本发明公开了一种对稀土原地浸出母液进行分类分流处理的工艺,包括:向浓度≥1g/L的中、高浓度浸出母液中通入除杂剂I进行除杂,除杂后经沉淀剂沉淀,再经清水洗涤、过滤、灼烧得到固态稀土产品;其中,所述除杂剂I为碳酸氢钠溶液和碳酸钠溶液的混合液,所述沉淀剂为碳酸氢钠溶液;和向浓度<1g/L的低浓度浸出母液中通入除杂剂II中和去除铝杂质,然后将除铝后母液通入离子交换柱中进行稀土离子的吸附富集,再用酸进行解吸,得到液态稀土产品;其中,所述除杂剂II为石灰乳。本发明工艺对不同浓度的母液实行分类分流处理,分别获得固态与液态两种不同形态稀土产品,使离子型稀土矿山开采,进入一个高效经济、资源利用率高的技术前沿。
本发明公开了一种从电镀污泥浸出液中络合沉淀分离铬铁的方法,通过采用苯甲酸或苯甲酸衍生物作为络合沉淀剂,对经预处理去除Ni、Zn、Cu等杂离子后仅余Fe3+、Cr3+的电镀污泥浸出液中铬铁离子进行分离,将浸出液中所含的铁离子以沉淀的形式除去。通过对络合沉淀剂的用量、反应温度、溶液的pH值、反应时间的控制可以实现电镀污泥浸出液中铁离子的去除率达95%以上,而铬的损失不超过5%。与现有的技术相比,络合沉淀分离铬铁方法对设备要求低,操作简单,所得沉淀物易过滤,对环境无污染。
一种提高萃取槽中有机相和水相分相速度的方法,其包括:形成依次串联的多级萃取槽系统,使有机相由系统的上游向下游顺流流动,而水相由系统的下游向上游逆流流动;在至少一级萃取槽中设置至少一块斜板。本发明的方法简单易行,为提高有机相和水相的分相速度提供了经济、简单、实用的方法,从而避免了有机相的大量损失,并提高了萃取分离的质量。
本发明公开了一种氯盐酸性浸出液中砷的去除和回收方法,具体包括:一段还原除铜砷:向一种氯盐酸性浸出液加入一定量的还原剂,控温,将还原渣和还原后液进行分离,得到含铜和砷的还原渣和一段还原后液;二段还原沉砷:向一段还原后液加入一定量的还原剂,控温,将还原渣和还原后液进行分离,得到只含砷单质的还原渣和二段还原后液。本发明涉及的氯盐酸性浸出液中砷的还原去除和资源化回收方法,具有操作简单、砷去除率高、流程短、选择性还原效果佳等优点。在合适的比例下,砷的总去除率可达99%以上;一段还原渣可作为优质铜精矿返回铜冶炼工序,二段还原渣可作为优质原料去单质砷精炼工序,实现了氯盐酸性浸出液中砷的去除和资源化回收。
一种预分萃取法对低钇和中钇离子稀土矿共同分组的方法,属于溶剂萃取分离稀土技术;本发明利用低钇离子稀土矿和中钇离子稀土矿的La-Nd轻稀土中Ce都较低且含量相差不大,La和Nd所占百分比相近,及这两种矿重稀土Y含量相差明显的稀土配分特点,采用预分萃取法,将低钇离子稀土矿和中钇离子稀土矿先预分萃取后,进入同一流程相同萃取设备中共同分组,得到La-Nd组分稀土(含Sm< 0.005%),SmEuGd富集物,GdTbDy富集物和含Y2O3约为80~90%的Ho-Lu、Y重稀土。这高钇重稀土不含La-Dy,是环烷酸萃取制取高纯钇的好原料。本发明既可以使低钇和中钇离子稀土矿在相同萃取设备同一流程中共同分组,提高设备利用率,增加用矿灵活性;又可以减少有机相用量和酸碱消耗及废水排放,有利于绿色环保。
本发明一种萃取箱澄清室内三相污物的捕捞装置由框架、限位绳、操纵轮轴、运动控制绳、限位滑轮、运动滑轮、纱网构成。框架由外框和内框组成;外框的四根垂直杆的顶部端口分别设置有四个限位滑轮,底部端口分别设置有四个运动滑轮;限位滑轮通过滚动与限位绳接触,操纵轮轴通过滚动与运动控制绳接触;内框覆盖纱网构成捕捞网箱,并与外框构成完整的三相污物的捕捞装置。捕捞装置通过操纵轮轴带动运动控制绳,使其在萃取箱澄清室中移动,同时通过四个限位滑轮在限位绳上同步限位滑动,并借助覆盖在内框上面的纱网同步进行捕捉收集三相污物。本发明捕捞装置具有操作简便、安全性高、作业洁净、效率高、成本低廉等特点。
