本发明提供了一种环氧树脂摩擦学性能改善方法,属于宏观润滑技术领域。将Ti3C2 MXene纳米片和纳米纤维素制得均匀的Ti3C2 MXene/纤维素溶液,经单一方向受冷,液体完全冷冻成冰,在‑40到‑60℃和2‑10Pa条件下,冷冻干燥3‑5天,得到Ti3C2 MXene纳米片的三维网络结构块体。加入环氧树脂,在35‑60℃真空条件下脱气6‑48h,使环氧树脂充分浸入三维结构内,以该结构为框架制得环氧树脂复合材料。干摩擦条件下,改性后的复合材料热导率较纯环氧树脂提高了41.2%,摩擦系数、磨损率和磨损体积较纯环氧树脂降低了87%、45%和45%,实现环氧树脂摩擦学和热性能的改善。
本发明涉及一种石墨烯泡沫负载纳米Fe3O4磁性粒子复合吸波材料及其制备方法。本发明根据Hummers法制备氧化石墨烯,配置一定浓度的氧化石墨烯胶状悬浮液,加入Fe2+溶液,氨水溶液调节pH值后注入反应釜,在高温高压密闭条件下反应。通过调节Fe2+溶度、pH值、反应时间、反应温度来调节复合材料的泡孔及吸波性能。石墨烯泡沫负载Fe3O4磁性粒子复合吸波材料中石墨烯呈泡沫多孔结构,Fe3O4磁性粒子牢固地锚定负载在石墨烯泡沫结构中,且Fe3O4的粒径大小为150‑300nm。石墨烯泡沫负载纳米Fe3O4磁性粒子复合吸波材料吸收强度深、吸波频带宽、重量轻、力学性能好,是一种具有优异性能的复合材料。可以满足多方面的使用需求。
一种关于金属内衬纤维缠绕气瓶的承载能力的预测方法,属于高压气瓶制造技术领域。首先,建立包含变角度、变厚度的封头段缠绕层的复合材料气瓶有限元模型。其次,对气瓶施加自紧压力并卸压,模拟气瓶出厂前的自紧过程:施加自紧力内衬进入屈服阶段;然后逐渐卸载,完成复合材料气瓶自紧处理过程。最后,在线性增压过程中,对复合材料气瓶进行渐进损伤分析,并对其承载能力进行预测。本发明结合实际工程经验,将泄露通道作为极限承载能力判据;将本发明的预测结果与实验结果对比,误差小于2%,说明本发明的数值模型可以准确预测金属内衬复合材料气瓶极限承载能力。
本发明涉及一种通用磁性吸附剂的制备方法与应用,属于磁性多孔纳米复合材料制备领域,具体涉及采用溶剂热法合成碳与磁性尖晶石型铁氧体MFe2O4杂化的纳米复合材料MFe2O4/C,以及其经煅烧处理后作为染料污水处理吸附剂的应用。该种吸附剂在广泛的溶液pH(3.0‑11.0)下对阳离子型染料和阴离子型染料均有良好的吸附性能,并且在外加磁场作用下可迅速从水溶液中被分离,方便、快捷、经济高效。
本发明提供了一种氧化镁/石墨烯抗菌涂料的制备方法,属于功能涂料生产技术领域。在微波水热条件下,通过助剂改性,在氧化石墨表面原位生长氢氧化镁纳米片获得复合物前驱体,再通过高温热还原得到氧化镁/石墨烯复合材料;将制备的氧化镁/石墨烯复合材料作为抗菌剂添加到水性树脂中制备成抗菌涂料。本发明的制备方法简单、高效、产率高,产品粒径大小均一并适用于工业化生产;将氧化镁/石墨烯复合材料应用到水性树脂中制备成抗菌涂料,解决了抗菌涂料存在二次污染,依赖紫外光照杀菌的不足,有利于实现稳定持久的抗菌保护。本发明不仅提高了氧化镁基复合材料和涂料的抗菌性能,而且制备的抗菌涂料应用领域广泛,具有良好的应用前景。
