在磁钢废料中添加镓制备纳米复合永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,并对获得的预处理磁体材料直接进行氢碎制粉,得稀土氢碎磁粉;而后对稀土氢碎磁粉进行取样分析,再根据需要在稀土氢碎磁粉中添加镓得混合粉,最后通过静压、烧结、退火制备出所需的纳米复合永磁材料,有效解决了各组分的熔点不同和人为操作因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收时间,且减少提取稀土元素的工艺步骤;并在稀土氢碎磁粉中添加镓,有利于改变纳米复合永磁材料硬磁性相;且利用沉淀分离法获得的纳米复合永磁材料磁性高、稀土含量低。
本发明公开了一种可调节不同程度白光的三色透明荧光陶瓷的制备方法,属于荧光陶瓷技术领域。所述方制备法首先利用Ce:YAG透明陶瓷、Ce,Mn:YAG透明陶瓷、Ce:LuAG透明陶瓷在蓝色LD激光激发下与本身的黄光、红光、绿光,以不同比例混合便可以产生不同程度的白光。其次采用凝胶成型的方法,获得一个“灯泡”状的三色陶瓷,使其可以更好地照明。最后利用磁悬浮装置使三色陶瓷悬浮旋转使蓝、黄、红、绿光混合更均匀,亦可以通过旋转来增强其散热效果。
本发明涉及一种银包铜粉的制备方法,属于导电材料制备技术领域。本发明首先将纳米铜粉浸入硫酸溶液中,超声酸洗去除纳米铜粉表面氧化层,再用多巴胺在水溶液中吸附于纳米铜粉表面,随后于碱性条件下,使多巴胺在纳米铜粉表面发生自动聚合,形成均匀包覆层,再利用形成的聚多巴胺包覆层强大的络合吸附能力,吸附硝酸银溶液中的银离子,并于氮气氛围中,以亚磷酸二氢钾为还原剂,还原银离子形成均匀银镀层,再经真空干燥后烧结即可。本发明制备的银包铜粉可使银在铜粉表面形成均匀致密的镀层,提高了其导电性能;且抗氧化温度达到620℃以上。
薄膜锂电池用正极材料钴酸锂靶材粉末冶金制备工艺,对钴酸锂(LiCoO2)粉体原料装模、冷等静压,然后进行阶段性升温烧结,最后进行机械加工即可制得所需尺寸钴酸锂靶材成品。对上述制备的钴酸锂靶材进行扫描电镜分析,可得其晶粒尺寸细小且致密度高,约为99%。制备出的钴酸锂靶材晶粒尺寸细小且致密度高,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能;在适当条件下溅射这些靶材,可以获得性能优异的薄膜,从而提高全固态薄膜锂离子电池的储能量和循环次数。
在废旧磁钢中添加金属粉制备含镝稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,同时从预处理磁体材料中提取样品,并对样品中的稀土组分进行检测记录;再将获得的预处理磁体材料与已配制好的铁粉投入普通电解炉中进行熔炼使其形成熔融的合金液,有效解决了各组分的熔点不同和人为操作因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收废旧磁钢的时间,且减少提取稀土元素的工艺步骤;并在预处理磁体材料中添加金属粉,以提高稀土永磁材料的抗弯强度、硬度及抗冲击韧性;镝加入有利于提高合金锭的实际矫顽力。
本发明公开了一种石墨烯‑银复合电极的制备方法,该工艺具体通过将制备的氧化石墨烯分散液与硝酸银进行混合,并通过电泳沉积、冲洗、烘干、涂布、两段烧结、打磨等步骤制备得到石墨烯‑银复合电极。将这一石墨烯‑银复合电极应用于高压陶瓷电容器中,较之传统银电极,其扩散程度显著降低,有效增加了陶瓷电容器整体的耐压性能,且电容器的绝缘电阻大、不易老化,具有较好的应用前景。
