本发明涉及一种骨组织工程梯度多孔镁基金属构件体,其特征在于:至少包括内核预制体、位于内核预制体外围且呈环状的外层预制体及位于内核预制体和外层预制体之间且呈环状的中间层预制体,所述内核预制体、中间层预制体及外层预制体均具有孔隙,且三者的孔隙均相连通,并且所述内核预制体、中间层预制体及外层预制体的孔隙率依次减小。本发明还涉及一种制备方法。在植入人体后能满足不同时期对降解速率和力学性能之间动态匹配的不同需求。
本发明涉及金属陶瓷复合材料技术领域,具体涉及一种陶瓷钢及其制造方法;按重量百分比计,包括以下组分:Al 3.2‑3.8%、Cr 0.8‑1.2%、Co 0.14‑0.18%、Ce 0.5‑0.8%、Y 0.25‑0.28%、Nd 0.05‑0.08%、Mn 1.2‑1.6%、W 0.24‑0.28%、SiC 3.4‑3.8%、SiN41.8‑2.2%、CaF20.25‑0.29%,余量为Fe及不可避免的杂质;本发明提供了一种陶瓷钢及其制造方法,本发明各元素组分间分布、作用均衡,组织结构致密均匀,金相转化平衡度高,所制造的陶瓷钢具有良好的强度和硬度,耐磨性、耐高温性和耐腐蚀性更好,而且本发明制备工艺简单、生产成本低廉、安全性高、处理方便、产品质量高,具有较好的市场应用价值。
本发明涉及一种适用于手机中框MIM不锈钢喂料及其制品制备方法,包括以下各组分,不锈钢混合粉末料和成型剂,所述不锈钢混合粉末与成型剂两者按重量比90:10至92:8的比例来配制;所述的不锈钢混合粉末料包括不锈钢综合粉末和碳化硅晶须,所述的不锈钢综合粉末为水雾化工艺生产的树叶状粉末与水雾化工艺生产球形状粉末组成本发明的优点是:通过对原材料进行不同形状规格与成分金属粉末的组合,再针对这种组合,搭配一个合理组分的高分子成型剂,让材料达到一个流动性好,不易变形,光泽度好硬度高的性能。
一种热等静压低温烧结制备高磁性烧结钕铁硼的方法,属于稀土磁性材料技术领域。本发明将烧结钕铁硼磁粉进行半致密化烧结,致密度为85%~95%;再将粘度为100~500mpa.s的含重稀土化合物的悬浊液涂覆在半致密化烧结钕铁硼周围,再进行真空玻璃封管,采用热等静压700~900℃低温烧结、400~500℃回火,制备得到高密度高磁性的烧结钕铁硼磁体。Dy2S3、Dy2O3、Tb2O3、DyF3或DyH3等涂层与半致密烧结钕铁硼磁体之间存在较好的附着力,在热等静压低温烧结过程中,重稀土元素沿着晶界和孔隙进行扩散,在各个方向的气体压力下,扩散速率更快,有效地提高了扩散深度和扩散均匀性;同时,有效提高了磁体的烧结密度,细化晶粒尺寸。
本发明涉及一种应用于超高温感应加热的发热材料及其制备方法,属于发热材料领域。本发明的发热材料,各组分质量百分比为:二硅化钼粉20~85%;二硼化锆粉5~70%;碳化硅粉2~20%;粘结剂1~10%;增塑剂1~10%;润滑剂1~10%;水5~20%。本发明发热材料的制备方法为,将二硅化钼粉、二硼化锆粉、碳化硅粉和粘结剂加入球磨机中,与无水乙醇共混;将共混后的泥浆经干燥得到粉料过筛;增塑剂和润滑剂与水混合后加入过筛后的粉料中,再用练泥机练泥成泥料;泥料经陈腐后采用真空挤出工艺成型;挤出成型的生坯经干燥、脱脂处理后,在1600~1900℃条件下烧结1~3小时,得到目标产品。本发明制得的超高温感应发热材料在氧化性气氛中的最高使用温度可高达1800~1900℃。
