本发明公开了一种多孔镍基析氢电极复合材料所述多孔镍基析氢电极泡沫金属为基材,通过离子液体电解沉积S‑La‑Ni合金,然后通过碱性溶液中腐蚀处理除去铝获得多孔电极,然后通过热处理进行硫修饰,复合材料的比表面积20‑23g/m2,析氢催化活性好,化学稳定性优良。
本发明公开了一种具有曲线界面的复合材料的热性能分析方法,本发明为二维问题具有曲线界面类型的多层复合材料的热性能提供一种快速,精确的数值分析方法;本方法通过对物理过程的合理近似,提出了描述界面上物理量跳跃的界面连接条件;并结合二维定常热传导方程对多层复合材料的传热过程进行数学描述;同时,利用浸入界面方法对控制方程和界面条件进行离散,并得到了一个稳定、收敛且具有二阶精度的数值格式;本发明通过对二维复合材料具有曲线界面类型的问题,建立了数学模型及数值模拟的方法,本方法可以用来对夹芯钢材,套筒模件等多层复合材料的热传导过程和热阻性能进行高精度的快速分析方法。
本发明公开了一种耐高温高强韧钼基复合材料,包括以下重量分数的组分:ZrO2 1.5%~5%、CrCoNi合金1%~1.5%、余量为Mo,其中,CrCoNi合金中Cr、Co、Ni的质量占比分别为:Cr 30%~36%、Co 30%~36%、Ni 30%~36%。本发明将CrCoNi中熵合金粉体作为添加成分应用于钼基复合材料制备;球形CrCoNi中熵合金粉体为单相固溶体,可有效促进材料基体致密化烧结,显著提高材料韧性,解决了钼基复合材料韧性差、成形性差的核心技术难题;采用真空感应烧结,避免在氢气气氛烧结产生氢脆,保证材料强韧性;将ZrO2添加至钼基复合材料,通过陶瓷相变增韧及弥散强化,提高材料强韧性;同时ZrO2添可提高材料烧结致密度,降低孔隙率,降低钼基体与氧接触面积,提高材料耐烧蚀性。
本发明涉及一种车辆履带板着地橡胶复合材料及其制备方法,采用粘土/橡胶纳米复合材料作为主体生胶,粘土以纳米形态均匀地分散在橡胶基体中,利用粘土的片层效应来提高履带车辆着地胶复合材料的抗裂纹增长性能。同时,利用耐磨填料良好的润滑性以及与橡胶间良好的相容性,将其以助剂的方式加入到橡胶复合材料中,耐磨填料和主体补强填料充分发挥协同补强效应,可进一步提高履带车辆着地胶复合材料的力学性能和耐磨性能。
本发明提供了一种耐高温耐磨金属铁与氧化铝陶瓷复合材料及其制备方法的新的技术方案,所述复合材料主要由以下三组分构成,且各自在该三组分中所占的重量百分比如下:(A)FeAl2O4:33-48wt%;(B)金属铁:50-65wt%;(C)REO-FeO-Al2O3固熔体:0.5-2.0wt%;其中,REO是指稀土金属的氧化物;所述制备方法,以含稀土金属的氧化物的铁矿为原料,加入氧化铝和还原剂通过热压原位反应制备获得。该复合材料,物相润湿角小,界面结合良好,陶瓷相与金属相分布均匀,断裂韧性高,耐磨性好,该方法,工艺简单、成本低、金属相和陶瓷相比例可控,有望为我国富含稀土金属的共生铁矿的低成本、高附加值利用开辟一条新途径。
本发明披露了一种蛛网状NiO@AlxNiy/C复合材料和其在生物传感器方面的应用。该蛛网状NiO@AlxNiy/C复合材料是以镍铝水滑石纳米片为前驱体材料,在水热合成镍铝水滑石材料时加入一定比例的葡萄糖,再经过高温煅烧的方法,原位生成蛛网状NiO@AlxNiy/C复合材料。本发明的蛛网状NiO@AlxNiy/C复合材料极大增加了比表面积,提供了大量的活性位点,材料中的AlxNiy及无定型碳材料相互交叉构成了良好的导电网络。此外,将该复合材料作为生物传感器具有极高的电催化灵敏度、良好的操作稳定性及储存稳定性。
