本发明公开了一种高性能稀土永磁体的制造方法。该制造方法的原料主要由LR‑Fe‑Ma合金片、NR‑Fe‑Mb合金片和HR‑Fe‑Mc合金片按配比构成,LR‑Fe‑Ma合金片在所述的原料中所占重量比在5‑55%范围内,NR‑Fe‑Mb合金片在所述的原料中所占重量比在45‑95%范围内;HR‑Fe‑Mc合金片在所述的原料中所占重量比在0‑10%范围内。LR‑Fe‑Ma合金片、NR‑Fe‑Mb合金片和HR‑Fe‑Mc合金片分别采用真空熔炼速凝方法制造;首先将合金片的原料在真空或氩气保护下感应加热使原料熔化、精炼形成熔融的合金液,然后在1400‑1550℃温度范围内将熔融的合金液通过中间包浇铸到带水冷却的旋转辊上,熔融的合金液经过旋转辊冷却后形成合金片。
本发明涉及金属材料技术领域,尤其涉及一种粉末冶金制备钽管坯的方法。该方法为将冶金级钽粉经过筛粉、搅拌后,定量装入带有模芯的软套管中放入等静压机中进行等静压固化,将拆除软套管外套和模芯获得的钽粉管坯放入垂直烧结炉中烧结获得粉末冶金钽管坯,本发明的方法制备的钽管坯具有较好的化学性能和力学性能。
本发明属于永磁材料技术领域,具体涉及一种高韧性烧结钕铁硼辐射环及制备方法。本发明的高韧性烧结钕铁硼辐射环,其特征在于,该辐射环磁体中添加了增韧粉,增韧粉占主合金粉重量的0.2‑5%,增韧粉的平均粒径2‑5微米,该增韧粉的通式是RExCu1‑x,RE是Pr,Nd,Dy的一种或多种元素,50≤x≤85。本发明方法制备的烧结钕铁硼辐射环既具有优异的磁特性,又有较好的断裂韧性,使得烧结钕铁硼辐射环的抗断裂能力得到增强,而且本发明的方法操作简单,生产效率高,采用该方法制备的适合批量生产。
本发明公开了一种复合多孔金属材料,由下列重量份的原料制成:铝合金15‑20份、铁5‑12份、钛5‑9份、镁3‑7份、锌2‑5份、铜1‑3份、聚四氟乙烯11‑15份、脲甲醛7‑12份、碳化硅9‑13份、氮化硅3‑6份、硼化钨2‑7份、碳酸钙2‑4份、碳酸镁1‑3份、硅酸钠2‑4份、4‑叔丁基苯磺酰胺5‑9份、甲氧基乙酸甲酯3‑6份、5‑氨基‑2‑乙氧基苯磺酸3‑5份、硅烷偶联剂5‑10份、热稳定剂5‑10份。制备而成的一种复合多孔金属材料,其比重小、强度高、减震性能好。同时,还公开了相应的制备方法。
本发明公开了一种抗冲击高耐磨硬质合金钢及其生产工艺,包括如下质量百分含量的成分;C占2.6~3.0%;Si占1~2%;Mn占1~2%,Cr占23~27%,Ni占0.8~1.5%,Mo占0.8~1.5%,Re占0.5%,其余为Fe,且所述Mn、Si、Ni以及Mo的质量比例为1.5:1.5:1:1。通过上述方式,本发明能够以相对较低的生产成本获得更高的耐磨性,而且稳定性非常好,产品报废率大幅降低。
本发明涉及一种蓄电池板栅合金及其制备方法,属于铅酸蓄电池生产技术领域,解决了现有板栅合金中含有金属钙,且在熔炼过程中容易氧化产生铅渣,造成环境污染。本发明提供的蓄电池板栅合金包括MAX相陶瓷材料0.5~5%,余量为纯铅;MAX相陶瓷材料中,M代表过渡金属元素,A代表Sn元素,X代表碳元素;本发明提供的蓄电池板栅合金的制备方法包括:步骤1、采用高温微波固相合成法制备MAX相陶瓷材料;步骤2、制备母合金锭;步骤3、板栅合金成型。本发明通过采用MAX相材料,明显的减少了板栅合金的晶间腐蚀,改善了合金晶粒界面的结构,使合金的强度、耐蚀性和抗蠕变性等显著提高。