本发明涉及龙舟器材的一种双层壁舟体的龙舟及其制造工艺,特点包括:在龙头、尾间连接一个有双层壁舟体的龙舟体,龙舟体的双层壁由模具加工的复合材料制的外壳体外层,在吃水线以上的外壳内侧粘接有木舷椽的木舷板内层构成舟体上部,在吃水线以下的外壳内连接由模具加工的复合材料制的内壳体内层构成的舟体下部,内壳体顶部两侧设有纵向侧龙骨,侧龙骨相对的顶侧面上布有由座板、托桥、支承座、螺钉组成的座板托桥装置,座板下的舟底设两个脚蹬,舟体前、后端有头、尾漂浮仓,漂浮仓甲板上装舟标位、坐位、鼓位、舵位,本发明不仅结构紧凑、设计合理,刚度好不变形,且舟体壁薄量轻,外形美观。
本发明公开一种结构简单、易于操作、运行成本低(以空气为载气)、具有良好的稳定性及重现性、检测效率及精度高的光电双信号同时检测汽油中乙醇和MTBE的方法及检测器,是以纳米催化发光检测器进行检测,所用纳米材料为氧化锡和氧化镍的复合材料,氧化镍为复合材料总质量的25~45%,检测波长为400~460nm,纳米材料的加热温度范围200~300℃,载气流速20~200ml/min;在所述纳米材料的两端施加电压并取所产生的电流为检测信号。所用检测器与现有技术的区别是在纳米半导体金属氧化物的两端分别设有正电极、负电极,正电极、负电极之间的电流输出及光电信号转换装置与电信号检测电路相接。
本发明公开一种结构简单、易于操作、运行成本低(以空气为载气)、具有良好的稳定性及重现性、检测效率及精度高的光电双信号同时检测汽油中甲醇和乙醇的方法及检测器,是以纳米催化发光检测器进行检测,所用纳米材料为氧化钛和氧化锡复合材料,氧化锡为复合材料总质量的35~55%,检测波长为400~460nm,纳米材料的加热温度范围200~300℃,载气流速20~200ml/min;在所述纳米材料的两端施加电压并取电流值为检测信号。所用检测器与现有技术的区别是在纳米半导体金属氧化物的两端分别设有正电极、负电极,正电极、负电极之间的电流输出及光电信号转换装置与电信号检测电路相接。
本发明公开一种用于高灵敏度检测乙醇的修饰电极及制备方法,是利用无金属可见光催化的聚合方法将聚丙烯酰胺修饰在电极表面,再利用碳二亚胺交联技术将功能化石墨烯嵌入在聚丙烯酰胺聚合物中,形成聚合物@石墨烯复合材料,最后在复合材料表面沉积纳米钯,制得聚丙烯酰胺@石墨烯/纳米钯修饰电极。由于特殊的高分子效应以及聚丙烯酰胺@石墨烯复合载体与催化中心、反应底物和产物之间的相互作用,可很好的电催化还原乙醇,应用于检测乙醇的电化学传感器,具有制备简单、检测快速(150 s)及灵敏度高(1.3×10‑9 mol/L)等优点。
本发明公开一种结构简单、成本低、自润滑效果好、承载能力强的外圈内有复合衬板的单开缝自润滑关节轴承及制造方法,是在外圈内表面粘接有沿圆周分布径向拼接的至少四块钢背复合材料衬板。制造方法是用轴承钢加工外圈和内圈,其中外圈上有一道轴向缝;制作径向拼接后与外圈内表面形状相吻合的至少四块钢背复合材料衬板;将每块钢背复合材料衬板的钢背表面打毛及在钢背表面上加工沟槽并配研径向拼接面;以外圈的轴向缝为起点,将钢背复合材料衬板沿圆周方向顺次径向紧密拼接并粘接在外圈内表面上,在对粘接面施加外力的条件下进行粘接剂加温固化;将内圈直接装入外圈中。