一种轻稀土矿和低钇离子稀土矿用预分离萃取联合分离的方法,属于溶剂萃取分离稀土技术;利用轻稀土矿的中重稀土配分小于低钇离子稀土矿的中重稀土配分,以及轻稀土矿的La-Nd轻稀土中Ce含量高于低钇离子稀土矿的La-Nd轻稀土中Ce含量的特点,采用预分离萃取法,将轻稀土矿分离过程中的2个预分离萃取段及La/Ce分离的负载有机相分别作为低钇离子稀土矿萃取分离步骤中的萃取有机相,进入低钇离子稀土矿的萃取分离,本发明方法依次包括五个步骤,形成轻稀土矿和低钇离子稀土矿联合分离的工艺流程;这种方法使整体分离效果更好,萃取分离工艺处理能力提高,酸碱化工原料消耗降低,萃取剂和稀土金属的存槽量减少,生产成本降低,并减少生产废水的排放,有利于绿色环保。
本发明公开了一种废旧磷酸铁锂电池材料短流程回收的方法,涉及资源回收技术领域,方法为将废旧磷酸铁锂电池依序经放电、拆解,剥离壳体,分离得到正极片,正极片在氮气保护下通过加热使粘结剂碳化,振动分离得到磷酸铁锂正极材料和铝箔,将收集到的磷酸铁锂正极材料水洗后烘干,得到磷酸铁锂/碳粉料,往磷酸铁锂/碳粉料中加入锂源、磷源以及V2O5,得到混合粉料,将其机械液相活化,得到混合浆料,将混合浆料依序经干燥,煅烧,得到再生磷酸铁锂材料。本发明的方法工艺流程短,避免了传统湿法回收溶剂污染的问题,也无需浸出、萃取、沉淀等操作,更利于大规模实行。
本发明属于工业废料回收利用技术领域,具体涉及一种钕铁硼废料同步高效提取高值回用稀土和铁的方法。本发明所述方法通过将钕铁硼废料经氧化焙烧后得到的氧化产物与草酸溶液进行反应,可得到含草酸铁的浸出液以及以草酸稀土为主的固体沉淀物,然后只需对浸出液和沉淀物分别进行铁还原和熔盐电解处理,就能分别获得用于生产钕铁硼材料的稀土合金和锂电池材料生产用的草酸亚铁。该方法仅以草酸溶液作为浸出剂和沉淀剂,可一步完成对铁的浸出和对稀土的转型,从而达到同步实现铁与稀土的高效提取和高值回用的目的。本发明所述方法提取流程简短,环境友好,可有效回收并获得高价值产品,具有极高的工艺操作性。
本发明公开了一种废旧锂离子电池正极材料中预还原优溶提锂的方法,包括如下步骤:(1)将正极材料调浆后加入还原剂预还原,再逐渐加入稀酸浸出,经固液分离得到一次浸出液和一次浸出渣,所述一次浸出液的pH为5.5~7.0;(2)一次浸出液再用碱液调节pH至10~12,经固液分离得到富锂液和二次浸出渣。本发明通过改变酸和还原剂的加入方式,并严格控稀酸的浓度和添加速度,使得正极材料中的锂优溶浸出,实现锂的前端回收,避免了镍钴锰等有价金属分离过程中的锂损失,提升了锂的回收率。
一种稀土萃取分离过程组分含量区间控制方法,所述方法针对稀土萃取分离过程各流量/各组分含量过程控制特点,建立稀土萃取过程回声状态网络模型;提出广义预测控制的稀土萃取分离多组分含量的区间控制方法,实现稀土萃取分离多组分含量的区间控制。传统方法采用萃取过程平衡状态下的软测量模型即静态模型,难以实现萃取过程组分含量在线预测以及难以建立精确的控制模型,从而影响稀土组分含量跟踪控制的效果。本发明控制方法,根据区间控制策略进行调整,优化计算,得到稀土萃取过程的准确控制量,使稀土萃取过程组分含量满足区间控制要求,保证了两端出口产品的质量。本发明适用于稀土萃取过程建模和优化控制。
