本发明公开了一种二极管的优化生产工艺,将硅晶芯片切割成六边形的单元体酸洗后,进行清洗;在400~500℃下进行氧化反应;管芯在650~750℃下进行真空烧结,30分钟后进行镀膜;将管芯切割为六边形直棱柱;用30~50度角的锥形磨角器将管芯研磨出第一斜面,然后再在第一斜面的上沿研磨出同一角度的第二斜面;将切割好的管芯放置在酸溶液内进行酸洗,然后涂聚酰亚胺进行固化处理;进行模压处理,模压后在180℃下进行烘烤;最后对所得产品进行表面处理,通过再测试后,进行成品包装。本发明采用多层压接式的结构,降低管芯的热疲劳,减少漏电、性能良好;不使用焊接,有效防止电阻增加;在管芯真空烧结前进行酸洗,防止引线及焊片引入其他杂质元素。
本发明涉及粘结相中原位析出纳米碳化物的金属陶瓷材料及其制备方法,属于金属陶瓷制备技术领域。本发明解决的技术问题是提供一种可在金属粘结相中原位析出纳米碳化物强化相、兼具硬度高、强度高的TiC基金属陶瓷材料及其制备方法。该TiC基金属陶瓷材料的制备方法包括混料、干燥、压制和真空烧结,本发明通过改变WC、Mo含量时,控制其在一定的范围内,并同时配合其他金属元素的种类以及含量,可以在粘结相中原位析出纳米碳化物强化相,同步提升材料的强度和硬度,适用于轻质耐磨密封件。本发明方法所需设备简单,操作快捷,制备周期短,成本低,可实现真空烧结制备高强高硬轻质TiC基金属陶瓷。
本发明公开了一种分散纳米TIC粉体的表面修饰高能球磨法。其特征是首先将纳米TIC粉末在真空烧结炉中进行脱氧处理,再在无水乙醇溶液中利用超声波的作用使聚氧乙烯20山梨醇酐单油酸酯连接和包覆到纳米TIC粉体颗粒表面,完成对纳米TIC粉体的表面修饰;然后将处理好的料浆进行高能球磨处理和真空干燥。本发明的分散方法获得的纳米TIC粉体,氧含量低、分散均匀、无硬团聚、与基体润湿性得到改善,适合于作为TI(C,N)基金属陶瓷的添加剂或者直接作纳米金属陶瓷材料的硬质相。
本发明公开了一种制备高孔隙率金属及复合材料的工艺方法,包括:在含主体料粉和羧甲基纤维素钠粘结剂的浆料中加入双氧水作为一次发泡剂,加入占主体料粉质量8-20%的硬脂酸作为二次发泡剂与之混合均匀,倒入无渗透模具中成坯。坯体置入干燥箱在40~60℃干燥。产生初次发泡后,放入真空烧结炉,硬脂酸挥发产生二次发泡;然后以3℃/MIN速度升温至600~1300℃,保温2~3H,烧结成型,得到高孔隙率的主体材料。与现有技术相比,本方法在成型过程中不需加压,操作简便,由于成型过程中经过两次发泡过程,可以得到高孔率多孔材料制品,且孔隙相互连通,力学强度良好。尤其适合制备医用多孔钛及其复合材料时采用。
本发明涉及多孔金属材料制备方法,具体为是多孔镍的制备方法,粒径为10~50μm的萘粉作为造孔剂,造孔剂与直径为1~1.5μm的镍粉以1∶5的质量比例混合;混合后在真空烧结炉内80℃将萘挥发,再至600℃进行真空烧结,自然冷却,所得到产物即为多孔镍。本发明提供的多孔镍的制备方法,所使用的造孔剂为升华性造孔剂,无需材料制备后期的造孔剂去除步骤;造孔剂在镍材料发生烧结以前就会通过升华的方式排除到材料体以外,从而不会发生传统造孔剂残留和脱出不充分的现象。采用80℃低温长时间保温的方式,对升华性造孔剂进行预先去除,依靠粉体材料自身拱桥特性进行孔隙的维持;增大了空隙率,从而使粉料自由堆积的孔隙率比理论计算值大得多的现象。