本发明公开一种通过化学气相沉积和冷冻干燥过程合成三维网络状石墨烯泡沫‑石墨烯气凝胶复合碳材料包覆的石蜡的有机/无机复合材料制备方法。以改良的Hummers方法制备的氧化石墨烯和化学气相沉积得到的石墨烯泡沫为原料,经过浸泡和真空冷冻干燥处理,合成石墨烯泡沫‑氧化石墨烯气凝胶复合材料,经高温还原,盐酸刻蚀泡沫镍,可得石墨烯泡沫‑石墨烯气凝胶复合材料;将此石墨烯泡沫‑石墨烯气凝胶复合材料与石蜡混合,加热条件下真空浸渍,可制备石蜡/石墨烯泡沫‑石墨烯气凝胶复合相变材料。本方法构筑的复合相变材料,由于三位骨架网络本身的化学稳定性高,导热性能好,使得最终的复合相变材料稳定性好,对相变材料负载量高,导热性能相比于石蜡有了极大的提升。
一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用,属于色谱分析预处理和环境监测技术领域。首先,制备氨基功能化的六烷基胍盐离子液体,然后在Fe3O4材料表面包覆SiO2后得到Fe3O4@SiO2磁性材料,再将Fe3O4@SiO2与六烷基胍盐离子液体桥联,得到胍盐离子液体修饰的磁性纳米材料,即Fe3O4@SiO2‑GIL纳米复合材料。得到的制备的Fe3O4@SiO2‑GIL纳米复合材料用于MSPE富集环境水样中的PAHs。本发明制备得到的氨基功能化的六烷基胍盐离子液体烷基链较短、毒性较低,能够增强磁性吸附剂的亲水性,可结合液相色谱‑紫外可见光谱检测用于环境中PAHs的痕量检测。
本发明属于无机功能材料技术领域,提供了一种水镁石基力学增强型复合阻燃剂的制备方法。首先在镁系阻燃剂表面沉积包覆氮磷协效阻燃剂,进而通过共混方式引入含硅增强材料,得到阻燃效率与力学性能兼顾的高效复合阻燃剂。本发明流程简单、操作方便、成本较低、工艺条件易控制,适合于规模化生产。填充量小于45wt%时就能显著提升EVA聚合物复合材料的力学性能和阻燃性能,拉伸强度大于9.50MPa,断裂伸长率大于300%,远超国家对于电缆护套材料的要求,同时阻燃达UL94-V0级别,能使得EVA复合材料热释放速率极大的下降。
本发明属于爆炸焊接技术领域,特别涉及到一种固结多层脆性金属箔材成为平板的爆炸焊接技术。其特征是将两块对称的复板构成两端是半圆型的扁管,多层脆性金属箔材对称固定在置于扁管正中的芯板上,四周布置等厚度炸药驱动扁管,先将多层金属箔材爆炸焊接成为扁管,通过切割去工件的半圆部分制成固结的多层金属箔块体平板、块体与普通金属的复合板、脆性金属箔材增强金属基复合材料的板材。本发明适于一种固结延伸率小于5%的许多脆性金属箔材,如:非晶态合金、金属准晶箔材等,也可用以制造钨、钼、高速钢箔材增强的金属基复合材料。同时,还可以直接用来制造内包覆脆性合金层的复合扁管,以及块体非晶态合金、准晶合金扁管等。
本发明涉及一种钨功能化的有序介孔高分子及有序介孔炭材料的合成方法:用低聚的酚醛树脂与钨源反应,获得钨改性的炭前体;并通过该前体与非离子表面活性剂之间的氢键作用及溶液蒸发自组装的诱导效应,获得具有不同介观结构的复合材料。该复合材料在惰性气氛下焙烧、高温炭化最终转化为一系列钨功能化的有序介孔炭/有序介孔高分子复合材料。这种对炭前体实施改性并通过溶液蒸发诱导自组装法获得的介孔复合材料具有有序度高、碳化钨颗粒小并高度分散的特点;并且有望发展出其他金属或金属碳化物复合的有序介孔炭/有序介孔高分子材料。
