所述的矩形通孔的转角处设有第二圆弧角,所述磁铁本体中配料包括Al 7.9‑8.1%、Ni 14.0‑14.2%、Co 23.8‑24%、Cu 2.9‑3.1%和Fe49.67‑50.93,所述配料中还包含微量元素T 0.21‑0.25%、S 0.15‑0.18%、C 0.11‑0.15%,所述磁铁本体的所有配料通过真空熔炼技术熔炼后再进行以此制粉、成型、烧结和机械加工成型。能够解决含稀土元素钐的钐钴磁铁在高温下极易氧化的问题,且能够使磁铁中Br最终的剩磁量大于12.0KGs。
本发明公开了一种高流动性高强度金属粉末注射成型喂料及其应用方法,所述喂料包括合金粉末和粘结剂组合;按质量百分比计,所述合金粉末占所述喂料质量为90%,所述粘结剂组合占所述喂料质量为10%;按质量百分比计,所述粘结剂组合包括:82%~84%的聚甲醛、3%~6.5%的低密度聚乙烯、3.5%~4.5%的橡胶弹性体、1%~3.5%的石蜡、1.5%~2%的硅油、0.5%~1.5%的硬脂酸锌、0.5%~1%的抗氧化剂、0.5%~1%的甲醛固化剂、0.5%~2.5%的油酸,各组分总量为100%。本发明喂料具有超高流速、材质物理性能优异、尺寸稳定性佳等综合优势,极大了降低了生产成本,提高了生产效率。
本发明公开了一种木材加工用超细低钴硬质合金材料及其制备方法,解决了现有技术中普通的切削刀具材料及结构越来越难以胜任或根本无法实现现有木材切削加工的技术问题。所述超细低钴硬质合金材料的制备包括下述重量百分比的原料:WC:90%‑98%;Co:2.0%‑7.5%;Ni:0‑3.0%;VC:0‑0.5%;TaC:0.2%‑2%;Cr3C2:0.5%‑2%;各原料的重量百分比之和为100%。本发明的超细低钴硬质合金材料兼具较高的硬度(以提高其耐磨性)、较高的强度(以提高其抗崩刃性)、较好的红硬性(以提高干切性能)。
本发明公开了一种制备取向长度L≥60mm的钕铁硼永磁材料的工艺,在压制时采用的是低压力压制,制备取向方向减半甚至更少的磁体,然后采用两块或多块压坯在取向方向上扫净光滑后紧密叠加在一起后真空包装并冷等静压,最后放入烧结炉进行烧结合金化,使多块磁体的光滑接触面充分弥合在一起形成一个整体产品,使剩磁、内禀和磁能积等磁性能都会有所提高。
一种低氧含量的超高性能烧结钕铁硼材料及其制造方法,属于稀土制备领域。利用二次熔炼造渣除氧、防氧化制粉、无氧低温条件下一次成型、间歇风冷工艺综合有效地控制磁体完成品内部的氧含量小于800ppm。将氧元素变害为利,合理量的稀土氧化物在晶界形成钉扎点,提高矫顽力,大幅度提高磁体主相的饱和磁化强度,同时能降低轻、重稀土含量,在不增加额外工艺的基础上节约成本。
本发明是钒铬钛合金的氢化物部分脱氢、烧结及致密化方法,涉及一种钒铬钛合金冷压坯烧结过程中的脱氢、降低开裂趋势、提高钒铬钛合金致密化和合金化的方法。目的是解决现有粉末冶金法制备的钒铬钛合金烧结开裂、氢含量较高及致密度不高的问题。包括下列步骤:a、钒铬钛合金冷压坯的制备;b、钒铬钛合金冷压坯中氢化物深度脱氢;c、钒铬钛合金高温致密化,获得低氢含量致密的钒铬钛合金烧结坯。本方法通过采用低温高真空部分脱氢、活化烧结及高温烧结致密化使合金中氢含量低于20ppm,致密度高于96%。