本发明公开了一种陶瓷电路板的制备工艺,其制备工艺包括以下步骤:A、制备陶瓷基板;B、将得到的陶瓷基板置于化学镀中化镀铜打底和电镀铜;C、在陶瓷基板表面印制电路图形;D、按照电路图和在陶瓷基板上形成的激光切割图形制做相应厚度的丝印板;E、制备环氧树脂电路板;F、压合陶瓷基板、丝印板和环氧树脂电路板。本发明通过本工艺,可有效提高陶瓷电路板自身的硬度和导电性能,且本工艺整体流畅,不存在窝工及浪费材料的现象,同时在多层板表面从内向外依次涂设玻璃纤维涂层、三氧化二铝涂层和锆钛合金涂层,可有效提高本陶瓷电路板的耐火、耐氧化和耐腐蚀性,延长了其使用寿命,提高了企业的市场竞争力。
一种医用植入材料多孔铌的制备方法,是采用乙基纤维素为有机粘结剂与无水乙醇为分散剂配制成的溶液,与淀粉和平均粒径小于43μm、氧含量小于0.1%铌粉组成的混合粉混合制成铌粉浆料,并浇注、浸渍于有机泡沫体中,然后干燥,在惰性气体保护气氛下脱脂处理,真空下烧结制得多孔烧结体,经烧结的铌粉颗粒相互间具有烧结颈结构,再真空下退火及常规后处理制得多孔铌;所述金属铌粉与淀粉的混合粉中,淀粉含量为5~10%。本发明制得的医用金属植入材料的多孔钽具有优越的生物兼容性和生物安全性;同时,多孔钽具有烧结颈结构,提高了多孔钽延展性等力学性能,为多孔钽在医用金属植入中的方便与实效的应用提供了很好的方法。
本发明公开了一种高稳定性烧结钕铁硼磁体及其制备方法,该磁体的制备方法包括合金熔炼、晶化处理、破碎制粉、粉末改性、粉末混合、磁体制备等步骤。首先分别熔炼成分为(DyaNd1‑a)x(CobFe1‑b)100‑x‑yBy的合金I和成分为(DyaNd1‑a)xTb55‑xFe30(CucAldGa1‑c‑d)15的合金II,然后通过在不含Tb的合金I中混入富含Tb的合金II,将Tb控制在最终磁体中的晶界富稀土相和RE2Fe14B相晶粒表层中,发挥Tb元素对晶界富稀土相和RE2Fe14B相晶粒表层的强化作用,提高磁体的矫顽力,改善磁体的矫顽力温度系数,所得产物具有磁场稳定性高、矫顽力热稳定性高的特点。
本发明公开了一种硬质合金刀片及其制备方法,包括硬质合金基体和涂覆在硬质合金基体上的涂层,所述硬质合金基体按组分包括:8‑10份Co、3‑6份TNC8、3‑5份TiCN、0.8‑1份C、8‑10份TaC、4‑6份Cr3C2和4‑6份WC,所述涂层包括:TiN、份Al2O3、TiAlN2,S1、称量:利用称量装置分别称取Co、TNC8、TiCN、C、TaC、Cr3C2和WC;本发明涉及硬质合金技术领域。该硬质合金刀片及其制备方法,通过TaC的加入,进而提高合金的韧性,使得加工出来的刀片韧性更高,不易折断,通过Cr3C2的加入,使得刀片整体的耐磨性能显著提高,整个制备方法制备出来的刀片耐磨性和硬度较现有刀片有显著提升,且通过TiN、Al2O3、TiAlN2的设置,能对刀片表面形成稳定保护,使得刀片不易被腐蚀。
本发明公开了一种高强韧性Mo2FeB2基金属陶瓷及其制备方法,包括以下步骤:首先以Mo粉、FeB粉、Fe粉为原料配制混合粉料,经球磨、烘干后置于真空炉中进行预烧结,得到以Mo2FeB2硬质相为主的中间反应产物;随后对所得中间反应产物进行粉碎,得到中间反应产物粉末;再以所得中间反应产物粉末、Fe粉、Cr粉、Ni粉和石墨粉为原料配制成金属陶瓷混合粉料,经球磨混料、压制成型等工序,最后在真空炉中完成最终烧结,得到具有高强韧性的Mo2FeB2基金属陶瓷;该方法制备的金属陶瓷,具有较高的抗弯强度和断裂韧性,综合力学性能较好,本发明提供的制备方法操作简单,具有广阔的应用前景。
一种电子束蒸发技术制备碳化硼薄膜的方法,将碳化硼膜料放到电子束蒸发设备的坩埚中,将清洗、干燥后的基片放到电子束蒸发设备的加热电炉上,使基片位于坩埚正上方20cm~30cm处;在真空条件进行镀膜,镀膜真空度不小于6.0×10-3Pa,基片温度控制在室温~450℃,调节电子束使其聚焦到膜料上的斑点最小,控制束流值在100mA~180mA,沉积时间为5min~120min。此种方法既可制备非晶态碳化硼薄膜,又可制备多晶结构的碳化硼薄膜,还可制备各种不同B、C成分配比的碳化硼薄膜,而且所制备的碳化硼薄膜表面光滑、薄膜致密、均匀性良好。