一种用于钎焊的氧化铝陶瓷金属化方法,步骤为:(1)将氧化铝陶瓷进行清洗,然后在1000~1200℃保温烧结50~70min;(2)采用真空磁控溅射、真空蒸镀或离子镀的方法在氧化铝陶瓷未覆盖铝箔部位的表面依次沉积Ti、Zr或Hf金属层,Mo或Cr金属层,Ni或Cu金属层;(3)将沉积了金属层的氧化铝陶瓷置于真空烧结炉中并对真空烧结炉抽真空,当炉内真空度达到4×10-3Pa时开始加热,将炉内温度升至430~480℃并在该温度保温20~40min,然后再升温至900~1200℃保温20~60min,保温结束后随炉冷却至室温即完成氧化铝陶瓷的金属化,在上述升温和保温过程中保持炉内真空度高于6×10-3Pa。本发明能简化工艺,降低金属化成本,并提高高纯氧化铝陶瓷的金属化效果。
本发明提供一种超低损耗的钇铝石榴石微波介质陶瓷材料,材料化学通式为Y3‑xAl5‑yRzO12,R为Mg2+,Ga3+,Si4+,Ti4+或Nb5+多种异价离子中的一种或多种;0≤x≤0.15,0≤y≤0.8且0.03≤z≤1.5;本发明还提供一种具有超低损耗钇铝石榴石微波介质陶瓷材料的制备方法,包括步骤:配料、球磨、烘干过筛、预烧、干压、冷等静压成型、真空烧结、气氛控制退火。本发明制得的材料为典型的超低损耗石榴石型铝基微波介电陶瓷,Q×f在180000GHz~220000GHz之间,相对介电常数εr在8~12之间,频率温度系数τf在‑33ppm/℃~‑22ppm/℃之间。配方中不含Pb,Cd等挥发性有毒金属,性能稳定,原材料在国内供应充足,使高性能微波陶瓷的低成本化成为可能。
本发明公开了一种铝合金加工用硬质合金刀具材料及其制备方法,其中,所述材料由一种组合物制成,所述组合物包括Co、WC和ZrO2,还包括Al2O3,其中,ZrO2的粒径为5~50nm,Al2O3的粒径为5~55nm,且在所述组合物中,ZrO2的重量百分配比为0.2~1.5%,Al2O3的重量百分配比为0.1~1%;所述方法如下进行:(1)将ZrO2和Al2O3进行混合预处理,(2)混料制备与成型,(3)真空烧结,(4)低压烧结,得到所述硬质合金刀具材料。本发明采用纳米氧化锆和纳米氧化铝为晶粒抑制剂,降低WC硬质相晶粒尺寸,提高材料硬度,改善刀片切削耐磨性,且由于氧化锆与氧化铝的价格相对较低,显著降低了生产成本。
本发明公开了一种含金属间化合物粘结相的金属陶瓷材料的制备方法,其特征是先制备Ni(OH)2包覆Al的复合粘结相,和Ni(OH)2包覆(Ti0.5, Mox, W0.5?x)(C, N)颗粒(其中x=0~0.5)的复合硬质相, 二者混合后经过球磨、过滤、干燥等工序后压制成型,最后进行两段气氛烧结,即在低温下Ar/H2气氛中Ni(OH)2转化成Ni,在高温下真空烧结Ni与Al发生反应形成Ni3Al,最终制成含金属间化合物粘结相的金属陶瓷材料。本发明克服了现有的技术中Al易氧化,破碎和均匀分散困难、易挥发损失和烧结迁移易形成孔隙的问题,在烧结过程中原位形成Ni3Al相,且实现在硬质相周围的均匀分布,制备出的金属陶瓷材料可用于切削刀具与抗氧化的零部件制造。