本发明净化式太阳能空气集热和储流系统涉及的是一种空气净化、高效太阳能空气加热、热空气存储和工质分流系统,属太阳能光热利用技术领域。由空气净化罐组件、太阳能集热组件、热空气收集和储流组件组成;空气净化罐组件由顶盖、限位凹槽、金属丝编织网、冲孔板、金属纤维毡体、雨水收集管、连接管桶、底盖、连接法兰组成;太阳能集热组件由直通式真空玻璃管、密封环、太阳能吸收涂层、金属异型导热体、抗胀圈、玻璃膨胀节、固定扣件组成;热空气收集和储流组件由热空气收集管、安装支架、分流式管桶法兰、冷空气分配管、太阳能集热管、热空气分流罐、热空气连接管、安装法兰、热空气储流室、保温材料组成。
本发明涉及一种填充方钴矿基热电复合材料及 其制备方法,属于热电材料领域。该材料的组成式为 IyA4B12/zIOx,I为Yb或Eu或Ce或La或Nd或Ca或Sr中的一 种,A为Sb或者Sb和Ge或Sn或Te或Se中一种的混合,B 为Co或者Co和Fe或Ni中一种的混合,y为I元素的实际填 充量,y+z=m,m大于填充方钴矿原子的填充极限。该材料采 用先采用熔融法合成块体材料,即按I∶Co∶Sb=m∶4∶12 摩尔比配料后,封入密闭的石英管中。将原料加热至熔融状态, 经过充分化学反应并冷却后,获得块体材料,再用机械粉碎并 研磨成粉末。然后将上述粉末用脉冲直流通电快速烧结成致密 的块体。该材料在降低晶格热导率同时不影响材料的电传输性 能,从而提高材料的热电转换性能。
本发明公开了一种制氢用的碳化硅纳米线催化剂的制备方法及其用途。采用硅粉、二氧化硅粉和碳纳米管为原料制备SiC纳米线,采用氢氟酸和浓硝酸混合液腐蚀后的SiC纳米线与水混合制备氢气,混合液与SiC纳米线的质量比为100~10。本发明的催化剂,SiC具有理想的带隙;导带底主要由Si的3s轨道构成,价带顶主要由C的2p轨道构成,导带电位比氢电极电位EH+/H2稍负,而价带电位则应比氧电极电位EO2/H2O稍正,满足光解水的热力学要求SiC晶体生长过程中Si-C双原子层的密排堆积容易导致堆垛层错,这种堆垛层错是具有理想接触界面的新型量子阱结构。此外它还具有化学性质稳定,无毒,可再生循环利用等优点。
本发明公开了一种二硅化钼硅铝氧氮聚合材料复合发热体,其原料以二硅化钼粉末为主,添加硅铝氧氮聚合材料(sialon)粉末为强化剂,添加二硅化铬粉末为活化剂,其特征是:其中硅铝氧氮聚合材料在整个发热体中的含量为1%-30wt%,硅铝氧氮聚合材料与二硅化铬的总重量占发热体重量的5%-40wt%。它通过二硅化铬在1600℃烧结时液化以降低发热体的烧结温度提高烧结密度,通过sialon的加入细化发热体的晶粒,并通过sialon强化相提高了发热体的抗弯强度和断裂韧性以及维氏硬度。在高温有氧条件下使产品表面生成一层SiO2氧化膜增强其抗氧化能力。本发明为解决MoSi2发热体因强度和韧性太低而导致的加工,运输,安装和使用过程中易断而导致寿命过短提高了一条解决途径。
本发明耐磨材料领域,具体公开了一种高温梯度耐磨涂层,包括底层、过渡层、耐磨层,以及在耐磨层表面硫化形成的硫化层;所述的底层包括马氏体基体以及弥散在其中的金属间化合物;所述的过渡层、耐磨层均包括马氏体基体以及弥散分布在其中的金属间化合物和碳化物;其中,过渡层、耐磨层中的金属间化合物的含量大于底层的金属间化合物的含量;耐磨层中的碳化物的含量大于过渡层中的碳化物的含量。本发明还包括所述的涂层的制备和应用,以及形成有所述涂层的耐磨材料及其制备。本发明研究发现,所述的金属间化合物以及碳化物双梯度控制的层级涂层具有优异的协同性,可以显著改善涂层的高温(如700℃)耐磨性能。