本发明涉及一种紫外激发荧光陶瓷及其制备方法,所述紫外激发荧光陶瓷的化学式为:Ca2REHf2Al3O12:xCe3+,yMn2+,其中RE为Y、Lu中的至少一种,0<x<0.08,0≤y<0.2。
本发明提供了一种高首效石墨烯复合硅碳负极材料,由具有核壳结构的硅碳颗粒与石墨烯微片复合而成;所述具有核壳结构的硅碳颗粒的外层为无机碳层,内部为硅酸盐包裹的纳米硅颗粒;所述具有核壳结构的硅碳颗粒与石墨烯微片之间通过硅酸盐的侨联作用复合。其中,硅酸盐具有良好的锂离子导电率以及结构稳定性,无机碳包覆层在协同缓减材料膨胀的同时提升了材料的导电性。通过硅酸盐层以及无机碳层的多级包覆结构以及硅酸盐组分的侨联作用,抑制一次颗粒中纳米硅在循环过程中的体积膨胀,减少了充放电过程中体积膨胀对二次颗粒的破坏,保证了负极材料在具备高克容量的同时,具备优异的循环性能。
本发明提供一种磁光透明陶瓷,化学式为M(x+y+z)Tb(3‑x)Sc(2‑y)Al(3‑z)O12其中,0≤x≤0.5,0≤y≤0.5,0≤z≤0.5,0≤x+y+z≤0.5;M为+3价金属离子。并公开了该磁光透明陶瓷的制备方法。本发明提供的磁光透明陶瓷的热学性能与光学性能与晶体接近,本发明提供的制备方法工艺简单,可制备复杂形状的陶瓷,能够有效降低磁光元件的成本,而且在陶瓷制备过程中,掺杂其他元素提高陶瓷的磁光性能,掺杂陶瓷在烧结过程中不会造成组分分凝,具有很好的实用价值。
一种适用于替代人体牙骨组织多孔钽的制备方法,钽粉与造孔剂、成型剂混合成混合粉末,造粒、注射入模具成型、脱模、脱脂、烧结和热处理制得;造孔剂为碳酸氢钠、尿素、氯化钠、甲基纤维素、乙基纤维素中的一种或多种,成型剂为聚乙烯醇、硬脂酸、硬脂酸锌、石蜡、合成橡胶中的一种或多种;脱脂过程是以0.5℃/min~3℃/min的速率逐步升温至400~800℃,以氩气通入构成保护气氛并保温60min~240min,所述烧结步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min。制得的多孔钽非常适合用于替代人体牙骨组织的医用植入材料。
本发明公开了一种改进型高硬度不锈钢医用材料,包括下列质量百分比的组分:10~15%的Cr、0.25~0.31%的Si、0.30~0.42%的Mn、0.30~0.40%的C、0.22~0.30%的O、0.23~0.28%的N、0.02~0.04%的P和0.002~0.004%的S,其余量为Fe,上述各组分的质量百分比之和为100%,并公开以上述改进型高硬度不锈钢医用材料为原料制作医用器械的成型工艺。本发明涉及医用材料技术领域,具体提供了一种制作方法简单,采用注射成型工艺一体成型,可以有效提高不锈钢材料硬度,且可以兼顾其韧性,有效解决钳体较脆的问题的改进型高硬度不锈钢医用材料及其成型工艺。
本发明涉及一种基于浆料直写可调节降解速率的多孔人工骨的制备方法,属于增材制造领域。包括提供由二氯甲烷和聚乳酸配置的粘结剂、纯铁粉和羟基磷灰石粉末按比例配制成混合浆料,并将其置入成型料筒固定在平台上,在平台的带动下沿着预设路径运动,形成多层有序的多孔结构,将所述三维多孔结构依次进行预烧、烧结处理。优点是混合粉末在金属支架中体积比可达80%,可充分降低在烧结后的收缩程度,无需使用激光、电子束等方法进行修补,更加安全可靠,被加工零件整体同时被烧结成型,不存在局部残余应力;由于羟基磷灰石较好的生物活性与生物相容性,调节羟基磷灰石比例即可调节多孔人工骨的降解速率,同时增加人工骨生物活性。