本发明涉及一种无基体全粉末超薄金刚石锯片,其胎体由粉末和金刚石通过粉末冶金方法制得。粉末含有:铜粉,占总质量的35‑55%;钴粉,占总质量的8‑12%;锡粉,占总质量的8‑12%;镍粉,占总质量的2‑4%;钛粉,占总质量的1‑3%;铬粉,占总质量的1‑3%;钼粉,占总质量的1‑3%;铁粉,占总质量的5‑20%;钨粉,占总质量的1‑10%;银粉,占总质量的0.5‑1.5%;硅粉,占总质量的0.3‑0.5%;磷粉,占总质量的0.2‑0.3%;碳粉,占总质量的0.2‑0.3%;金刚石体积浓度为2%~60%,颗粒度为0.04~0.25mm。由于本发明采用了以上技术方案,本发明具有以下优点:一是无基体,大大减少了基体的浪费;二是其厚度可达0.3‑1.0㎜;三是刀头高度达锯片外径的45%,产品使用寿命长,切割效率高,锯缝小,节省能源和资源。
本发明为氢碎直接添加铝粉和铈铁混合物生产烧结钕铁硼的工艺,与现有技术相比,本发明直接利用原料来源最丰富价格最低的稀土合金铈铁(CeFe,Ce70%)作为辅合金,把铈铁直接氢碎并按一定比例混合能提高烧结钕铁硼矫顽力的纳米铝粉,再按双合金工艺和母合金混合后成型烧结制成烧结钕铁硼永磁体。使用本发明工艺提高了烧结钕铁硼性能,并降低了成本,为生产工艺带来便利。
本发明涉及一种用于超临界水蒸发壁的多孔材料,其特征在于:所述多孔采用由单一奥氏体金属粉末烧结制成,所述多孔材料的平均孔径为2~10μm,孔隙率在10%到35%。本发明还涉及一种用于超临界水蒸发壁的多孔材料的制备方法。本发明制得的蒸发壁多孔材料具有极好的强度和刚度,能够满足蒸发壁和反应器的连接和装配要求,并且具有合适的孔径和流通量来确保完整水膜的形成同时又不会过度降低反应器内部的温度而造成热量大量损失。
本发明是为了提供一种Rh‑Ru合金材料,Rh是这种合金材料的主要组成部份,还有1.0~20.0wt%的Ru,以及0~5.0wt%的指定元素X:Re、Ta、Nb、Ti、Zr、Cr、Ni、Al,还可能有0.05~1.5wt%的稀土元素Y。在汽车火花塞的中心电极和侧电极中至少有一种材料是这种Rh‑Ru合金。本发明的Rh‑Ru基高温合金材料可有效降低贵金属电极材料的高温氧化蒸发现象,提高Rh合金的高温持久强度,增加电极寿命,并能改善合金的加工性能。本发明的Rh‑Ru基高温合金材料,还可在燃气火花塞、航空工业电器接触点、工业电镀的电极、热电偶、火箭发动机零件、玻璃制造等领域应用。
本发明涉及一种定向组织陶瓷基复合材料零件的制造方法,先制作两端开口的零件树脂外壳;通过单体、交联剂和陶瓷粉末配制悬浮浆料并向零件树脂外壳中完成浇注,通过设置温度场使得悬浮浆料中的溶剂沿着温度梯度的方向冷却凝固定向结晶,悬浮浆料完全凝固后进行真空冷冻干燥,再在900~1200℃保温,去除有机物,得到陶瓷零件多孔体;使用CVD/CVI方法在陶瓷零件多孔体内部纤维表面上沉积SiC界面层;结合先驱体浸渍裂解工艺将沉积有SiC界面层的陶瓷零件多孔体致密化,得到定向组织陶瓷基复合材料零件。本发明通过低温下控制溶剂结晶,以及快速成型、纤维增强和先驱体浸渍裂解等工艺步骤,形成定向组织,能够有效增强和增韧。