本发明一种从砂岩型铀矿地浸采铀工艺贫树脂中回收伴生铼资源的方法,将砂岩型铀矿加入到含氧化剂的硫酸溶液中,用阴离子交换树脂对浸出液中的铀铼吸附,待树脂饱和后采用硝酸铵溶液解吸树脂中铀,贫树脂转型后重新返回吸附工艺,将贫树脂中的铀、铼共同解吸下来,将有机相中的铼反萃,获得高浓的铼溶液,获得铼酸钾产品。本发明工艺流程简单,易于大规模生产,回收贫树脂中吸附的铼资源,产品纯度高,贫树脂中铼总回收率高达95%以上,所用试剂环境友好。
本发明提供了一种从铌铁精矿中脱除与分离铀和钍的方法,包括以下步骤:用含有酸性氟离子的浸出剂对铌铁精矿中的铀进行多段浸出,得到含铀浸出液与浸出渣;用铵盐溶液对所述浸出渣中的钍进行多段浸出,得到含钍浸出液与脱除铀和钍的铌铁精矿。本发明利用含有酸性氟离子的浸出剂对铌铁精矿进行浸出,利用酸性氟离子溶液的强腐蚀性,缓慢腐蚀溶解铌铁精矿颗粒表面及空隙界面,增大了矿石颗粒的比表面积,活化了颗粒界面状态,从而促进了铀的浸出;同时,利用氟离子与钍离子的强配位能力,使矿石中的钍转化为稳定的ThF4沉淀,与含铀浸出液分离;然后用铵盐溶液对浸出渣进行浸出,利用铵离子对ThF4的强溶解性,实现钍的选择性浸出脱除。
本发明公开了一种从砂岩型铀矿地浸采铀工艺贫树脂中回收伴生铼资源的方法,将砂岩型铀矿加入到含氧化剂的硫酸溶液中,在一定温度下,震荡浸泡一定时间后,用阴离子交换树脂对浸出液中的铀铼吸附,待树脂饱和后采用硝酸铵溶液解吸树脂中铀,贫树脂转型后重新返回吸附工艺,解吸的铀浓缩液采用氢氧化钠沉淀、将树脂中的铼解吸下来,获得浓缩的铼酸铵溶液,经重结晶后获得铼酸铵产品。本发明工艺流程简单,易于大规模生产;产品纯度高,浸出液中铼总回收率高达80%以上,所用试剂环境友好,具有明显的社会效益和经济效益。
本发明属于钽铌矿物质技术领域,公开了一种从烧绿石中提取铌的方法,所述从烧绿石中提取铌的方法包括以下步骤:将烧绿石磨碎;将烧绿石加入盐酸与氟盐的混合溶剂中;将混合料加压浸出1.5~3h,浸出后的矿浆经过过滤后,得到含有钽和铌的滤液。本发明解决了现行的氢氟酸工艺环境污染严重,严重制约了我国钽铌冶金工业的可持续发展的问题;提供了一种开发钽铌资源可持续发展的绿色冶金新技术,减轻了环境污染;铌的浸出率达到95%以上。
一种低钇混合稀土和低钇离子稀土矿预分萃取共同分组工艺,属于溶剂萃取分离稀土技术;本发明利用低钇混合稀土的La‑Nd轻稀土中LaCePrNd的稀土配分与低钇离子稀土矿的La‑Nd轻稀土中LaCePrNd的稀土配分相近,以及低钇离子稀土矿的中重稀土含量比低钇混合稀土的低的特点,用预分萃取法,形成低钇混合稀土和低钇离子稀土矿在同一流程中共同萃取分组的工艺。分离得到La‑Nd组分稀土(可以Sm<0.005%),SmEuGd富集物,GdTbDy富集物和Ho‑Lu、Y重稀土。该新工艺可以减少有机相皂化的碱消耗和洗涤酸消耗以及废水排放量。与传统分离工艺比较,新工艺的整体萃取分离工艺的处理能力更大,所用萃取设备总体积更小、存槽的萃取剂和物料更少、酸碱消耗降低,及废水排放,有利于绿色环保。
本发明涉及一种采用高电流密度硫酸电解质生产金属钴的方法,属于金属钴的生产方法技术领域。方法包括如下工序:浸取钴—萃取分离、提纯CoSO4溶液—高效诱导除油—制备钴电解液—电积生产金属钴。本发明采用硫酸电解质体系,整个生产过程没有引入钠离子和氯离子,改善了工作环境及防止对周边环境的污染。由于采用高电流密度、高效诱导除油、强化过滤技术,电解液中杂质Fe<0.0001g/l、Mn<0.0001g/l、Zn<0.0001g/l、Cu<0.0001g/l、Ni<0.0001g/l,生产出高品质金属钴。
