本发明公开了一种高强韧多晶硬质合金挤压圆棒及其制备方法,配方包括:碳化钨、陶瓷纳米纤维、黏结相、钴粉、铍铜合金、碳化钛、碳粉、精炼石蜡、添加剂和抑制剂,各组分的质量百分含量分别是:15‑25%的碳化钨、20‑30%的陶瓷纳米纤维、15‑25%的黏结相、10‑20%的钴粉、2‑4%的铍铜合金、10‑20%的碳化钛、1‑3%的碳粉、5‑10%的精炼石蜡、0.5‑1%的添加剂和0.5‑1%的抑制剂;该发明,安全可靠,采用碳化钨、陶瓷纳米纤维、钴粉与铍铜合金作为原料,加入了碳粉与精炼石蜡,摒弃传统直接采用金属为原料的制作工艺,更大的提升了该圆棒的强度与硬度,碳粉与精炼石蜡提升了该圆棒的韧性,且该圆棒采用真空挤压方式加工,快速凝结合金粉末,提高该圆棒抗磨损性能。
本发明公开了一种PDC钻头胎体材料制备方法,其特征采用将面心立方和体心立方相共晶结构的高熵合金加入到铸造碳化钨、单晶碳化钨粉末中,经过混合后加入琼脂糖溶胶形成料浆,然后注入模具后经过干燥而成型,最后加入铜基浸渍合金在真空炉中进行熔渗而形成含有均匀分布的面心立方和体心立方相共晶结构高熵合金的PDC钻头胎体材料。本发明克服了现有PDC钻头胎体材料制备方法存在的碳化钨与金属添加物难以均匀分散等问题,其硬度≥30HRC,抗弯强度≥600MPa,冲击韧性≥4J,综合力学性能优异。
本发明涉及一种检测尿酸的复合纳米金属‑氟化钕多孔金属骨架电极的制备方法,将镍粉和锌粉研磨后混匀,将混合金属粉末固定在容器中,烧结后冷却得到金属锭,清洗并浸没在强酸中;将金属锭取出清洗,干燥,得到多孔金属基底;分别制备pH为7‑8、浓度为0.1‑0.2M的盐酸多巴胺溶液以及质量浓度为1‑10%的壳聚糖酸盐和浓度为0.1‑0.2M的硝酸钕溶液,除去溶液中的氧气后混匀,往混合溶液中滴加钙离子溶液,直到溶液粘度达到标准,然后将多孔金属基底浸渍在该混合液中,取出干燥、焙烧,最后在惰性气体氛围下烘干,即得。与现有技术相比,采用该电极可以实现尿酸的快速检测,具有专一性好,精度高,价格便宜,使用寿命长等优点。
本发明涉及一种快速吸气的非蒸散型钛钼吸气剂,属于吸气材料技术领域。且所述非蒸散型钛钼吸气剂通过以下步骤制成:步骤一、吸气粉末的制备;步骤二、将吸气粉末和粘结剂混合得混合料;混合料造粒,再注射成型,得胚样;步骤三、将胚样脱脂、烧结,得一种快速吸气的非蒸散型钛钼吸气剂。本发明以钛粉、钼粉和辅助金属粉为吸气粉末,以石蜡、改性聚丙烯酸酯和硬脂酸锌为粘结剂,再配合合适的脱脂和烧结工艺,获得了高孔隙率、较低的激活温度的吸气剂。并在改性聚丙烯酸酯中引入氨基,增强了粘结剂的粘结作用,增加了吸气剂的机械强度。结合溶剂脱脂和热脱脂,保证了粘结剂的高效脱除。
本发明提供了一种基于复合微纳增材制造高精度陶瓷基电路批量化制造方法,利用涂铺牺牲层、电场驱动喷射沉积微纳3D打印电路种子层、高温烧结打印电路种子层、精密微电镀致密导电层四种策略有机结合,实现了大尺寸高精度陶瓷基电路批量化生产;提出的基于电场驱动喷射沉积微纳3D打印制造高精度陶瓷基电路批量化制造方法,无需通过光刻和刻蚀等工艺就能实现大尺寸高精度陶瓷基电路板的低成本高效规模化制造,解决了现有技术只能通过沉积铜和光刻方法成本高、周期长、工艺复杂、环境污染严重的问题,尤其它还具有工艺简单、成本低、效率高、绿色环保、适合不同批量的生产等优势,能够在非平整陶瓷表面、复杂曲面等实现高精度共形陶瓷基电路制造。