在磁钢废料中添加纳米金属粉制备含镝稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,再将获得的预处理磁体材料与已配制好的纳米金属粉投入普通电解炉中进行熔炼使其形成熔融的合金液,而后将熔融的合金液浇铸并冷却为合金锭,再对合金锭进行氢碎、气流磨破碎成细粉末,细粉末经静压、烧结、两段热处理后得含镝稀土永磁材料坯体,最后根据实际需求进行机械加工切割并精磨,即得含镝稀土永磁材料;纳米金属粉的添加有效增强了含镝稀土永磁材料的荧光寿命,且使永磁材料具有较高的激活剂临界浓度;而预分类可节省回收废旧磁钢的时间,且减少提取的工艺步骤。
本发明涉及一种紫外转换白光LED透明陶瓷材料及其制备方法。该透明陶瓷材料的化学式为[R(1-x-y)DyxTmy]3Al5O12,其中,R为Lu、Y、Yb三种元素中的一种或者两种,x, y为摩尔系数,范围是0.005≤x≤0.15,0≤y≤0.04;该透明陶瓷材料在紫外LED芯片激发下发射出白光。本发明提供的透明陶瓷材料具备几点显著优势:其一,用透明陶瓷材料替代传统树脂封装的荧光颗粒,提高了发光的均匀性,且陶瓷材料热导率及高温热稳定性能远优于树脂,可极大地提高LED器件使用寿命;其二,采用紫外光源,很大程度上降低了激发光源对白光色品的影响。其特征亦在于采用真空反应烧结技术制备而成,陶瓷在可见光波段光学透过率高,生产工艺简单、易大尺寸制备、稳定性高,特别适用于大功率白光LED器件。
本发明提供一种轻质高强度钛基细晶粒硬质合金材料制备方法,包括以下步骤:S1、准备原料:WC:20%‑50%、TiC:20‑50%、Co粉末:8%‑15%、Ni粉末:5%‑20%、Cr:3%‑5%、Fe粉:5%‑10%、Cu粉:2‑5%。本发明提供的轻质高强度钛基细晶粒硬质合金材料制备方法,使得硬质合金棒材料整体密度达到较低的理想水平,且晶粒度变细,使得产品整体硬度更佳;保证了原料粉末颗粒无团聚,组织分部均匀,在制备过程中易于快速烧结,避免与粘结剂发生有害反应,采用该硬质合金材料具有硬度好、强度高、质量低、耐磨性高、使用寿命长优良特性,保证了硬质合金的韧性,而且无需采用WC粗细搭配的方式,而且工艺控制简,非专业工作人员容易上手,加大的降低了制备难度。
本发明公开了一种高效率的电子烟双面加热片及其制备方法;本发明以绝缘陶瓷为基板,使用磁控溅射设备,在真空腔体中,将所需的金属层的金属或合金作为阴极靶材,通入氩气使其电离形成氩离子后轰击靶材,使靶材的固体原子或分子从靶材表面射出,溅射到陶瓷基板表面,形成目标的金属层。由钨、钼、改性氮化硼和纤维素纳米纤维制备保护釉层,化学镀金属电极,得到的一种高效率的电子烟双面加热片,具有低热阻、高热导率、高热稳定性和力学性能。
本发明提供了一种Pt单原子‑C量子点的复合光催化剂,包括:二氧化钛和以单原子形式负载在所述二氧化钛上的Pt,所述二氧化钛上还负载有C量子点。通过将Pt以单原子的形式负载在二氧化钛上,使得二氧化钛与Pt形成大量的异质结,极大的抑制光生电子和空穴的复合,提高了光催化剂的催化能力;加入碳量子,极大的延长了光催化剂的催化寿命。
本发明公开了一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用,该荧光陶瓷化学式为:(Y1‑x‑y‑z‑aLuxGdyPr3+aCe3+z)3(Al1‑bMn2+b)5O12,其中x为Lu3+掺杂Y3+位的摩尔百分数,y为Gd3+掺杂Y3+位的摩尔百分数,a为Pr3+掺杂Y3+十二面体格位的摩尔百分数,b为Mn2+掺杂Al3+八面体格位的摩尔百分数,z为Ce3+掺杂Y3+位的摩尔百分数,0≤x≤1,0≤y<1,0.001≤a≤0.005,0.001≤z≤0.01,0.001≤b≤0.02,1≤(b:a)≤10。采用固相反应法烧结,本发明的荧光陶瓷材料具有发射光谱主峰545~575nm之间,半高宽在100~120nm之间,在高功率LED(350~500mA)或LD(4W~10W)激发下,实现暖白光发射,色温3000~4000K,显色指数80~88,制备工艺简单,易于工业化生产,对高功率照明产业具有极大的促进作用。