本发明提供一种铂钯精矿预处理方法,所述预处理方法是先将铂钯精矿与碳酸钠、氢氧化钠、氯酸钠按一定比例均匀混合后,在一定温度下进行焙烧,铜、硒、碲等杂质元素转化成相应的氧化物或对应的盐,然后将焙烧渣按一定比例加入水中进行浸出,铜、硒、碲等杂质进入碱性浸出液,金、铂、钯富集在碱性浸出渣。与传统的铂钯精矿预处理方法比较,本发明有以下优点:采用氧化焙烧、水浸出,碱性浸出液贵金属含量低;铜、硒、碲等杂质元素浸出率高,铜浸出率达95%以上,硒浸出率达88%以上,碲浸出率达95%以上;贵金属金、铂、钯富集率高,有利于下一步金、铂、钯的提取处理;设备腐蚀小、操作安全、综合回收效益好、操作环境好。
一种稀土铈(IV)的沉淀的方法,其特征是将稀土料液加入到反应釜中,搅拌加热至75-85℃,然后按料液总氧化稀土量的50-60%的摩尔比加入H2O2,用10-15分钟时间,将80-100g/l的碳酸氢铵溶液快速加入到料液中,至料液pH7-8,冷却,静置澄清1-2小时,分别抽取上清液和带渣的料液,过滤;所述料液为CeCl3或Ce(NO3)3,pH5-6,TREO:50-200g/l;本发明的氢氧化铈[Ce(OH)4]的沉淀松散,易洗涤,如原料为CeCl3,可洗涤至Cl-<100ppm,且生产成本低。
本发明属于钽铌矿物质技术领域,公开了一种硫酸体系氟盐辅助锰钽矿分解的方法,将锰钽矿磨至‑0.074mm,采用浓硫酸及氟盐混合物在加压条件下加压浸出,锰钽矿:氟盐的质量比为1:0.6~2:0,硫酸浓度为14~25mol/L,液固比为4:1~5:1,浸出温度为200~350℃,浸出时间为2~4h,压强为1.5~2.5MPa,搅拌转速为400~600r/min,加压浸出矿浆经过过滤、酸洗后,钽的浸出率达到80%以上、铌的浸出率达到90%以上。
本发明公开了利用低共熔溶剂浸出废旧锂离子电池中有价金属的方法,涉及废旧锂离子电池材料综合回收利用技术领域,该方法包括以下步骤:S1、将废旧锂离子电池材料加入低共熔溶剂中,在20~40℃条件下进行超声波振荡,静置;S2、将超声波处理后浆液进行过滤,分离得到含有价金属的浸出液。本发明的有益效果是采用低共熔溶剂浸出回收废旧锂离子电池中的有价金属,并采用超声波对低共熔溶剂与废旧锂离子电池材料混合后的溶液进行处理,通过超声波的空化作用能够增加低共熔溶剂的穿透力,能够强化低共熔溶剂对锂离子电池材料中有价金属的浸出,从而能够大大提高锂离子电池材料中有价金属的浸出效率和浸出率。
本发明提供了一种从钕铁硼废料盐酸优溶法所得铁尾渣中选择性浸出稀土和钴的方法,先通过机械活化,将铁尾渣中被难溶赤铁矿相(Fe2O3)包裹的稀土和钴的氧化物充分解离,再使用低浓度的酸液进行选择性浸出,使得稀土和钴的氧化物基本上完全浸出,最后收集浸出液进行除铁,即可得到含有稀土和钴的净化液,进而分离得到稀土资源和钴资源。本发明所述方法协同机械活化和直接酸浸,有效提高了铁尾渣中稀土和钴的浸出率,使得钴的浸出率在80%以上,稀土的浸出率在70%以上,优选条件下可以使得钴的浸出率达89.5%以上,稀土的浸出率达86.5%以上,易于大规模工业化生产,具有显著的经济和环境效益。
一种基于轴向磁场耦合机械振动制备太阳能级多晶硅的方法,将冶金硅表面酸洗、蒸馏水清洗,干燥,装进高纯石英坩埚内,并放入定向凝固炉中,抽真空;将炉温升至1200~1350℃,保温;向炉腔充入惰性气体;将炉温升至1500~1650℃,保温;得到硅熔体;将硅熔体温度降至1420~1570℃;引入轴向磁场和机械振动到硅熔体中;将坩埚以1~20μm/s的速率抽拉出加热区,开始长晶;长晶结束后,关闭励磁系统和停止机械振动,将温度降至1000~1300℃;关闭加热系统,随炉冷却。本发明得到的多晶硅材料组织中硅晶粒粗大且垂直于坩埚底部,缺陷少,杂质含量低;工艺成本低、简单;安全可靠、无污染;操作方便。