本发明公开了一种高强Ti185合金的制备方法,该方法包括:一、制备Ti185合金球形粉末;二、将Ti185合金球形粉末进行电子束选区熔化;三、对电子束选区熔化成形件进行固溶处理和时效处理,得到高强Ti185合金,该高强Ti185合金的抗拉强度高于1298MPa,抗拉屈服强度高于1197MPa,断后伸长率高于6%。本发明通过对电子束选区熔化过程中的Ti185合金粉末进行预热,使Ti185合金内部热应力逐步释放,避免了Ti185合金出现Fe元素偏析,并对电子束选区熔化成形件进行固溶处理和时效处理,促进纳米α相析出,使最终制备的Ti185合金力学性能优良,可制作为高强度部件,适用范围广泛。
本发明公开了一种采用Isobam体系凝胶注模成型钇铝石榴石型微波介质陶瓷的方法,先按照化学通式Y3‑xAl5‑yRzO12准备原料,将混合物与磨球、溶剂组成预混液,将所得混合浆料置于烘箱中烘干后,置于马弗炉中煅烧,过筛后与消泡剂一起加至Isobam溶液中,注入模具成型,凝胶固化,干燥后排胶,将排胶后的素坯烧结,然后退火,得到最终的微波介质陶瓷材料。本发明采用了Isobam凝胶体系,在恒温水浴的条件下搅拌混合陶瓷浆料来代替常用球磨方法,可高效解决坯体内部致密性不一致的问题,且设备简单,工艺过程可控,极大地提高了浆料的均匀性、分散性,制备出的高质量浆料有利于得到结构均匀性好的钇铝石榴石型陶瓷材料。
本发明公开了一种铜铬电弧熔炼用自耗电极棒的制备方法,属于金属加工技术领域,包括配料‑铸锭‑制粉‑制坯‑脱气‑热等静压,其中制坯步骤为选取粒径大小为5‑15μm的球形铜铬合金粉末采用冷静压压制或者冷喷涂沉积的方式制成铜铬合金胚料棒材,结合热等静压工艺显著的提高了自耗电极棒的致密度,由之前的75%‑85%提高到99%左右,有利于提高自耗电极棒在熔炼过程中电弧的稳定性,还显著降低了自耗电极棒的气体含量,由之前的600‑800ppm降低至210‑400ppm之间,降低了电极棒熔炼规程中的电压波动。
本发明公开了钽电容器固体电解质及其制备方法、钽电容器和用电器,涉及电容器的阴极电解质制备技术领域。制备方法,包括:采用浆料包覆法在第一中间体的表面进行至少一次浆料包覆,得到第二中间体,浆料包覆法为:在被包覆物表面包覆含有β‑MnO2粉末的硝酸锰浆料,然后干燥;将得到的第二中间体通过热分解使其中所含的硝酸锰分解为二氧化锰得到第三中间体;第一中间体为表面覆盖有介质氧化层且微孔被二氧化锰填满的多孔钽烧结体;在第三中间体的表面再次包覆二氧化锰,以填满第二中间体表面β‑MnO2微粒间的间隙。用电器,包括上述的钽电容器。该方法可减小被覆过程中对介质氧化膜的破坏,使电容器漏电稳定性好。