本发明公开了一种固态渗碳或离子渗碳制备层状钛基的复合材料及方法,其包括如下步骤:一、按照设计要求加工钛合金或钛基复合材料薄片,并对薄片表面进行酸洗,去除氧化膜和其它污染物;二、采用固态渗碳或离子渗碳对目标薄片进行双面渗碳强化处理;三、将渗碳钛片与未处理钛片进行交替层叠组装成层状结构预制体;四、将层状结构预制体置于真空热压炉中,通过高温压力连接实现良好的层间界面冶金结合,最终随炉冷却至室温,获得层状钛基复合材料;本发明通过渗碳表面处理,可以将钛表面硬度从266HV提高至770HV,形成150μm的钛基复合材料渗层,该方法渗层与基体结合紧密,制备方法简便,成本低,易于实现,适合纯钛、钛合金和钛基复合材料等各种牌号。
本发明提供了一种花状纳米复合材料,由包括氢氧化镍、类石墨相氮化碳和氧化石墨烯的材料复合得到;所述花状纳米复合材料的形貌呈花状。本发明提供的花状纳米复合材料作为超级电容器电极材料时,具有较好的电化学性能。实施例结果表明,本发明提供的花状纳米复合材料作为电极材料具有较好的循环稳定性,经过1000次充放电循环后,电极材料的容量保持率达74.3%,表现出了良好的循环稳定性能;另外,本发明提供的花状纳米复合材料具有较高的能量密度,在1A/g的电流密度条件下比电容为473.3F/g~543.8F/g。
本发明公开一种辉石基金属Fe夹层复合材料及其制备方法,属于铁基或陶瓷基复合材料制造领域,其中一种辉石基金属Fe夹层复合材料,包括以下重量份的成分:粉状辉石相玻璃水淬渣100份,辉石相玻璃水淬渣还原剂10~40份,铁粉80~100份,铁粉还原剂10~40份;一种辉石基金属Fe夹层复合材料制备方法,其步骤包括:初始配料、制作水淬渣、再次配料、配料研磨、制作原始坯料、坯料烧结;该辉石基金属Fe夹层复合材料及其制备方法操作简单,生产成本低,可以提高成品的韧性、机械强度,促进了尾矿的综合利用,对资源循环利用以及保护环境有重要意义。
重熔气压过滤制备高体积分数SiCp/Al复合材料的方法,目的在于克服重熔金属型铸造工艺制备SiCp/Al复合材料体积分数低,材料致密性差,制备过程复杂的弱点,提出了一种重熔气压过滤制备高体积分数SiCp/Al复合材料。针对SiCp/Al复合材料废料体积分数在45%以下,SiCp增强颗粒的尺寸在50μm以下,通过对复合材料废料预处理,实现除油脂和杂质,并在氮气保护下采用高能振动搅拌,实现细化碳化硅颗粒,使其均匀分布,并清除熔体中气体和杂质。通过气压过滤装置利用高压氮气将铝液快速从过滤片挤出,即可得到满足电子封装要求的高体积分数SiCp/Al复合材料。
本发明涉及耐事故燃料泄漏检测技术领域,具体公开了一种管型SiC复合材料气密性检测装置及方法,在进行管型SiC复合材料气密性检测时,SiC复合材料包壳管的一端与橡胶密封帽上的管接口过盈配合相连,另一端采用橡胶堵头进行密封,不锈钢连接座的下部与氦质谱检漏仪相连。本发明实现了耐事故包壳SiC复合材料的气密性检测,能够有效进行SiC复合材料管材气密性的评价,为反应堆的安全试验研究提供保障。
本发明涉及建筑材料领域,具体涉及粉煤灰和聚氯乙烯复合材料及其制法和应用。该复合材料采用含有下述组分的原料制成:粉煤灰60-85重量份,聚氯乙烯回收料13-37重量份,稳定剂0.5-2重量份,第一润滑剂0.1-1重量份,和第二润滑剂0.1-1重量份;其中,所述第一润滑剂选自硬脂酸或硬脂酸醇、硬脂酸钙或硬脂酸锌的一种或两种以上,所述第二润滑剂选自石蜡、聚乙烯蜡、聚丙烯蜡或氧化聚乙烯蜡的一种或两种以上。本发所述复合材料的制备方法工艺简单、成本低廉,产品附加值高,废物:粉煤灰和废旧PVC利用比例为97-99.3%,可获得良好的环保效益,具有广阔的应用前景。