本发明公开了一种抗耐热疲劳陶瓷,以重量份计,其包括如下组分:其由基料100份、增强剂3‑15份、烧结助剂粉末0.5‑5份和添加剂0.5‑3份组成,其中所述基料包括堇青石60‑90份、钛酸铝5‑20份和锆英石5‑30份;所述增强剂为阳极氧化后的碳纤维,所述添加剂为增塑剂。本发明还公开了该抗耐热疲劳陶瓷的制备方法。本发明所提供的抗耐热疲劳陶瓷,能够有效解决现有耐热日用陶瓷在急冷热循环过程中形成交变热应力的作用下,由于热传导不均造成陶瓷热疲劳损伤和破坏的缺陷问题。
本发明公开了一种可以利用磁铁定位的水泥砂浆,包括水泥、砂子和磁体合金粉末,所述水泥与砂子的配比为1:3,水泥与砂子混合,得到混合物,所述水泥砂子混合物中加入磁体合金粉末,且磁体合金粉末与水泥砂子混合物的配比为1:10。本发明采用磁体合金粉末,合金粉末的磁导率要高于纯金属,可加工性和高导磁性能好,可以确定出想要寻找的位置,利用磁铁吸附找到加有磁体合金粉末的水泥砂浆位置,以此确定水泥砂浆上方、下方或者后方铺设的线槽、管线等工艺具体位置,便于维修,方便管理,以较小的经济代价取得了较大的回报。
本发明公开了一种超细晶粒Ti(C,N)金属陶瓷材料及其制备方法,采用超细(d50≤600nm)Ti(C,N)粉体为主要基体材料,超细(d50≤800nm)高温难熔碳化物粉体为增强增韧相,超细(d50≤1umm)VC粉和Cr3C2为抑制剂,超细(d50≤1um)Ni份和Co粉为金属粘结相,经过分散球磨、干燥造粒、压制、独特的烧结工艺制备而成。所述超细晶粒Ti(C,N)金属陶瓷材料主相显微组织晶粒尺寸均小于1um,具有更高的维氏硬度、抗弯强度并兼顾该体系材料特有的韧性。用于制造数控刀具或母材可实现优异的耐磨损性和平衡的抗崩损性,且生产成本低、可实现连续生产,生产效率高、无污染环境友好。
本发明提供了一种多波段激光防护透明陶瓷材料及其制备方法,透明陶瓷材料组成表达式为(Er1-xDyx)3Al5O12,其中0.005≤x≤1;防激光透明陶瓷通过真空固相烧结而成。通过调整透明陶瓷组成(Er1-xDyx)3Al5O12中x值的大小,可以使透明陶瓷在525~540nm、808nm、880~920nm、970nm和1064nm等多种激光波段处获得特定的吸收能力,进而满足人员、装备对激光防护波长的不同需求。
本发明公开了一种CaO2掺杂UO2-10wt%Gd2O3可燃毒物及其制备方法。所述CaO2掺杂UO2-10wt%Gd2O3,由以下重量百分比的组分组成:CaO20-0.5wt%;Gd2O310wt%;余量为UO2。本发明还提供一种用于制备上述可燃毒物的方法,该方法工艺简单,成本低且制得的可燃毒物具有优良的晶粒尺寸、烧结密度及热导率。本发明通过在UO2-10wt%Gd2O3可燃毒物中掺杂CaO2,使得提高氧化钆浓度的可燃毒物仍具有优良的烧结密度、晶粒尺寸和热导率。
一种替代承重骨组织的医用多孔金属材料的制备方法,钽粉与碳酸氢铵或双氧水、成型剂(硬脂酸、硬脂酸锌、石蜡、合成树脂中的一种或多种)混合,再经压制成型、脱脂、烧结、冷却和热处理;压制成型是将混合物压制到有机泡沫体中,其压力为50~100Mpa,脱脂是以0.3℃/min~2℃/min的速率逐步升温至400~800℃,氩气为保护气氛并保温300min~360min;烧结是真空度10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min。有效解决了作为替代承重部位的医用多孔钽材料既要求其孔隙率较大、又要求力学性能好的矛盾,非常适合用于作为替代承重骨组织的医用植入材料。