本申请公开了一种表面挤压强化的发动机齿轮制造工艺及挤压成型模具,涉及粉末冶金齿轮表面强化技术领域,该表面挤压强化的发动机齿轮制造方法包括:将多种粉料按照预设比例混合得到混合粉料,混合粉料的组分包括铁、碳、镍、钼、钛、锰、以及润滑剂;将混合粉料压制成齿轮毛坯,并对齿轮毛坯进行烧结得到齿轮烧结件;将齿轮烧结件放入挤压成型模具,依次经过其内部的多级挤压工作带的挤压后得到表面强化的待完成齿轮;对待完成齿轮进行热处理和精加工得到目标齿轮。本申请,可保证齿轮强化效果高、齿轮精度可控制、工艺简单、成本较低。
本发明公开了一种通过渗Al制备FeAl基金属间化合物柔性膜的方法。本方法采用烧结工艺制备Fe基合金柔性膜,然后采用粉末包埋法渗Al,渗Al剂由铁铝合金粉末、Al2O3粉末和NH4Cl组成,形成FeAl基金属间化合物柔性膜。本发明克服了传统过滤膜的不足,制备的FeAl基金属间化合物柔性膜孔隙率高,具有良好的抗高温氧化、硫化性能,力学性能与过滤性能,可用于高温环境,强腐蚀环境下的过滤分离提纯。
本发明属于陶瓷加工技术领域,具体说是一种高比表面氧化铝泡沫陶瓷的制备方法。氧化铝泡沫陶瓷制备方法包括以下步骤:①按照质量份数比分别称取原料;②将三氧化二铝、二氧化硅、氧化镁、天然粘土、淀粉、分散剂、去离子水混合后进行研磨得到陶瓷浆料;③泡沫载体的制备:以聚苯乙烯、3‑甲基苯乙炔为原料制备共轭微孔聚合物;将共轭微孔聚合物、聚丙烯、氧化锌、皂荚、环状糊精、微晶纤维素、甜菜碱、聚乙烯醇、发泡剂、去离子水混合均匀后进行挤压发泡得到泡沫载体;④向泡沫载体中加入陶瓷料浆,然后进行挤压,挤出过剩料浆制成泡沫陶瓷坯体,将坯体干燥后升温使泡沫载体完全挥发,然后再烧结、冷却即得该氧化铝泡沫陶瓷。
本申请属于玻璃器件制备技术领域,特别是涉及一种玻璃浆料及其制备方法和3D打印玻璃器件的方法。传统方法制备宏观物体采用高温融化和铸造工艺,对于制备精细结构则采用化学法,制备过程危险、环境污染大、能源消耗高、效率低。本申请提供了一种玻璃浆料,包括:二氧化硅600~1000份、丙烯酸树脂600~800份、光吸收剂1~13份、光引发剂1~15份、阻聚剂1~15份、丙三醇1~10份、聚乙烯醇1~18份、消泡剂1~18份和烧结助剂1~15份。通过添加烧结助剂,避免了高粘度浆料影响打印精度的问题,获得了高精度微透镜玻璃器件;通过合理配置玻璃浆料以及氧抑制聚合的打印工艺,有效抑制开裂,提高成品率。
本发明公开了一种不易破损的钕铁硼磁体,包括磁体和中心块,所述磁体分隔成一块以上的磁块,中心块的外壁面上向上凸出形成一个以上的固定部,固定部的外侧端面上均安装有固定杆,固定杆另一端均安装有安装块,安装块的外侧面上均安装有压板,安装槽外侧均设有防撞块,防撞块正对于安装槽处均向外凸出形成一连接部,连接部朝向安装槽的一端面上均设有一固定槽,固定槽中均安装有弹簧,弹簧一端均安装于安装槽的内壁面上,磁块分别设置于压板之间,磁块均通过压板向内挤压形成一矩形结构的磁体。本发明磁铁分隔成多块磁块,从而只要更换损坏的那一块就可,避免了浪费;磁体的角部设有压板和防撞块,避免了角部的损坏。