本发明公开一种检测效率及精度高的天然气中硫化氢的催化发光信号检测方法及其检测器,是以纳米催化发光检测器进行检测,所用纳米材料为CeO2与Al2O3的纳米复合材料,CeO2占纳米复合材料总质量的5~20%,检测波长为400~460nm,纳米材料加热温度范围280~400℃,空气作为载气,载气流速为50~80ml/min。所用检测器有石英瓶,在圆柱形石英瓶上端有上盖,在上盖上设有进样口和放空口,在上盖上固定有正电极和负电极;所述石英瓶内置有陶瓷管,陶瓷管内有加热丝,加热丝两端分别与正电极和负电极相接;所述石英瓶与陶瓷管之间填充有多个小石英管,小石英管外表面涂有纳米材料。
本发明属于先进复合材料科学技术领域。公开了一种纤维织物增强含杂萘联苯结构邻苯二甲腈共混树脂基复合层压板及其制备方法。其特点是树脂基体是自主制备的邻苯二甲腈封端的可交联杂萘联苯共聚芳醚腈树脂与可交联双酚型邻苯二甲腈化合物BP‑Ph的共混树脂;将上述树脂基体溶解在特定有机溶剂中,并首次加入4,4‑二氨基二苯砜/氯化锌混合物作为固化剂。将溶液均匀浸渍于纤维织物中,经热流烘干通道除去溶剂,待冷却至室温后,制得预浸片;将预浸片放于模具中,经一定的热压固化工艺成型,冷却脱模后得到具有良好综合性能的复合材料层压板。本发明创新之处是设计并合成了一种含杂萘联苯和苯腈结构的邻苯二甲腈树脂,以该树脂为基体可实现溶液预浸法制备复合层压板;此外,通过混入BP‑Ph和新型固化剂的设计,实现了邻苯二甲腈树脂固化性能的提高和加工成本的降低。并通过预浸和层压工艺的设计和优化,制备出具有良好综合性能的复合层压板。本发明在推动高性能复合材料的发展和拓展热固性树脂基复合材料在航空航天领域的应用方面具有实用价值。
本发明属于生物材料制备领域,具体涉及了一种载药骨修复内固定材料及其制备方法。所述方法包括以下步骤:(1)将纳米羟基磷灰石超声分散于去离子水或乙酸中,得到溶液A;(2)将壳聚糖溶于乙酸中,得到溶液B;(3)将溶液A和左旋聚乳酸粉末加入溶液B中进行共混分散,同时水浴加热,随后干燥,得到左旋聚乳酸/壳聚糖/纳米羟基磷灰石复合材料;(4)将步骤(3)得到的复合材料研磨,通过超临界流体技术将消炎药物浸渍到复合材料中。本发明制备的生物复合材料在强度、生物相容性等方面得到了极大程度的改善,材料具有优异的力学性能、无毒、生物安全性好、无刺激性和易加工成型等优点,同时具有缓释消炎的作用。
一种活性碳纤维复合材料为主材料制作的医疗用新型材料,其新型材料正面为棉布等材质的保护层,采用机械喷雾式将粘合剂均匀附着于新型材料保护层上,经过高温灭菌处理的活性碳纤维医用复合材料均匀放置附着于医用粘合剂上,然后将中间为医用标准纤维粘合剂、两面为保护层布料和活性碳纤维用机械压力压为一体,在粘合剂的粘力和机械的压力下而形成新型材料,采用机械喷涂式将医用药剂喷涂在活性碳纤维复合材料表面而形成医疗用新型材料。优点:活性碳复合材料与人有亲和性能,无排异反应,透气性好,可起到保温隔热功效,具有吸附、消炎灭菌等作用,使用方便、储存时间长、涂有药物可起到对病人的医疗作用。