本发明公开了一种PTFE‑Al‑La含能结构材料,由平均粒径比为1:2:3的Al粉、PTFE粉和La粉三种粉末混合制备而成,按重量份计,所述Al粉所占比例为15%‑21%,所述PTFE粉的比例为60%‑70%,所述La粉的比例为13%‑23%。向Al/PTFE体系中添加稀有金属镧La,由于La作为一种还原剂,可与PTFE反应释放出大量热量,并且La在低速撞击条件下,Al/PTFE在撞击过程中积累的绝热温升虽不能直接激发Al/PTFE组元间的反应,但足以使La与空气中的氧的反应,进而引发Al/PTFE组元间的反应释能从而提高材料的能量释放效率,增强材料的化学毁伤效能。
本发明公开了一种烧结炉的冷却方法,其特征是:将惰性冷却气体通入至烧结炉的装料室与冷却夹层内,使惰性冷却气体在装料室和冷却夹层内形成对流,并与装料室内的材料、冷却夹层内的冷却介质进行热交换,经过热交换的惰性冷却气体排出烧结炉,可对高温的材料立即进行急速的冷却,冷却效率的变化区间更大,从而可以通过不同的冷却条件产生使材料烧结后产生不同的产物,完成对材料热处理的工艺,由单个烧结炉完成烧结与热处理两个工艺过程,去掉了现有技术中烧结炉中缓慢冷却的过程与热处理炉中升温的过程,同时也少去了从烧结炉转移至热处理炉中的过程,使的生产效率提高,减少了能源的浪费。
本发明公开了一种在模具钢表面制备三元硼化物金属陶瓷涂层及其工艺,针对热作模具钢在工作过程中的失效形式,采用等离子喷涂工艺。该等离子喷涂工艺采用等离子喷涂设备和同步自动送粉装置,由直流电驱动的等离子电弧作为热源,将配制的粉末材料加热到熔融或半熔融状态,并以高速喷向经过预处理的工件表面,等离子电弧移开后,在模具钢表面形成附着牢固的涂层,经过后期热处理,使得涂层具有更好的耐磨性、抗热疲劳性能,最终使工件使用寿命提高1倍或数倍以上。
本发明公开了一种应用于LED器件的复合相变热柱及其制备方法。复合相变热柱包括外管壳(1)、内管壳(2)、LED器件底座(3)、外端盖(5)、内端盖(6)、注液管(7)、固固相变模块(8)和毛细吸液芯(9)。该制备方法包括步骤:(1)内管壳、外管壳、LED器件底座、内端盖和外端盖的加工;(2)毛细吸液芯和纤维毡的制备;(3)灌注与封装。本发明热柱可总体降低LED器件的工作温度,可应对大的热流变化,并且,若是外管壳连通散热翅片的,亦可有利益于热量往外部的导通,整体维持LED器件的在较低温度的平衡,提高LED器件的工作性能和工作寿命;并且,本发明制备方法工艺流程简单可靠,成本低。
一种耐蚀耐磨金属陶瓷复合材料塑料切粒刀,其特征在于:所述复合材料切粒刀由耐磨耐蚀金属陶瓷刀刃材料和低合金不锈钢或高强结构钢刀体材料复合构成;所述刀刃材料以TiC颗粒为基体,含有Ni粉25.0~40.0wt.%、Cr粉6.0~10.0wt.%,少量的Al粉和Ti粉,Al粉和Ti粉的总含量低于3.0wt.%。本发明耐蚀耐磨金属陶瓷复合材料塑料切粒刀与钢切粒刀相比,耐用度和使用寿命提高至5~10倍;与钢结硬质合金相比,耐用度和使用寿命提高至1~3倍,并且制造成本与钢结硬质合金相当或略低;另外具有更高的可靠性。
本发明公开了一种亚微米金刚石复合片及其制备工艺,其制备工艺包括:1)硬质合金基底表面脱钴;2)金刚石微粉净化;3)制备聚晶金刚石粉末;4)制备复合体组件;5)制备复合片。本发明制备得到的亚微米金刚石复合片可有效阻止金刚石晶粒异常长大,从而可以获得比较细小、均匀的组织,以满足精加工和超精加工的要求。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!