本发明公开了一种连续炼铜工艺处理废电路板的方法,包括以下步骤:(1)废电路板预处理;(2)配料及输送;(3)侧吹熔炼;(4)顶吹吹炼;(5)烟气处理。本发明采用侧吹熔炼‑多喷枪顶吹吹炼工艺处理废电路板,实现了废电路板的连续处理,该方法具有原料适应性强、处理效率高、能耗低、金属回收率高及环境友好等优点。另外,采用粗铜粒化浸出电积时,能有效缩短稀贵金属的回收周期,大幅提高经济效益。
本发明涉及稀有金属分离科学领域,提供一种钼、磷混合溶液中选择性脱磷的方法。包含调pH值‑选择性脱磷剂‑固液分离等步骤。该方法,首先加入液碱,将钼、磷混合溶液pH值控制为合适范围,然后按钼、磷混合溶液中磷的浓度计算,加入相应量的选择性脱磷剂碳酸钠、氧化钙,控制温度和搅拌速度,选择性沉淀脱除磷,脱除反应完成,过滤,热水洗涤,旋风抽干,实现固液分离。本发明的脱除磷的方法,可以将钼、磷混合溶液中的磷高效脱除,具有成本低廉、选择性高的特点。
一种从废弃锂电池正极片电化学优先提锂的方法,涉及一种从废弃锂电池正极片优先提锂的方法。本发明是要解决传统后端酸浸提锂工艺存在锂回收率低、纯度低、酸耗大,且现有前端提锂技术焙烧温度高、安全风险大的技术问题。本发明利用锂离子电池充电原理可实现在破碎正极极片之前实现对锂的高选择性优先提取,突破之前工艺流程中回收流程过长,能耗过大,污染严重等技术瓶颈。本发明探索出运用此方法所适合的电化学浸出电压、提锂电解质、前处理电极材料和沉淀剂等条件,回收高纯度锂盐,实现废弃锂电池正极片的前端优先提锂,使得锂能够再生回用,实现废弃锂电池资源的循环利用。
本发明公开了一种废矿料回收用搅拌装置,包括底座,所述底座顶部的中轴处设置有搅拌箱,所述底座顶部的两侧均固定连接有支架,两个支架之间的顶部固定连接有支撑板,所述支撑板顶部的中轴处固定连接有第一电机,所述第一电机的输出端贯穿至支撑板的底部固定连接有搅拌杆。本发明通过设置底座、搅拌箱、支架、支撑板、第一电机、搅拌杆、搅拌叶、隔板、第二电机、转盘、传动杆、框架、支杆、齿板、活动柱、齿轮、连接板、活动块和连接杆的配合使用,解决了现有的搅拌装置在使用的过程中搅拌叶都是固定的,搅拌效果差的问题,该废矿料回收用搅拌装置,具备搅拌效果好的优点,方便了使用者的使用。
本发明涉及一种高钯高锡高铜再生锡阳极泥的处理方法,包括如下步骤:(1)预浸出;(2)加压氧化浸出;(3)沉银;(4)分金;(5)分银;(6)锡铅锑火法冶炼。本发明将高钯高锡高铜锡阳极泥中的铜镍有效的选择性浸出至脱铜液中,可以得到阴极铜和硫酸镍产品,通过沉银操作有效减少了银在加压氧化浸出工序中的损失,通过“分金‑分银”工序可以实现金、银和铂、钯的分离,通过锡铅锑火法冶炼,可以分别得到锡和铅锑合金产品。本技术容易实现自动化控制,可以实现铜镍、锡铅锑和贵金属的有效分离回收,整个过程可以实现冶炼体系的闭路循环,无三废排放,具有环境效果良好、经济性好等特点。
本发明公开了一种硫酸体系选择性络合‑优先水解沉铁的铬铁分离方法,采用甲酸钠等做络合剂,通过络合剂对溶液中的铁进行选择性络合,使其不再以简单离子形态存在,在沉淀阶段可以避免铁快速大量水解沉淀及由此带来的铬夹带损失。本发明通过调整络合剂及其用量、初始溶液pH、络合温度、络合时间等来提高铁离子的络合效果,进而通过氧化镁等碱性介质调整溶液pH值,实现铁优先水解沉淀以及与铬的有效分离。固液分离后的铬溶液可直接用于制备碱式硫酸铬。与现有其他技术相比,操作工艺简单,无需特殊复杂设备,是一种经济有效、易于操作的新方法。
中冶有色为您提供最新的江西有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!