本发明涉及一种锌溴液流储能电池负极电极及其制备方法,电极包括碳塑复合材料板及在碳塑复合材料板的一侧表面附着高比表面积的多孔层。多孔层由粘接剂和多孔材料构成,粘结剂为氯化聚丙烯或氯化聚乙烯;多孔材料包括活性碳、碳载金属、石墨或碳黑,二者的重量比为1-5:1-15。多孔材料在碳塑复合材料板上的担载量为0.5mg/cm2~10mg/cm2。本发明采用高比表面积的多孔层碳塑复合材料作为负极电极,可增大电解液与电极间的接触面积,减小负极锌沉积溶解的电化学极化,同时具有较高的电导率,大大提高了电池性能。
本发明涉及化学储能技术中的液流储能电池,具体地说一种用于液流储能电池的增强柔性石墨双极板及其制备,双极板由柔性石墨层和碳塑导电复合材料层交错叠加粘接而成,并且其外测2层为柔性石墨;本发明采用碳塑导电复合材料对柔性石墨板进行增强,并用热压方法制备增强柔性石墨双极板,其具有良好的导电性、阻液性及机械力学性能。本发明制备工艺简单,所制备的增强柔性石墨双极板成本低廉,易于批量生产。
一种硫电极及其制备和应用,所述硫电极包括硫/碳复合材料、导电剂和粘结剂,其中硫是电极活性物质。电极中硫/碳复合材料的质量含量为10~95%;硫/碳复合材料中硫与多孔碳材料的质量比为1∶0.05~19;硫/碳复合材料中的多孔碳材料的电导率大于或等于0.1S/cm,比表面积大于或等于500m2/g,孔体积大于或等于0.3cm3/g,孔结构包括微孔和介孔。多孔碳材料采用酸改性的方法进行处理,其中酸的质量分数为1~50%。采用该发明方法制备的硫电极,具有高比能量、循环稳定性优异,且电极材料价廉易得,制备方法简单易行的优点。所述硫电极可作为正极应用于二次电池中。
本发明涉及一种非金属掺杂的功能化介孔炭合成方法:在酚醛树脂类反应中加入含杂原子的无机酸,得到功能化的初级改型酚醛树脂。在酸性条件下,该前驱物与非离子表面活性剂通过液相自组装的方法得到具有介观结构的复合材料,其有序度由前驱物的比例及表面活性剂的量来调变。该复合材料经过惰性气氛下焙烧、高温碳化后最终转化为一系列非金属掺杂的介孔聚合物和介孔炭。这种液相自组装的方法具有简单、快捷等特点,有望实现大规模生产。
一种电动车依靠触摸电能滑动、行驶的碳纤维触摸材料,本发明主要包括有布状碳纤维或短切碳纤维状制作的复合材料的导电体、绝缘防潮防水保护层、漏电保护器、交流电源开关组成,其布状碳纤维或短切碳纤维状制作的复合材料导电体外包裹有绝缘防潮防水保护层,其布状碳纤维或短切碳纤维状复合材料导电体外包裹的绝缘防潮防水保护层包裹方法与金属导电体使用同样的包裹材料和包裹方法,布状碳纤维或短切碳纤维状的复合材料导电体一端与漏电保护器相连接,漏电保护器与电源开关相连接。优点具有高强度,高模量,耐高温,耐磨擦,抗疲劳,耐腐蚀,抗蠕变,质轻,电阻小于任何金属材料,运行中不会产生电弧光。
一种用碳纤维复合材料加热体制作的节能、环保 智能型电热水器,其自来水管下端连接盘与管状碳纤维复合材 料加热体上端连接盘用内接锣母锣旋式镶嵌连接,专用水管两 端连接盘中间位置各设置有十字横杆,将外包裹导热耐温绝缘 防潮防水保护层的碳纤维复合材料束丝组合状加热体两端分 别固定在两个十字横杆上,直流正负级电源线一端沿连接盘上 预留的凹型进线槽达专用水管内与碳纤维复合材料束丝组合 状加热体接线柱连接,专用水管下端连接盘与交流电源开关式 水管拉杆阀门用内接螺母螺旋式镶嵌连接,直流电源与温控器 相连接,温控器与变电器连接,变电器与交流电源开关相连接。 优点:节电、节能,可用于电热饮用开水、民用热水和工业用 热水。