本发明涉及一种建筑复合材料及其应用,所述建筑复合材料包括基础料,所述基础料的原料包括快硬硫铝酸盐水泥和硅酸盐水泥、或包括硅酸盐水泥、矿渣粉和石膏、或包括快硬硫铝酸盐水泥、硅酸盐水泥和石膏;所述建筑复合材料的pH值为7~9或12~14,所述建筑复合材料的软化系数为0.6~0.7或0.8~0.95,所述建筑复合材料的初凝固化时间为3~5分钟、9~12分钟或60~90分钟,所述建筑复合材料容重为0.8~2.2吨/m³,所述建筑复合材料制成2cm厚度板材的抗折强度为7~25MPa。本发明满足了装配式建筑的相关性能要求和国家相关标准。工艺简单,适应性强、造价经济,环保利废。解决了目前国内只有石膏板硅酸钙板只可以满足室内及装饰要求,而无法满足板式拼装建筑围护结构的建筑板材使用要求。
本发明提供一种界面控制钨丝束增强铜基复合材料的制备方法,其特征在于:包括如下步骤:(1)在钨丝表面电镀铜;(2)将一定数量镀铜后的钨丝绑成束;(3)利用毛细作用将铜熔渗到步骤(2)中制备好的钨丝束中;其中,熔渗开始时铜以基体为块体或粉体的状态并置于熔渗装置的底部,钨丝束竖立于熔渗装置中并仅钨丝束的底部与铜接触。本发明制备的界面控制钨丝束增强铜基复合材料具有如下优点:(1)复合材料具有穿甲“自锐化”特性。(2)钨丝与钨丝之间没有直接接触。(3)在界面改性后,复合材料在强度变化不大的前提下,塑性有明显提高。
本发明涉及一种纳米氧化物催化剂包覆储氢合金复合材料的原位合成法。纳米氧化物催化剂包覆储氢合金复合材料中,储氢合金选用La1‑x‑yRExMgyNi3.0‑a‑bM1aM2b型储氢合金;纳米氧化物催化剂选用稀土氧化物和/或过渡金属氧化物;其中,x,y,a和b均为原子比,且0
本发明涉及一种玄武岩纤维-TiO2复合材料的制备方法,分别将一定量的纳米TiO2溶入去离子水中得到TiO2纳米溶胶,将短切玄武岩纤维加入一定浓度的NaOH溶液中,然后二者混合,强烈磁力搅拌,得到玄武岩纤维-TiO2复合材料的前驱物,将制备好的前驱物加入带聚四氟乙烯内衬的不锈钢高压水热反应釜中,利用水热反应一步制得玄武岩纤维-TiO2复合光催化材料。本发明采用操作简单的水热反应方法,使得颗粒状的TiO2涂层均匀包覆于玄武岩纤维表面,制备了一种具有核壳结构的负载TiO2的玄武岩纤维复合材料。该复合材料绿色环保、使用寿命长,可循环使用,是一种高效、廉价的生态环境材料。
本发明涉及一种功能化合物及其制备方法,属于功能材料领域。具体的为一种功能化合物,该化合物的化学式为:MmM’xSiyAzBwNn,式中M为碱土金属元素的一种或几种,M’为稀土元素的一种或几种,A为ⅢA元素以及Y,Sc,Lu,La,Gd中的一种或几种,B为ⅤB元素中的一种或几种,0≤m≤4,0<x≤1,1≤y≤7,0≤z≤3,0<w≤1,n=2/3m+z+4/3y+k,(2x+3w)/3≤k≤(3x+5w)/3。本发明还提供了该功能化合物的固相制备方法。本发明的新型功能化合物可用于制作具有高显色性的照明器件。
本发明涉及一种复合结构高电能密度厚膜及其制备方法,属于电子功能材料与器件领域。为提高反铁电厚膜的储能密度,本发明制备得到表面覆盖ZnO覆盖层的锆酸铅基反铁电复合厚膜材料,使制得的复合结构的锆酸铅基反铁电厚膜既具有较高的储能密度和介电常数,又具有较低的介电损耗,能够在高功率大容量电容器中得到应用。
本发明公开了一种双钙钛矿柔性铁电薄膜及其制备方法,属于电子功能材料与器件技术领域,该铁电薄膜化学通式为Bi2FeMo0.7Ni0.3O6的材料,本发明寻找了一种合适的金属箔(镍箔)柔性基底设计了一种具有垂直结构的双钙钛矿柔性铁电薄膜;该柔性基底具有延展性好及成本低廉等优点,有利于实现柔性电池卷对卷的生产工艺,对电池的大面积连续生产更具有经济价值;本发明能够获得稳定性较好的柔性双钙钛矿铁电薄膜,以及良好的光伏性能和光电转化效率,这些研究对于新型光电子、光伏材料的开发与应用具有重要的科学价值与研究意义。