本发明公开了一种Ti(C,N)/TiB2/Sn/Cu电接触材料及其制备方法和用途,属于合金领域。上述Ti(C,N)/TiB2/Sn/Cu电接触材料由下述重量配比的原料制备而成:碳氮化钛20~38份,硼化钛13~20份,锡3~17份,铜18~45份,润滑剂和/或粘接剂1~2份。电接触材料是将原料混匀后于15~20MPa的压力下压制成型,然后在真空烧结炉中烧结1~2小时得到的。本发明Ti(C,N)/TiB2/Sn/Cu电接触材料的抗弯强度明显提高,同时能够保持高致密度。并且本发明材料的制备工艺简单,烧结温度低,对设备的要求低,消耗的能量低,降低了制备成本,适合工业化大规模生产。
本发明公开了一种NI粘结WC基硬质合金的制备方法,其特征是先将WC和NI的混合粉末在无水乙醇中进行湿磨、干燥、压制后在1440~1480℃进行真空烧结;烧结完成的同时往炉中通入氮气进行真空淬火,氮气压力为0.1~0.4MPA,淬火时间为5~10分钟;然后出炉在液氮中进行深冷处理,处理温度为150-196℃,保温时间为:硬质合金的重量×重量系数+硬质合金的重量的NI百分含量×成分系数,其中重量系数为5~25MIN/G,成分系数为10~20MIN;并在真空炉中在120~200℃进行回火处理,保温时间为1~3H。采用本发明的NI粘结WC基硬质合金制备方法,使WC接触率得到控制,WC在NI中的溶解度提高,且处理后合金表面应力状态为压应力,使合金抗冲击能力提高,因此可实现NI对CO的取代,获得与WC-CO系硬质合金相当的性能。
本发明所述亚氧化钛?金属复合导电材料,由亚氧化钛和金属M组成,化学式为TinO2n?1?M,该化学式中,n=1、3、4、5、6、7、8或9,M为Co、Ni、Al、Cu、Pb、Ti、Fe、Zr、Mg、Ag、Zn、Cr、Mo、V、Mn、Nb、Ta中的至少一种,或M为Cu、Pb、Zr、Ag、Mo、Mn、Nb、Ta中的至少一种,所述亚氧化钛的质量百分数为40%~99.5%,金属M的质量百分数为0.5%~60%。所述亚氧化钛?金属复合导电材料的第一种方法采用放电等离子烧结或热压烧结,第二种方法采用真空烧结或低压烧结。本发明能改善所制备的导电材料的韧性和后期加工性,并保持导电材料优良的电导率和致密度。
本发明公开了一种原位生成含Ni3Al的粘结相的金属陶瓷的制备方法,其特征是先制备Al部分取代Ni的Al?Ni(OH)2粘结相和Ni(OH)2包覆(Ti0.5, Mox, W0.5?x)(C, N)颗粒(其中x=0~0.5)的复合硬质相, 二者混合后经过球磨、过滤、干燥等工序后压制成型,最后进行两段气氛烧结,即在低温下Ar/H2气氛中Al?Ni(OH)2粘结相转化为Al?Ni, 包覆层Ni(OH)2转化为Ni;在高温下真空烧结使Al?Ni与Ni发生反应而原位生成含Ni3Al的粘结相的金属陶瓷。本发明克服了现有的技术中Al易氧化,破碎和均匀分散困难、易挥发损失和烧结迁移易形成孔隙的问题,在烧结过程中原位形成Ni3Al相,且实现在硬质相周围的均匀分布,制备出的金属陶瓷材料可用于切削刀具与抗氧化的零部件制造。