本发明属于金属‑生物炭复合材料技术领域,一种新型含持久性自由基的生物炭基复合材料的制备方法。步骤如下:对生物质材料进行洗涤、干燥并剪切粉碎后过筛,得到生物质材料细碎粉末,将生物质粉末限氧热解得到生物炭材料。将生物炭材料与FeSO4·7H2O溶液混合,去除空气后滴加NaBH4将FeSO4·7H2O溶液中的Fe2+离子还原为Fe0,真空过滤、洗涤并干燥后得到黑色nZVI‑生物炭复合材料。该制备方法快速简单、无需复杂的仪器设备,且原料来源广泛,廉价易得。该复合材料具有富含持久性自由基、比表面积大、表面官能团多等特点,纳米零价铁粒子与生物炭协同作用提高了其在环境中的利用效率,对污染物具有良好的去除效果。
本发明属于高分子材料科学技术领域,公开了一种聚合物基导电发热复合膜材料的制备方法,并采用伽马射线辐射交联处理技术大幅度提高材料的导电率和电热转换效率。其特征是以碳纤维或镀镍碳纤维为填充体、以聚乙烯或聚乙烯与乙烯基共聚物的混合物为基体的涂膜或共混复合材料,得到聚合物基发热材料。碳纤维或镀镍碳纤维均匀分散在聚合物基体中,既导电又发热,在很低的外加电压下,就可获得很高的表面温度,升温快速,电热转换效率高,而且材料自控温性能佳,热重复性好,经久耐用,安全环保。通过对复合材料进行伽马射线辐射后处理,适宜剂量的伽马射线辐射交联使材料的电导性能、发热性能及热稳定性得到显著提高,工艺简单,安全节能。
本发明提供了一种风洞缩比模型热变形的物理模拟方法,属于飞行器风洞模型设计制造技术领域。本方法包括用于风洞试验的缩比模型和压电纤维复合材料致动器,风洞试验缩比模型采用纤维增强树脂基复合材料制成,若干片压电纤维复合材料致动器按照一定布局分布于缩比结构内表面,压电纤维复合材料致动器通过外接独立电源驱动而产生形变从而模拟结构热变形。本发明可以模拟的温度范围广,并且可广泛用于不同比例的风洞试验缩比模型。
本发明公开了一种碳纤维耐高温自润滑轴承,涉及机械制造技术领域,是在基体的内壁上开有固定槽,基体的内壁上附着有碳纤维复合材料层,碳纤维复合材料充满固定槽。由于碳纤维复合材料的自身特性,与轴配合工作时能够自润滑,不需注油,固定槽可帮助碳纤维复合材料层与基体牢固结合。本发明具有摩擦系数小、无噪音,自润滑性能强,耐磨、耐高温等优点,而且对轴承无磨损,使用过程中不会出现卡轴、抱轴现象,工作常温达500℃,瞬间可达1000℃,运行平稳。
本发明提供了一种制备反相/阴离子交换混合模式聚合物的方法和应用。将交联剂、单体、引发剂溶于致孔剂中,通入氮气除去体系中溶解的氧,称为溶液A。将纳米SiO2分散到曲拉通X‑100水溶液中,得到溶液B。将溶液A加入到溶液B中,然后通氮气排除体系中的氧分子后密封。在70℃下聚合反应。制备出SiO2‑聚合物微球复合材料。用氢氟酸浸泡除去SiO2‑聚合物微球复合材料表面的SiO2,烘干后分散在1‑氯丙烷的甲醇溶液中,回流进行季铵化反应,然后抽滤洗涤干燥。得到的聚合物微球粒径均匀。将其作为固相萃取填料,可用于分离纯化复杂基质中的弱酸性的药物。
中冶有色为您提供最新的辽宁大连有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!