本发明公开了一种仿汗腺结构内分泌冷却烧结砂轮及其制备方法,包括砂轮主体,所述砂轮主体中心处开设有砂轮中心孔,所述砂轮主体外壁固定设有砂轮磨粒,所述砂轮主体内部开设有多组以砂轮中心孔为轴向外延伸的一级主孔隙。在砂轮制作压制模具内预先放置网状管路,且所述网状管路所用的材质遇到高温即融化挥发;将制作砂轮的材料融化混合后注入模具进行轧膜成型。砂轮表面持续获得与磨削状况匹配的冷却润滑薄膜,为砂轮提供连续、高效的润滑减摩和冷却换热能力,实现适量定区域精准冷却润滑、减少磨削摩擦、降低磨削温度、抑制砂轮磨损和提高工件表面质量的目的。
本发明涉及氮化硅陶瓷材料领域,具体涉及一种氮化硅陶瓷材料及其制备方法。所述氮化硅陶瓷材料以重量百分比计,包括氮化硅86~95%,氧化镁2~4%,氧化铝1~3%,氧化钇2~7%。所述氮化硅陶瓷材料的制备方法包括将原料粉末混合,加入去离子水、聚乙烯醇水溶液和聚丙烯酸铵配成浆料,经干燥造粒、压制坯体后,常压、低温烧结得到成品。本发明提供的氮化硅陶瓷材料及其制备方法通过优选原料配比及比例,极大地改善了氮化硅陶瓷材料的烧结特性,使其可以在常压、低温条件下进行烧结;通过优化工艺流程和参数,显著地降低了氮化硅陶瓷材料的生产成本,提高了工作效率,使制得的氮化硅陶瓷材料具有较高的密度、机械强度以及耐高温性。
本发明主要涉及高导电高导热高气密性耐腐蚀石墨烯单极板的制备方法,本发明要解决传统双极板导电和导热较差,气密性差,耐腐蚀性差的问题。方法:石墨模具制备,填料(少层石墨烯粉体),预成型成板状,预烧结去掉分散剂,原位致密化成型,机械加工至成品,双极板组装。本发明还公开了一种包括这样的双极板的燃料电池。本发明的双极板热导率和电导率比传统的双极板提高一个数量级,同时具有非常高的气密性和优异的耐腐蚀性能,进而可以提高氢燃料电池的能量转换效率和使用寿命及使用安全性,扩大了氢燃料电池的应用范围。
本发明涉及手术器械技术领域,具体公开了一种用于手术剪的毛坯材料及其生产工艺,包括以下重量百分比的成分制备而成,C为0.12%;Si为0.75%;Mn为1.00%;P为0.04%;S为0.03%;Cr为16~18%;Ni为0.3~0.8%;Nb为0.40~1.30%;Mo为0.30~0.50%;Fe为77.46~81.06%;在原有的430不锈钢的基础上加入Ni、Nb和Mo,通过Ni、Nb和Mo的加入使该毛坯材料具有较好的韧性、硬度和耐腐蚀性能,硬度和耐腐蚀性符合夹持类或牵开类手术器械的要求,增长了使用寿命,改良了工艺,适用于自动化生产,缩短了生产周期,降低了企业的运营成本。
本发明公开了一种钕铁硼磁体的高剩磁制备工艺,包括:在混粗粉过程中,添加液体粉末改善剂,所述液体粉末改善剂为由正己烷和葵酸甲酯混合而成,其中,正己烷和葵酸甲酯的质量比为50~20:1。本发明所述的钕铁硼磁体的高剩磁制备工艺采用液体粉末改善剂,该液体粉末改善剂由正己烷和葵酸甲酯混合而成,其中,正己烷和葵酸甲酯的质量比为50~20:1,该液体粉末改善剂对粉末的包覆能力更好,对粉末的流动性作用更强,且低温加热即可完全脱出,从而改善粉末流动性,改善磁体夹杂,产品耐腐蚀性由7‑8级升到9‑10级,剩磁提高150‑350Gs,节约成本0.005‑0.02元/kg,节约时间5‑10S/kg。