本发明提供一种Ce:GAGG荧光陶瓷及其制备方法和制备系统,用Gd3+完全取代Y3+,Ga3+取代Al3+形成的化学式Gd3‑xAl5‑yGayO12:Cex,通过控制Ce3+离子、Ga3+离子的浓度调节Ga3+离子与Ce3+离子之间的能量转移来实现Ce:GAGG荧光陶瓷高输出效率。
本发明提供了一种高温催化净化金属纤维滤材及其制备方法,该金属纤维滤材包括由下至上依次布置的第一层金属纤维毡,第二层金属纤维毡,第三层金属纤维毡,其中第二层金属纤维毡含有催化剂。高温催化净化金属纤维滤材由三层金属纤维毡组成,每层金属纤维毡的孔径和孔隙率不同,过滤精度形成梯度分布,过滤效率更高;第三层金属纤维毡直接将大颗粒物截留在滤材外,相对于同样纳污量的过滤材料,寿命更长;第二层金属纤维毡含有催化剂,可以对气体中氮氧化合物催化脱硝处理;高温催化净化金属滤料孔隙率较大,烟气阻力小;高温催化净化金属纤维材料由不锈钢、哈氏合金等材料制成,耐腐蚀性高、强度高、使用寿命长。
在磁钢废料中添加磷制备纳米复合永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,并对获得的预处理磁体材料直接进行氢碎制粉,得稀土氢碎磁粉;而后对稀土氢碎磁粉进行取样分析,再根据需要在稀土氢碎磁粉中添加磷得混合粉,最后通过静压、烧结、退火制备出所需的纳米复合永磁材料,有效解决了各组分的熔点不同和人为操作因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收时间,且减少提取稀土元素的工艺步骤;并在稀土氢碎磁粉中添加磷,有利于改变纳米复合永磁材料中Nd2Fe14B相晶粒的磁易化轴取向,从而提高磁能积;且磁性能高、稀土含量低。
本发明提供一种以铈为主的钕铈铁硼磁性材料制备方法,其包括以下步骤:(1)混料:取富含Cu、Al、Ga、Dy、Co、Zn、Fe、Ce、Pr、Nd、B的稀土,按照质量配比Cu1‑2份、Al1‑2份、Ga1‑2份、Dy1‑2份、Co1‑2份、Zn1‑2份、Fe50‑60份、Ce20‑30份、Pr5‑20份、Nd5‑20份、B1‑10份;(2)熔炼:(3)粉碎:(4)静压成型:(5)烧结:(6)坯体打磨:(7)表面处理。本发明可利用相对过剩、廉价的稀土铈部分取代钕铁硼合金中的镨钕稀土金属,减少3~30%的Nd、Pr用量,使得原料成本降低,且性能优于目前市场上添加镧铈的产品,并使得稀土金属得到综合、平衡利用。
本发明属于材料领域,具体为一种重稀土元素高效扩散制备高矫顽力钕铁硼磁体的方法,本发明预先在压型生坯中引入重稀土扩散源,将压型后的生坯浸沾于重稀土配合物有机溶剂,一方面实现粉末颗粒表面有机包覆,达到防止粉末氧化的目的;另一方面,通过烧结和热处理过程中重稀土有机溶剂分解,C和H元素变成气体挥发,残留的中重稀土元素Tb/Dy等向主相晶粒表面扩散,实现主相晶粒表面的磁硬化,提高磁体矫顽力。本方法在非致密生坯表面浸沾添加重稀土扩散源,扩散通道多、扩散深度深,改进了常规扩散工艺中在已经烧结完成的致密磁体表面进行涂覆、蒸镀、滚渗等扩散方法,无需额外长时间高温扩散处理,工艺过程简单,扩散效率更高。
本发明涉及一种口腔种植用瓷基台,包括具有沉头通孔的基座,沉头通孔中装有外螺纹与种植体螺纹孔相配的中央沉头螺丝,基座的下端具有缩径接圈,中部具有向外延伸的突沿,基座上部外圆包覆有金属底层,金属底层的底端沿突沿的上表面外展,金属底层外包覆有铸造瓷层,铸造瓷层的外形与烤瓷冠底部的凹孔相配;其制造方法如下:在基座上制作金属底层蜡模及铸道,并将其固定在铸圈内,向铸圈灌注包埋材料混合液包埋,包埋体焙烧,熔融蜡模并倒出蜡液,金属合金熔融后从铸道浇入包埋体型腔内,铸造完成后,清除包埋材料,得到包覆金属底层的基座,制作与铸造瓷层蜡模及铸道,并将其固定在铸圈内,向铸圈灌注包埋材料混合液包埋,包埋体焙烧,熔融蜡模并倒出蜡液,铸造陶瓷熔融后从铸道浇入焙烧好的包埋体型腔内,铸造完成后,清除包埋材料,得到初成品,将初成品打磨、修形,并装入沉头螺丝,即得到所述瓷基台成品。本发明的有益效果是制作工艺简单,成本低廉。