本发明提供了一种硼化钛增强钛基复合材料及其制备方法,该制备方法包括以下步骤:氢化,将钛原料进行氢化处理;所述氢化处理采用氢气和硼氢化合物气体;破碎,将经过氢化处理后的钛原料进行破碎处理,得到含硼的氢化钛复合粉末;将所述氢化钛复合粉末依次进行成形及烧结处理,得到硼化钛增强钛基复合材料。该制备方法采用气态硼氢化合物和氢气混合气体对钛物料进行氢化,达到吸氢破碎目的的同时,在粉末颗粒中均匀复合引入硼元素,后续将破碎粉末直接成形和烧结致密化制备硼化钛增强钛基复合材料,并且最终制备的硼化钛增强钛基复合材料杂质含量低、第二相分布均匀、综合力学性能优异。
本发明公开了石墨烯超材料量子节能减排系统,包括壳体:壳体由上下两个外壳连接组成,两个外壳之间设置有油管通道,所述外壳的内部固定安装有内部壳体,所述内部壳体的内部嵌入式安装有呈圆形阵列分布的四组量子能永磁块,每组量子能永磁块的数量为三个。本发明中磁感应强度由原先的0.1‑0.4T磁感应强度,可大幅度提高到0.9‑1.4T,把燃油的大分子团切割成小分子团,真正意义上把普通的燃油变成了小分子团燃油,分解并粉碎燃油中的大颗粒不可燃凝聚物,使其变成了磁化油,增大了比表面积,处理后的燃油小分子团能充分地与氧气接触,从而提高燃油的燃烧效果,增加了发动机的爆发力,并减少了二氧化碳和NO化合物、CH化合物排放,达到节能减排的效果。
一种高效反应熔渗工艺快速制备高性能航空用陶瓷基复合材料平板构件的方法,该制备方法包括以下步骤:在纤维布表面沉积BN/SiC复合界面相,对上述纤维布进行热处理,随后在表面涂刷含有填料的树脂料浆,铺层后放入热压罐中进行热压固化,对上述坯体进行裂解得到中间体,最后在裂解温度下通过熔渗硅合金进行快速致密化,将致密化后的半成品机械加工至构件设计尺寸。采用本发明的制备方法制备的平板构件,可有效提高构件服役温度,缩短平板构件的制备周期,所制备出的平板构件致密度高,气孔率低,游离硅含量少,基体开裂应力高,具备良好的自愈合性能,有效提高了航空用陶瓷基复合材料平板构件的力学性能、导热性能及高温稳定性。
本发明公开了一种多孔生物压电陶瓷浆料,其包括在水中混合均匀的压电陶瓷粉末、分散剂、粘结剂。本发明还公开了一种多孔生物压电陶瓷支架的制备方法,包括:建模并打印出蜡型支架;处理去除支撑蜡;将多孔生物压电陶瓷浆料注入去除支撑蜡后的蜡型支架中,并进行冷冻、真空干燥处理;再进行烧结;最后经过极化处理,即得多孔生物压电陶瓷支架。本发明利用多孔生物压电陶瓷浆料制备多孔生物压电陶瓷支架,该方法利用3D打印技术可打印出结构复杂的支架结构,去除支撑蜡后注入浆料,经过冷冻、干燥、烧结和极化处理后,制备的多孔生物压电陶瓷支架具有孔径可控的三维通孔结构,其结构无污染,具有压电性能、力学性能良好的生物相容性。
本发明属于粉末冶金技术领域,公开了一种复合稀土元素增强粉末冶金摩擦材料的制备方法,复合稀土增强粉末冶金摩擦材料由以下质量百分比的原料制成:水玻璃2~5%,二硫化钼2~5%,石墨2~8%,铜粉2~8%,铁粉20~40%,合金粉60~80%及复合稀土元素<0.4%。利用粉末冶金方法在铁基粉末摩擦材料中引入复合稀土元素,进一步提升铁基摩擦材料的硬度及耐磨性。通过复合稀土元素的添加,使合金的组织更加均匀,利用稀土元素能吸附有害元素的特性,减少有害元素在合金组织中的偏聚。由于合金组织更加均匀,材料的硬度及耐磨性得到了明显的提升。