本发明涉及功能材料技术领域,具体为一种荧光材料及其制备方法和应用。所述荧光材料含有具有以下组成的材料:MaSibRcNdOe:Lx,其中,所述M选自Mg、Ca、Sr和Ba组成的元素组中的一种或一种以上;所述R选自Ti或Zr中的一种或两种;所述L选自Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu组成的元素组中的一种或一种以上;该材料稳定性好,发光效率高。本发明还提供上述荧光材料的制备方法,包括下述步骤:按照化学计量比将含有组成元素的化合物原料与助熔剂混合后,进行还原焙烧得到荧光材料。该方法环保、简单、成本较低,所得产品具有广阔的应用前景。
本发明涉及一种具有高压电特性的荧光材料及制备方法,属于发光材料技术领域。本发明包括以下质量百分比的组分:(Ba0.85Ca0.15)1-xPrx(Zr0.1Ti0.9)O3,其中Ln=Pr、Sm、Eu中的一种或多种,?x?的取值范围为0.001≤x≤0.100。本发明具有钙钛矿结构的(Ba, Ca)(Zr, Ti)O3基质材料中掺入一定量的稀土元素实现的。同时,掺杂的(Ba, Ca)(Zr, Ti)O3材料也具有优越的压电性能,即保持有高的压电系数(d33≈250库仑/牛顿)。因此,该多功能材料除了能用于白光LED技术之外,还有望在光电集成、微机电、光电传感等领域中得到应用。
本发明公开了一种特殊结构合金的原位制备方法,其特征在于:将具有特殊微观结构的基体金属与待合金化金属分隔放置,将二者共同加热使待合金化金属转变为蒸汽后与基体合金接触,在保持基体金属原有特殊结构的前提下使汽化金属与基体金属形成合金。该方法能够在保持合金特殊微观机构(如空洞、树枝状、絮状等)的同时实现合金化制备,能够精确控制合金中各组分含量突破了合金功能材料在微团结构调控方法上的难题。
本发明总体地涉及环境功能材料和水处理技术领域,提供了一种多孔生物炭/铁酸锌复合材料,它以多孔生物炭为基体,表面负载磁性铁酸锌粒子,磁性铁酸锌粒子的粒径为50‑400nm;多孔生物炭与铁酸锌纳米颗粒的质量比为(1:1)‑(1:2);多孔生物炭的比表面积为1000‑1200m2·g‑1、孔容为0.40‑0.50cm3·g‑1、孔径为3.00‑3.50nm。本发明农作物秸秆为原料制备多孔生物炭,以ZnCl2分析纯和FeCl3·6H2O分析纯制备铁酸锌,并在与多孔生物炭复合过程中使用氨三乙酸进行改性,所得多孔生物炭/铁酸锌复合材料可用于水中重金属吸附,铁酸锌强化吸附效果的同时,并可通过磁选回收吸附材料以重复利用。
本发明公开了一种用于金属材料热处理中的空气消耗剂,它由诱导材料、反应材料和催化剂复配而成,所述诱导材料为La、Ce、Pr、Nd、Sm粉末中的一种或几种;所述反应材料为Mg、Al、Ca粉末中的一种或几种,所述催化剂由Ni或Fe粉末组成;该消耗剂材料配比合理,在高温下,短时间内能协同催化将密闭环境中的活性气体消耗,并且不发生二次分解,能够使得金属材料在热处理过程中始终保持低氧状态,进而获得致密的组织结构和良好的性能。本发明适用于对稀土金属功能材料进行热加工时去除密闭加热设备环境中的空气。