本发明公开了一种抗高温软化的硬质合金的制备方法,其特征是先制备Al部分取代Ni的Al?Ni(OH)2粘结相和Ni(OH)2包覆WC的复合硬质相,二者混合后经过球磨、过滤、干燥等工序后压制成型,最后进行两段气氛烧结,即在低温下Ar/H2气氛中Al?Ni(OH)2粘结相转化为Al?Ni, 包覆层Ni(OH)2转化为Ni;在高温下真空烧结使Al?Ni与Ni发生反应而原位生成含Ni3Al,获得抗高温软化的硬质合金。本发明克服了现有的技术中Al易氧化,破碎和均匀分散困难、易挥发损失和烧结迁移易形成孔隙的问题,在烧结过程中原位形成Ni3Al相,且实现在硬质相周围的均匀分布,制备出的硬质合金可用于切削刀具与抗氧化的零部件制造。
本发明为遁构机掘进刀盘硬质合金组件,解决已有组件耐磨性差,焊接性能不良的问题。其化学成份重量百分比为:WC84—86、Co13.78—15.67、TaC0.1—0.15、NbC0.12—0.180。
本发明所述锆及锆合金氢化工艺优化的方法,工艺步骤依次如下:(1)真空活化,将锆或锆合金置于真空烧结炉中,控制炉内真空度≤1.0×10‑2Pa后升温,当炉内温度升至150~350℃时保温30~90min,升温和保温过程中均保持炉内真空度≤1.0×10‑2Pa;(2)氢化,真空活化后,向真空烧结炉内通入高纯氢气进行氢化处理,所述氢气的纯度≥99.999%。该方法中的真空活化步骤不仅可破坏锆或锆合金表面的致密氧化膜,使氢化过程中氢气的渗透阻力降低,吸氢点提前,从而降低锆或锆合金的氢化温度,缩短氢化保温时间,使氢化锆的氢含量大幅提高并接近理论值,而且使氧含量得到有效控制。
本发明公开了一种粘结相中Ni3Al原位生成的金属陶瓷材料的制备方法,其特征是先制备Ni(OH)2包覆AlN的复合粘结相,和Ni(OH)2包覆(Ti0.5, Mox, W0.5?x)(C, N)颗粒(其中x=0~0.5)的复合硬质相, 二者混合后经过球磨、过滤、干燥等工序后压制成型,最后进行两段气氛烧结,即在低温下Ar/H2气氛中Ni(OH)2转化成Ni,在高温下真空烧结Ni与AlN发生反应形成Ni3Al,最终制成粘结相中Ni3Al原位生成的金属陶瓷材料。本发明克服了现有的技术中Al易氧化,破碎和均匀分散困难、易挥发损失和烧结迁移易形成孔隙的问题,在烧结过程中原位形成Ni3Al相,且实现在硬质相周围的均匀分布,制备出的金属陶瓷材料可用于切削刀具与抗氧化的零部件制造。
本发明提供了一种硬质合金包覆金刚石颗粒及其制备方法,包括:S01、硬质合金混合料采用WC、Co的粉末物料混合制备,在硬质合金混合料中加入酒精溶剂及石蜡,搅拌混合后得到第一浆料,将金刚石颗粒加入第一浆料中搅拌混合,获得含有金刚石颗粒的第二浆料;S02、将第二浆料加入喷雾干燥设备,经过处理后获得硬质合金混料包裹金刚石的球形或类球形的第一颗粒;S03、将第一颗粒置于真空烧结炉中烧结,以金刚石颗粒的表面形成硬质合金包覆层;S04、将真空烧结炉烧结后获得的烧结块放入破碎筛,得到分散的硬质合金包覆金刚石颗粒。在金刚石颗粒的外层包裹硬质合金层,增加颗粒的整体密度,有利于该类颗粒在堆焊、喷焊工作情况下的使用。
本发明公开了一种利用不锈钢氧化铁皮生产镍铬锰铁合金的方法,所述的镍铬锰铁合金由下述重量比的成分组成:Ni:6%~7.5%,Cr:13%~15%,Mn:13%~16%,Si<0.55%,O<1.0%,C<0.1%,S<0.04%,P<0.04%,余量为Fe。所述的镍铬锰铁合金采用不锈钢氧化皮与废碳素电极混合后在真空电阻炉中进行固态真空还原生产而得。本发明利用碳素电极中的碳还原不锈钢氧化皮中的氧,将废弃的不锈钢氧化皮和碳素电极再次利用回收贵金属生产镍铬锰铁合金,使废弃资源得到充分利用;采用真空还原可以在较低的温度下开始脱氧还原氧化,节约能耗。