本发明公开了一种CrCoNi中熵合金增强Al基复合材料及其制备方法。本发明针对颗粒增强Al基复合材料可塑性和韧性较差这一短板,提出采用具有高硬度、高强度、优异塑性的中熵合金CrCoNi颗粒作为增强相,旨在制备出兼具高强度和高韧性的新型Al基复合材料。本发明的复合材料突破了传统颗粒增强相会显著降低Al基复合材料塑性这一瓶颈,利用金属间天然的结合特性,达到理想的界面结合度和相容性,在不严重损害基体材料塑韧性的基础上,提高其强度,获得了较好综合力学性能的Al基复合材料,具有极其广阔的工程应用价值。
本发明公开了一种陶瓷‑不锈钢复合材料及其制备方法,所述陶瓷‑不锈钢复合材料以陶瓷粉体和不锈钢粉体均匀混合后的复合粉体为骨料,通过添加有机添加剂均匀包裹复合粉体配置成高固相含量、稳定均匀的热塑性颗粒料,然后通过3D打印技术成型陶瓷‑不锈钢复合材料素坯,最后对成型的坯体进行脱脂、烧结制备得到陶瓷‑不锈钢复合材料。本发明通过乙烯‑醋酸乙烯共聚物(EVA)和高密度聚乙烯(HDPE)协同增效,两者以不同的方式嵌入复合粉体表面,增加了化合物电位的传递方式,阻止浆料中有机添加剂偏析,提高了低温下浆料的均匀性,改善浆料的流动性能和成型性能,保证复合材料素坯的强度以及素坯在脱脂过程中坯体的形状不发生变化。
本发明公开了一种纳米级和亚微米级金属粉体的制备方法,包括步骤:步骤S1,提供一第一混合物,第一混合物包括纳米级高纯硅粉体、金属化合物和一辅助试剂;步骤S2,提供一研磨工艺处理第一混合物,得到一第一粉体;步骤S3,提供一烧结工艺处理第一粉体,得到一第二混合物;步骤S4,除去第二混合物中的多余的硅和/或硅化合物,得到一第二粉体;步骤S5,洗涤烘干第二粉体,得到纳米和亚微米级金属粉体。本发明将高还原性的纳米硅应用于纳米级和亚微米级金属粉体的制备,提供一种成本低、产量高的纳米级和亚微米级金属粉体的制备方法。
本发明公开了一种新型耐氢氟酸和碱的致密蓄热蜂窝陶瓷填料,它的化学组成:Al2O3,CaF,CaO+MgO,其它,并按以下步骤制备工艺而成;a、选用刚玉或融熔刚玉为主料并按要求称量;b、根据步骤a称量球磨干混;c、出磨过筛后在,上述混合料中加入粘合剂、润滑剂和适量水充分混合,烧成得到致密蓄热蜂窝陶瓷填料,d、在步骤c中的致密蓄热蜂窝陶瓷填料蜂窝壁上浸涂耐酸碱合金复合涂层,所述耐酸碱合金复合涂层包括:耐酸碱合金粉末、乙基纤维素、松油醇或丙三醇、椰油酸异辛酯或月桂酸异丙酯。本发明解决RTO处理VOCs中遇到含HF气体迅速腐蚀蓄热蜂窝的难题,可大大延长致密蓄热陶瓷填料在RTO处理中的使用寿命。
一种高强度粉末奥氏体不锈钢的制备方法,属于粉末冶金领域。本发明以水气联合雾化制备的含钛不锈钢粉末为原料,加入锆铪粉作为固碳剂和固氧剂,将锆铪粉和雾化钢粉经高能球磨后经成形、烧结和热处理,获得高强度粉末不锈钢制品。锆、铪与钛属于同族元素,化学性质相近,加入不锈钢体系中能够进一步防止晶间腐蚀的同时,在烧结及热处理过程中Ti、Zr(Hf)、O三种元素形成有序相,达到降低钢基体氧含量和第二相强化的作用,提高钢基体塑性的同时大幅度提高材料强度,进而得到高强度粉末不锈钢制品。本发明制备工艺简单,无需额外设备,具有生产效率高、无污染与夹杂、性能优异等优点。