本发明属于生物医学工程技术领域,具体涉及一种被动中耳植入装置及其制备方法,该准备方法步骤如下:将纯钛粉与粘结剂混合均匀并造粒,进行注射成形处理得到注射件;然后依次进行水脱粘、干燥、热脱粘及预烧处理;再进行烧结处理和后处理,最终得到所述被动中耳植入装置。该方法采用Micro MIM工艺,在细纯钛粉注射料制备、模具辅助填充设计、脱粘工艺以及烧结工艺等方面做出了调整改进,制备的被动中耳植入装置具备骨传导性以及金属钛优异的力学性能、耐腐蚀性、生物相容性,同时具有与人体骨组织相匹配的强度、韧性、弹性模量和抗疲劳性能,能克服现有技术的成本高昂、效率低下的不足。
本发明公开了一种高耐磨、低静电SiC炉灶陶瓷面板及其制备方法,利用边框将SiC陶瓷块拼装制成,每块SiC陶瓷块之间依次用导线连接,SiC陶瓷块经配料、成型和烧结后,再经冷加工制成。产品密度高、气孔率低、耐磨性好,并且具有导电性,能够静电吸附颗粒,延长使用寿命。
本发明公开了一种多孔钛及钛合金材料的制备方法,具体工艺步骤如下:步骤1,将粗制钛粉或钛合金粉体与无水乙醇混合,加入球磨助剂,真空球磨、真空干燥;步骤2,将步骤1制备得到的钛粉或钛合金粉体与氢化钛颗粒混合;步骤3,以尿素颗粒为造孔剂,将造孔剂加入步骤2得到的混合物中;步骤4,将步骤3得到的混合均匀粉末放入模具内压制成设定形状的生坯备用;步骤5,再将所得到的压坯在真空炉中进行热处理,即制得多孔金属构件。该方法工艺简单易行,工艺稳定性强。
一种基于稀土离子掺杂钒酸钇纳米晶的发光微晶玻璃的制备方法,首先采用溶剂热法合成稀土离子掺杂的钒酸钇纳米晶粒,清洗干净后分散于水或乙醇中;然后制备细小玻璃颗粒,球磨、烘干后形成玻璃粉;称取适量的玻璃粉,将其与含有稀土离子掺杂钒酸钇纳米晶的水或乙醇溶液混合、均匀搅拌、烘干后,稀土离子掺杂钒酸钇纳米晶将均匀地分散在玻璃粉中然后成型;最后,经高温烧结形成含稀土离子掺杂钒酸钇纳米晶的发光微晶玻璃。本发明一步制备成高性能稀土发光微晶玻璃,将在照明、新能源等技术领域有重要的应用价值。
一种高硅钢薄带材的粉末轧制制造方法,本发明采用还原Fe粉,Si含量为70~80%的高纯硅铁粉,形成Fe‑4.5~6.7%Si混合粉体。通过粉末轧制形成多孔板坯,将粉末轧制板坯在1070~1170℃进行真空或还原气氛保护烧结,使Fe粉颗粒实现不完全连接,而Si与Fe实现部分合金化,形成多孔、具有可压缩性的未完全合金化的高硅钢坯料。经多次冷轧、不完全烧结,最后在1270~1340℃温度范围内真空或还原气氛保护烧结,实现高硅钢的均质合金化,获得含4.5~6.7%Si的0.1~0.5mm厚,密度7.35~7.48g/cm3的高硅钢带材。
本发明提供了一种粉末冶金奥氏体不锈钢的制备方法,包括以下步骤:将奥氏体不锈钢粉、氧化钇粉和润滑剂混合,得到混合粉体,然后依次经压制和烧结,得到粉末冶金奥氏体不锈钢;所述氧化钇粉的质量为混合粉体质量的0.2~0.4%。本发明以奥氏体不锈钢粉和氧化钇粉为原料,通过添加一定量的氧化钇粉作为稳定剂,可以在高温条件下减少析出相,同时可以弥散分布在基体内,实现基体晶粒细化,进而降低孔隙率,改善了夹杂物的形状尺寸,减少了钢中夹杂物的数量,有效的减少了点蚀诱发源的数量;同时,钢中稀土氧化物能有效地脱硫、降低钢中夹杂物数量并使夹杂物改性,从而增强了钢基体的耐蚀性。