本发明涉及航空发动机维修技术领域,具体涉及一种发动机热端部件三维尺寸钎焊修复材料及制备方法,根据母合金选择与母合金相容、性能匹配的两种合金粉,粉末混合均匀并压制成胚料并烘干,放入专用真空烧结的工装中,然后进行真空烧结,真空烧结后根据不同三维尺寸修复要求进行加工成相应的钎料,制备的钎料可实现不同尺寸钎焊修复的需求。本发明的修复材料制备方法简单,制备成本低,制得的修复材料满足航空发动机热端部件三维尺寸的修复,同时满足裂纹宽度超过1mm的裂纹修复,弥补了现有技术中三维尺寸钎焊修复的空白,对促进航空发动机热端部件三维尺寸钎焊修复的应用和发展具有重要意义。
磁性纳米颗粒/磷酸钙陶瓷复合多孔材料,以磷酸钙陶瓷为基体,所述磷酸钙陶瓷基体为多孔结构,其上均匀分布着超顺磁性Fe3O4磁性纳米颗粒。超顺磁性Fe3O4磁性纳米颗粒为疏水性Fe3O4或亲水性Fe3O4,其平均粒径为4nm~20nm,其含量为磷酸钙陶瓷基体质量的1%~10%。上述材料的制备方法:(1)Fe3O4磁流体的制备;(2)复合粉体的制备;(3)坯体的制备;(4)真空烧结,将压制成型的坯体用真空烧结炉在300℃~400℃煅烧20分钟~40分钟,然后升温至1000℃~1200℃煅烧1小时~2小时,继后随炉冷却至室温即得到磁性纳米颗粒/磷酸钙陶瓷复合多孔材料。
本实用新型涉及钕铁硼加工技术领域,目的在于提供一种既能有效的保证产品质量安全,又能实现快速降温的钕铁硼的烧结系统。包括真空烧结炉和用于对真空烧结炉进行降温的冷却装置,冷却装置包括气瓶、冷却水箱和冷凝罐。冷却水箱内设置换热机构,换热机构包括两个相互平行的中空的圆盘,两个圆盘的内腔通过若干根毛细铜管相互连通。真空烧结炉上设置进气口和出气口,进气口和出气口处均设置有阀门。气瓶通过管路与进气口连接,出气口通过管路与气泵连接。气泵通过管路与一个圆盘连接,另一个圆盘通过管路与气瓶连接。本实用新型无需打开真空烧结炉炉门就能实现真空烧结炉的快速冷却,既能有效的保证产品质量安全,又能提高产品出炉的效率。
一种高比重合金的烧结方法,涉及一种粉末冶金过程烧结高比重量合金的方法。其过程采用真空烧结炉进行烧结;其特征在于烧结过程是将真空烧结炉在持续抽真空的情况下,同时通入保护性载气的条件下,进行烧结的。本发明的方法,能够避免真空烧结过程中高比重合金与钼舟或石墨舟之间的打火现象;能够促进烧结过程,缩短烧结时间,提高生产效率,实现清洁烧结,确保安全生产,由于充入保护性载气的烧结方法保留了真空烧结的全部特点,能够得到比真空烧结更加优异的高比重合金。
本实用新型公开了一种超粗晶粒硬质合金混合装置,包括真空烧结炉、支撑架、搅拌装置、抽气装置以及冷却装置,所述真空烧结炉外表面安装有支撑架,所述真空烧结炉内部设有搅拌装置,所述真空烧结炉顶部安装有抽气装置,所述真空烧结炉底部安装有冷却装置,所述真空烧结炉包括进料口以及出料口,所述真空烧结炉顶内设有保温层,所述真空烧结炉顶部开设有进料口。该超粗晶粒硬质合金混合装置可对真空烧结炉内的材料进行搅拌,能够帮助超粗晶粒进行充分的加热燃烧,大大提高燃烧效果,并且抽气装置使真空烧结炉内为真空状态,易于控制合金的含碳量,冷却装置的设置,能够将真空烧结炉的温度进行快速降温,使超粗晶粒纯度达到最高。