本发明提供了一种圆环状烧结钕铁硼磁体的制备方法及其成型模具。成型模具包括主体部分、上压头、下压头、模腔,其中主体部分包括相对的两个非导磁侧板、相对的两个导磁侧板,在两个非导磁侧板及两个导磁侧板之间形成的空间内,下压头位于空间的底部,上压头位于空间的顶部,模腔位于上压头与下压头之间,在模腔内放置柔性圆柱型芯,制备时在模腔内置入松装状态的钕铁硼磁粉后,将柔性圆柱型芯放置在模腔内,通过成型模具进行压制得到磁体成品。本发明的优点在于,采用此方法和此型芯结构的装置生产圆环状烧结钕铁硼能够大幅度提高材料利用率和产品合格率。
本发明公开了一种可级联的大功率碳化硅器件半桥高温封装结构,陶瓷外壳内设置有第一镀金的金属化芯区及第二镀金的金属化芯区,第一镀金的金属化芯区上设置有上桥臂半导体芯片,第二镀金的金属化芯区上设置有下桥臂半导体芯片;陶瓷外壳的端面上设置有凹槽结构,引片结构插入于凹槽结构内,且引片结构与陶瓷外壳之间通过密封件密封,引片结构与上桥臂半导体芯片及下桥臂半导体芯片相连接,陶瓷外壳内部为真空结构或者充有惰性气体。该结构具有低成本、高可靠性、低寄生参数及耐高温的特点。
为了改善硬质合金的硬度、耐磨性,研发了一种脉冲光纤激光诱导氧化硬质合金。采用细WC粉和高纯球形钴粉为原料,脉冲光纤激光诱导氧化硬质合金,光斑直径和扫描速度能够影响硬质合金的表面均匀性及物相组成。如果光斑直径过大,则会造成能量不集中,造成对硬质合金加工困难。如果光斑直径过小,则能量过于集中,造成硬质合金表面烧蚀。扫描速度对硬质合金的影响同光斑直径类似。所制得的脉冲光纤激光诱导氧化硬质合金,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的硬质合金提供一种新的生产工艺。
为了改善粉末合金的硬度、耐磨性,设计了一种Mo5Si3‑Al2O3复合材料。用MoO3粉,Mo粉,Si粉和Al粉为原料,所制得的Mo5Si3‑Al2O3复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,复合材料组织均匀细小、没有明显的气孔、裂纹等缺陷,晶粒尺寸在3μm之间。复合材料表现出高的烧结致密度、硬度和断裂韧性,且具有优异的抗摩擦磨损性能。随载荷增加,其摩擦因数和磨损率降低。复合材料主要的磨损机理为氧化磨损和从低载荷下的粘着‑剥落磨损过渡到高载荷下的磨粒磨损。本发明能够为制备高性能的Mo5Si3‑Al2O3复合材料提供一种新的生产工艺。
为了改善粉末合金的硬度,耐磨性,设计了一种Al2O3弥散强化Cu粉。采用酸性和碱性含铜刻蚀废液,硝酸铝,酒石酸钾钠,聚乙烯醇,氨水为原料,所制得的Al2O3弥散强化Cu粉,其硬度,致密化程度,抗弯强度都得到大幅提升。其中,弥散相为A12O3且均匀分布在Cu基体中。最佳的煅烧温度为500℃,最佳的H+还原温度为700℃。经过20%硝酸萃取还原粉末中的弥散相,弥散相为纳米晶状态的A12O3,符合弥散强化材料的组织特点。本发明能够为制备高性能的Cu粉提供一种新的生产工艺。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!