本发明涉及功能材料领域,具体涉及硅酸盐荧光材料及其制备方法和应用。该荧光材料含有具有以下组成的材料;Ma+c-xNcSi1+bO2+a+2bX3c﹕xEu,其中,所述M选自Ba、Sr、Ca和Mg组成的元素组中的一种或两种以上;所述N选自Li、Na、K和Rb组成的元素组中的一种或两种以上;所述X选自F、Cl、Br和I组成的元素组中的一种或两种以上;其中,a、b、c和x为配比参数,且1.8≤a≤2.2,0< b≤0.1,0< c< 0.3,0< x< 0.5。所述荧光材料可被450~470nm的光高效激发,可以应用到蓝光激发的白光LED中;通过调节M以及卤素的含量可以调节发射峰位从503nm到557nm的范围内变化,应用到白光LED中可以显著提高显色指数;稍过量的SiO2可以提高产物的发光强度和稳定性,本发明所述荧光材料具有良好的光学特性和稳定性,具有广阔的应用前景。
本发明涉及一种具有高储能密度的锆酸铅基反铁电厚膜及制备方法,属于电子功能材料与器件领域。本发明包括以下化学组分:按质量比:(Pb1-aLa2a/3)(Zr1-x-ySnxTiy)O3∶玻璃粉∶有机粘结剂=70~80∶1~5∶15~25,其中:0≤a≤0.06,0≤x≤0.45,0≤y≤0.10。本发明中的反铁电厚膜材料同时具有能量存储密度高、能量损耗低的特点,可以作为高功率大容量电容器开发和应用的关键材料。
本发明属于电子功能材料与器件技术领域,提供一种无铅铁电厚膜,该无铅铁电厚膜包括化学通式为Na0.5Bi0.5Ti1?xMnxO3的材料,其中0<x≤0.2。通过Mn的掺杂,能够降低漏电流,提高储能密度,有助于晶体的生长取向,使晶相由不利于储能的三方相向四方或伪立方相转变。在外加电场的作用下,Na0.5Bi0.5Ti1?xMnxO3铁电厚膜弱的铁电性转变为长程有序的铁电相,能够获得较大的极化差值,从而有利于储能密度的增加和储能效率的提高,本发明无铅铁电厚膜能够提高储能密度、储能效率及稳定性,有利于高功率大容量存储电容器件的开发和应用。
本发明属于功能材料技术领域,提供了一种利用农业秸秆制备磁性钛纳米材料的方法,它包括以下步骤:S1、以农作物秸秆为原料制备获得生物炭;S2、通过湿化学共沉淀法制得Fe3+‑NH3溶胶;S3、将步骤S1所得的生物炭和钛源添加到步骤S2所得的Fe3+‑NH3溶胶中,依次进行超声搅拌、离心分离,并将分离所得的固体用去离子水洗至中性,然后旋转蒸发呈固体糊状,再进行烘干,最后研磨,得到磁性钛纳米材料。其中步骤S1中,农作物秸秆为玉米秸秆,并保留秸秆叶片;将保留叶片的玉米秸秆粉碎、研磨过80目筛后采用限氧控温法进行炭化,其中的炭化温度为300℃、500℃、700℃中的一种,炭化时间2h,获得生物炭。
本发明公开了一种尾矿MAS系玻璃陶瓷绝缘材料及其制备方法,其特点是以黄金尾矿、钼尾矿等固体废弃物为主要原料,利用钼尾矿与黄金尾矿中的硅元素与铝元素含量高的优势,通过改变SiO2/Al2O3质量比,制备出以假蓝宝石和顽辉石为主晶相的玻璃陶瓷,该方法既能够降低制备玻璃陶瓷的原料成本,又能够解决金属尾矿对环境的污染,为利用成分较为单一的固废制备绝缘玻璃陶瓷材料提供了新思路。本发明制备的假蓝宝石和顽辉石相绝缘玻璃陶瓷电绝缘性优良、介电损耗小、介电常数稳定、机械强度高、耐高温、耐酸碱性好。可为所有硅酸盐质固体废弃物在以绝缘材料为代表的功能材料领域中的应用提供借鉴。具有较高的社会经济效益。
本发明属于稀土功能材料技术领域,具体涉及一种稀土新电源用贮氢合金及其制备方法。在贮氢合金表面覆盖粘结剂层得到,所述的贮氢合金为镁基合金型与AB5型的混合物。本发明产品具有较高的能量密度和循环性能、高抗腐蚀性和高使用寿命;能够增强极片内贮氢合金颗粒间的导电力,极片掉粉量大为减少,降低电池在使用过程中的自放电;本发明还提供其制备方法,操作简单、生产成本低、改善效果明显等特点,对提高贮氢合金后续的实际极片制备性能具有重要实际意义。
中冶有色为您提供最新的内蒙包头有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!