本发明涉及一种Fe‑Mn‑Cu粉芯丝材及其电弧增材加工工艺,Fe‑Mn‑Cu粉芯丝材由低碳钢带和Fe‑Mn‑Cu粉芯组成;将本发明制备的Fe‑Mn‑Cu粉芯丝材对破损的碳钢基板进行电弧增材加工,加工后修复了破损的碳钢基板,再制造修复的焊道能有效提高碳钢基板的硬度、致密度和抗拉强度,使修复后的碳钢基体性能要求符合再次应用。本发明主要用于针对工作现场或野外环境下及时、高效地对急用装备等关键零部件进行快速修复与再制造。
本发明公开一种稳定氧化锆镀膜靶材及其制备方法,涉及镀膜技术领域,包括配料和烧结工艺步骤。本发明,设计科学、合理,对于所述镀膜靶材,制备方便、节约,作用安全、可靠,能够有效解决氧化锆镀膜靶材开裂问题,能解决传统氧化锆镀膜靶材镀膜过程中的不稳定和折射率不均匀性问题,提高氧化锆薄膜的损伤阈值,确保产品质量。
本发明提供了一种增强型复合铝基材料,所述复合铝基材料由Ce‑C‑SiC@Al2O3增强相和铝合金基体组成,其中增强相和铝合金基体的质量比为1.5‑5.5:100,所述铝合金包括以下成分:Cu为3.8‑4.6wt%;Mg为1.2‑1.5wt%;Si为0.4‑0.7wt%;Ni为0.4‑0.55wt%;Fe为0.4‑0.6wt%;余量为Al,为了满足铝基材料具有更高的强度要求,本发明以纤维状陶瓷作为增强材料,来改善铝合金的力学性能,本发明中采用短纤维相比于常规的纤维具有缺陷少,成本低的优点,而且静电纺丝制备的纤维具有较大的长径比,比表面积和优良的力学性能,具备更好的增强效果。
本发明提供一种复合磁性材料及其制作方法,涉及磁性材料技术领域。该复合磁性材料及其制作方法,所述复合磁性材料由以下重量份成分组成:铁60‑80份、钴5‑6份、镍3‑4份、钆4‑6份、氧化钻1‑2份、碳化硅1‑1.2份、三氧化二锰0.8‑1份、二硼化钛0.6‑0.8份、螯合剂1‑2份、添加剂0.8‑1.6份,所述螯合剂包括铬、磷、铜、锌与钾,所述铬、磷、铜、锌与钾的质量比为1:0.8:1.2:0.9:1.1,所述添加剂二氧化锆、三氧化二铋与二氧化铈,所述二氧化锆、三氧化二铋与二氧化铈的质量比为2:1.5:1.7。通过合理的选取原材料,以及在熔烧过程中加入螯合剂与添加剂,使得制作出的复合磁性材料性能大大提升,复合磁性材料的磁导率不易受到外界因素的影响,且复合磁性材料的使用范围更加广泛。
在磁钢废料中添加纳米金属粉制备含钆稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,再将获得的预处理磁体材料与已配制好的纳米金属粉投入普通电解炉中进行熔炼使其形成熔融的合金液,而后将熔融的合金液浇铸并冷却为合金锭,再对合金锭进行氢碎、气流磨破碎成细粉末,细粉末经静压、烧结、两段热处理后得含钆稀土永磁材料坯体,最后根据实际需求进行机械加工切割并精磨,即得含钆稀土永磁材料;纳米金属粉的添加有效增强了含钆稀土永磁材料的荧光寿命,且使永磁材料具有较高的激活剂临界浓度;而预分类可节省回收废旧磁钢的时间,且减少提取工艺步骤。
本发明公开了一种应用于燃料电池的具有纳米碳纤维保护层的金属构件及其制备方法,该金属构件包括金属芯片,在所述的金属芯片上设有纳米碳纤维保护层。所述的纳米碳纤维保护层的成分由纳米碳纤维和高分子树脂组成,其中,纳米碳纤维占纳米碳纤维保护层重50~90%。本发明应用于燃料电池的具有纳米碳纤维保护层的金属构件,兼具碳材料和金属材料的双重特性,可实现燃料电池导电体兼顾高电导率、低面接触电阻、高强度、易成型、耐腐蚀、低成本,可大幅度改善燃料电池核心电连接件的成型工艺,使得燃料电池电连接件的选材更为广泛,避免了燃料电池复杂电场、水气环境下电连接件的腐蚀,减小了电连接点的接触电阻,提升了电池的电性能及寿命。