本发明涉及一种改善制氟阳极性能的方法,属于制氟阳极材料技术领域。本发明的改善制氟阳极性能的方法包括:a.将煅后石油焦、煤沥青和碳纤维混合后预热或者分别预热后混合,得混合物料;b.将所述混合物料加热混捏,得到糊料;c.将所述糊料成型得到生胚;d.将所述生胚进行冷等静压,得炭胚;冷等静压的压力为20~100MPa,时间为5~15mins;e.将炭胚进行热处理与时效处理即得制氟阳极。本发明的方法将冷等静压技术与添加碳纤维耦合法相结合,制备得到的低电阻率制氟阳极的硬度高,电阻率低,综合性能很好,有助于提高其使用寿命及电解效率。
本发明属于永磁材料技术领域,具体涉及一种烧结稀土永磁体的制备方法及旋转式HDDR炉,该方法熔炼稀土永磁合金薄带,进行HDDR处理。之后进行气流磨粉碎、磁场成型、烧结;由于HDDR后的主相内部分裂出许多细小的主相,副相均匀的包覆的主相外面,烧结后并保持这一状态。因此可以较低成本得到高剩磁、高矫顽力的双高产品。或用廉价的Ce、La替代Pr、Nd,得到中等性能,但价格低廉的磁体。
本发明公开了一种新型Cu‑纳米WC复合材料的制备方法,属于Cu‑WC复合材料制备技术领域,本发明利用真空感应熔炼法,先将铜粉和WC按照按一定比例混合均匀,然后松装烧结,将松装烧结的Cu‑纳米WC坯与无氧铜块按照重量比Cu:WC=99:1至50:50进行配比进行真空感应熔炼,最后冷却,本发明是利用真空感应熔炼法制备Cu‑WC材料,因此气体含量低,并且适用于制备WC含量≤50%的Cu‑WC复合材料,且由于是铸态组织,因此其具有接近100%的致密度,并且原材料采用纳米级的WC粉,通过纳米强化作用,可以极大的提高该种材料的强度。
本发明涉及金属陶瓷用固溶合金粉末的材料技术领域,具体涉及一种金属陶瓷用固溶合金粉末的材料及制备方法。本发明提供的金属陶瓷固溶合金粉末的主要化学式为(Ti,M)(C,N),M为主要活性金属元素W,Mo,Mn,Ta,Nb,Cr,V,Zr,Re中的任一种或多种组成;其包括以下组分:主要活性金属M为10~50%,Ct为8.5~12.5%,N为8.5~12.5%,Cf≤0.35%,其余含量为合金元素Ti。本发明提供的制备方法克服了传统采用单相化合物粉末作原料加入时在烧结过程中需要高烧结温度以及在液相烧结固溶体形成阶段所引起的金属陶瓷合金粘结骨相不完整的缺点,其活性元素在原料中作为固溶体添加能有效地强化最终金属陶瓷性能,该生产工艺简便易于控制,适用于工业化生产。
本发明涉及一种内置粉煤灰漂珠闭孔泡沫镁合金的制备方法,它是选用粉煤灰漂珠为造孔材料,用配制好的镁合金粉为基体材料,经筛分后获得不同孔径的粉煤灰漂珠为造孔材料,经过混粉工艺,烧结工艺制得的内置粉煤灰漂珠闭孔泡沫镁合金,用该方法制备的泡沫材料压缩强度为用现有制备方法获得的泡沫镁合金高2倍以上,制备的泡沫镁合金中的泡孔大小均匀,孔的尺寸容易控制,能够满足性能要求,制备方法简便易行,制备效率高,成本低。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!