本发明属于稀土永磁材料领域,特别提供了一种主相晶粒间强去磁耦合烧结钕铁硼的制备方法。其特征是在钕铁硼合金粉中添加适量的硫粉和低熔点稀土-铜铝合金粉混合均匀,经过磁场压型并烧结致密化,再经热处理后得到产品。本发明适用于任何成分主晶相为2:14:1的钕铁硼磁体,其优点是,烧结过程中硫受热气化实现对磁粉颗粒与晶粒的气相隔离,同时低熔点稀土-铜铝合金与2:14:1相具有良好的润湿性,制备的烧结钕铁硼磁体主相晶粒被完全隔开,从而获得高矫顽力。
一种粉末冶金凸轮的制备方法,步骤:材料成分为碳:0.2~1.5%,铜:0~4%,镍:0~2%,钼:0~11%,铬:0~18%,钨:0~12%,钒:0~10%,不超过2%不可避免的杂质,铁:余量,上述为质量百分比;将上述原料混合成混合粉,加入0.1~1wt%的润滑剂;然后压制成密度为6.25~7.4g/cm3凸轮生坯;将凸轮生坯1000℃~1350℃中烧结,时间为5~180分钟;在非氧化性气氛中退火,退火温度为750~1080℃,保温时间5~200分钟;通过挤压成型机或精整压机改装的压机上挤压,挤压变形量在直径方向上大于2%;热处理和加工即为成品。本发明制作工艺简单,制得凸轮精度高、表面光洁度好,降低了生产成本,提高生产效率,与传统粉末冶金工艺相比,产品的密度更高,基本实现表面致密化。
本发明公开了一种氧化铝纤维增强石膏陶瓷基复合材料及其制备方法,其特征在于,由下列重量份的原料制成:石膏50-70、硫酸钡10-12、改性氧化铝纤维10-15、铝粉3-5、过硫酸铵0.01-0.03、苯乙烯4-6、过氧化二异丙苯0.1-0.3、羟丙基纤维素1-2、聚乙烯蜡1-3、瓷土8-10、乙醇20-30、去离子水30-50;本发明添加的经过抗氧化处理的氧化铝纤维作为陶瓷的增强相具有增强陶瓷韧性、力学性能、耐磨性、硬度和耐高温的特性,添加的硫酸钡在高温煅烧下不变色,使陶瓷白度增强,密度均匀,光泽性好,表面平滑的作用。
一种钻探用金刚石复合片基体制备方法及复合片基体,将与聚晶金刚石层相结合的硬质合金基体分层两层,其中一层为与聚晶金刚石层相结合的上基体层,另一层为下基体层;硬质合金上基体层与硬质合金下基体层通过压制烧结结合成一个整体;为保证聚晶金刚石层界面与硬质合金基体结合可靠,硬质合金上基体层采用高含钴量配方,同时为了增加硬质合金基体后部的硬度和耐磨性,硬质合金下基体层采用低含钴量配方,使得硬质合金上基体层的钴含量高于硬质合金下基体层的钴含量,且通过控制硬质合金上基体层与硬质合金下基体层的厚度和碳化钨材料的颗粒大小,使得硬质合金表面基体的整体硬度和耐磨性提高。
一种利用块状烧结钕铁硼加工废料制备高性能再生烧结钕铁硼磁体的方法,属于磁性材料技术领域。本发明采用稀土氢化钕纳米粉末掺杂技术再生烧结钕铁硼加工废料制备高性能烧结NdFeB永磁。本发明步骤为:氢爆和气流磨工艺制备NdFeB粉末;物理气相沉积技术制备氢化钕纳米粉末;将两种粉末混合,磁场取向并压制成型;压坯在不同温度下进行脱氢处理,烧结及热处理,获得烧结磁体。采用本发明制备的再生磁体各项磁性能可以回复到原始磁体水平。本发明方法工艺流程短,成本能耗低,节约资源。