在废旧磁钢中添加金属粉制备含钆稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,同时从预处理磁体材料中提取样品,并对样品中的稀土组分进行检测记录;再将获得的预处理磁体材料与已配制好的铁粉投入普通电解炉中进行熔炼使其形成熔融的合金液,有效解决了各组分的熔点不同和人为操作因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收废旧磁钢的时间,且减少提取稀土元素的工艺步骤;并在预处理磁体材料中添加金属粉,以提高稀土永磁材料的抗弯强度、硬度及抗冲击韧性;钆的加入有利于提高合金锭的热稳定性。
本发明提供一种航天用高性能纳米碳化钛铝合金复合材料,包括纳米碳化钛为0.1wt%~2wt%,基体相98%~99.9wt%;该基体相成分为7075铝基体的预合金粉末;本发明还提供了上述铝合金复合材料的挤压成型方法,以纳米碳化钛为增强相,以7055铝合金粉末为基体相,电场辅助下烧结挤压一体化进行,挤压比3~15,升温时间30~150K/min,挤压温度450~550℃,挤压速度0.1~1mm/min,最终制备出超细高强的纳米碳化钛铝合金复合材料,可应用于航空领域。
本发明公开了一种用于摄像头的铝基粉末冶金皮带轮及制作方法,包括本体,所述本体的中端部设置有齿轮盘,所述本体的一端部通过凸台铆压式套装设置有用于防止齿轮盘滑出的铆片,所述本体的另一端部设置有挡片,所述挡片、齿轮盘及凸台通过铝基粉末冶金一体制备形成本体。本发明采用本体与铆片铆压式套装设置,避免齿轮盘的滑出,保证皮带轮转动的稳定性和安全性,通过铝基粉末冶金技术制备成本体,使铝基皮带轮的重量减轻65%,满足了摄像头内使用的皮带轮对轻量化的要求,从而使铝基皮带轮在摄像头的使用状况优于铁基皮带轮在摄像头的使用状况,保证了摄像头内使用的皮带轮具备了较高的经济性和性价比。
本发明涉及一种耐磨高强度硬质合金及其制备方法,属于金属冶金技术领域。本发明首先以膨胀石墨为模板,通过金属混合盐电镀法在膨胀石墨表面电镀一层混合金属层,电镀后烧结,使得膨胀石墨模板烧结去除,从而得到类膨胀石墨结构的混合金属粉末,本发明还以稻壳为原料,首先通过微生物发酵使得稻壳微腐产生丰富的孔隙,再将钨酸和氨水混合溶解后浸渍微腐稻壳,使得钨酸和稻壳复合,并在还原气体的作用下,原位炭化还原制得具有稻壳遗态结构的多孔粗糙碳化钨硬质料,最后将自制抗磨料和自制硬质料以及粘结金属混合压制并烧结,最终制得耐磨高强度硬质合金,本发明制备的耐磨高强度硬质合金具有极佳的耐磨性和机械强度,具有广阔的应用前景。
本发明提供了一种暖白光照明用高显指透明陶瓷及其制备方法,采用共沉淀法制备了具有强结构刚性的透明陶瓷,掺杂Ce3+取代Sr2+和Lu3+时,在410 nm的激发下显示出较低的色温,实现了光谱展宽,提高了显指,非常适合用于适用于室内暖白光照明。
本发明公开了一种氧气传感器底座的生产方法,包括以下步骤:压制——热处理——精压——酸洗——制备成品;本发明工艺通过不锈钢粉末冶金工艺压制烧结成毛坯状态,通过热处理、精压和酸洗使产品表面达到图样要求状态,经过简单的机加工来实现最终产品;产品毛坯尺寸可以达到机加工后尺寸要求,只需要进行螺纹加工既能满足图样技术要求,单班产能显著提高,大大的缩短了机加工的时间和机加工成本。
中冶有色为您提供最新的江苏有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!