一种氧化铝空心微球制备方法,涉及材料技术。本发明包括下述步骤:a)将分析纯硫酸铝铵[(NH4)2Al2(SO4)4·24H2O]置于磨粉机中磨细,并过800目筛子备用;b)真空烧结炉预热;c)将磨细后的硫酸铝铵粉末装入喷雾器中,将其雾化;d)采用压缩空气将雾化后的硫酸铝铵粉末吹入真空烧结炉中;e)维持真空烧结炉内的温度在1000摄氏度以上,保持真空烧结炉内气压低于大气压;硫酸铝铵粉末剧烈分解形成多孔氧化铝粉末,在重力作用下下落,排出的气体经排气泵排出;排气泵进气管前端装12500目滤网防止固体粉末吸入;f)真空烧结炉内温度在1000摄氏度保温1小时,以使多孔粉末烧成陶瓷空心微球,然后停止加热,向真空烧结炉内注入空气,待温度降至室温时即获得氧化铝空心微球。本发明工艺简单可靠,成本低廉,且成品率高。
本发明属于一种大尺寸弧形状银铜板的锻造加工方法,包括如下步骤:将原料银铜铸锭进行真空熔铸;制得的铸锭进行热锻开坯;进行锻坯车削清理;制得的铸锭进行加热保温并参照图纸尺寸要求进行热环扎处理;进行环轧件表面处理,先进行车削内外表面及端面至无缺陷,将环件从中间切断,均分成两个半圆;将制得的半圆铸件放在压力机上进行冷锻,按10%~40%纵向冷变形量,使环件高度减小,外径增大;将所得的锻件,进行下料压弧并整形,按照零件重量下料,弯曲部分采用不均匀变形,按样板整形,将所获得的大尺寸弧形状银铜板进行去应力退火。本发明能有效细化异形板材的晶粒组织,提高板材的硬度和力学性能,同时减少了加工余量和制造加工成本。
本发明属于一种用于常规磁体托卡马克装置板式环向场线圈所需的铬锆铜异型铜板的锻造方法。包括以下步骤,将铬锆铜铜锭加热进行墩拔、冲孔制成铜套粗坯;将制得的铜套粗坯进行高温热环轧,使其直径扩大,壁厚减小,同时利用环轧余热进行固溶热处理;将制得的铜套形状坯料从一侧锯开一个开口,用油压机经过锻压将环状铜套展开成平板;将制得的铜板用油压机进行不均匀变形,使铜板产生弯曲,得到最终锻件。其优点是,相比现有技术的轧制或者锻造方法,能大幅减少轧制或者锻造过程预留的机加工余量,提高了产品的材料利用率,生产成本大幅减少;同时能够使铜板获得十分细小的晶粒组织,满足装置对铜板的各项性能要求。
本发明涉及真空热处理设备领域。真空脱脂烧结炉,包括炉座及固定在其上的烧结炉,还包括与烧结炉相连的充气装置、水冷装置、抽真空装置和脱脂装置。该真空脱脂烧结炉的优点是结构新颖,保温性能好,一次脱脂率高。
本实用新型提供了一种含油污水真空分离净化装置,包括:真空波纹管1与油水提升泵4连通,真空波纹管1的另一端设有弹簧式安全阀5,加热器7的顶部设置有油位电极6,电动排油泵3与加热器7连通,电控箱10设置在高分子吸附器2的外侧,油份浓度检测仪9设在高分子吸附器2的底部,差压控制器8与高分子吸附器2连接。本实用新型采用了真空薄膜技术,使其部份已乳化的油在真空状态下加以破除,同时加速了油污水中的油液集合,使之与水分离。该装置结构紧凑、占地面积小,使用、生产成本低。
中冶有色为您提供最新的四川有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!