一种利用块状烧结钕铁硼加工废料制备高温稳定性再生烧结钕铁硼磁体的方法,属于磁性材料技术领域。本发明采用稀土氢化铽纳米粉末掺杂技术再生烧结钕铁硼加工废料制备高性能烧结NdFeB永磁。本发明步骤为:氢爆和气流磨工艺制备NdFeB粉末;物理气相沉积技术制备氢化钕纳米粉末;将两种粉末混合,磁场取向并压制成型;压坯在不同温度下进行脱氢处理,烧结及热处理,获得烧结磁体。采用本发明制备的再生磁体具有超高矫顽力而表现出较好的高温稳定性,而剩磁和磁能积接近原始磁体水平。本发明方法工艺流程短,成本能耗低,节约资源。
一种污水处理用碳化硅复合零价铁多孔陶瓷及制备方法,按质量份数计,首先将碳化硅微粉60~90份、零价铁粉5~25份、玻璃粉1~5份、碳粉3~20、石墨1~8份、乙二醇0.1~0.5份、聚丙烯酸铵0.1~0.5份、聚乙烯醇2~10份以及水混合均匀,然后喷雾造粒,再制造坯体,最后在氮气保护下,在1350~1400℃下烧结1小时后降至室温,得到污水处理用碳化硅复合零价铁多孔陶瓷。该陶瓷复合了零价铁,零价铁由于具有低毒、廉价、易操作而且对环境友好不会产生二次污染等优点。本发明工艺简单,成本低廉,可规模化生产和应用于实际污水处理项目,克服了现有技术中处理效果不明显、不彻底、造成二次污染的问题。
本发明属于硬质合金制造领域,特别是一种双晶梯度硬质合金刀具材料及其制备方法。本发明采用碳化钨、碳化钛、钴、碳化钒、碳化铬、聚乙烯吡咯烷酮为原料,梯度层包括对称的5层,每层均含有粗晶碳化钨和细晶碳化钨,自表及里,粗晶碳化钨和细晶碳化钨比例增大,碳化钛比例减小,粘结相比例增大。制备方法包括:混合料球磨→干燥过筛→压制成型→真空热压烧结。本发明制备方法设备投资小,方便操作,材料利用率高,适于工业化生产;所制备产品具有满足“双高”(高耐磨性、高韧性)要求的表面,尤其适用于金属的断续车削和铣削。
本发明一种高工作温度的电机用烧结钕铁硼磁瓦的制备方法,采用真空速凝熔炼炉制得钕铁硼合金片,氢碎得粗粉,加入润滑剂,导入氧进行气流磨磨成细粉,加防氧化剂,并进行取向成型及等静压烧结得瓦形毛坯,对瓦形毛坯进行切割成小段,对切割面进行除脂处理后粘接固化,再磨出瓦形弦宽和粘接后的高度方向,进行瓦片切割,再成型磨,电镀前处理,并进行电镀、钝化处理或喷涂有机物涂层,制得钕铁硼瓦片磁体。本发明通过将瓦形磁体非取向方向采用多段粘接的方式,显著提升了瓦片磁体的Pc值,使得瓦片磁体的高温抗减磁特性获得显著提高,可以降低高工作温度电机用钕铁硼磁体的重稀土镝铽用量,大幅降低了电机用高性能钕铁硼瓦片产品的材料成本。
本发明公开了一种新型高温抗氧化多孔材料的制备方法。将Ni、Al、Si、Cr粉末按一定比例均匀混合,其中Al、Si、Cr占总成分的30~50wt%;再将混合粉末冷压成形获得生坯;将生坯置于1x10?2~10?4Pa的真空炉中,先以5~10℃/min的速度从室温升至250~400℃保温1.5?2h;再以1~10℃/min的速度升温至500~680℃保温2~6h后升温至1100~1200℃保温1~4h;最后随炉冷却至室温,即得到所发明的多孔材料。本发明制得的多孔材料孔隙丰富均匀,孔径可控在40~92μm,抗高温氧化性能优异,强度及韧性较好,且制备成本低,制备工艺简单,对高温过滤领域有着重要意义。
本发明涉及一种纳米多孔铜散热片的制备方法,属于金属材料领域。对随着计算机的功能愈发强大,对散热片散热的要求越来越高,现有合金散热片很难满足电脑散热的要求,纯铜散热片存在重量过大,加工难度大的缺点,且易超过CPU对散热片重量的限制的问题,本发明提供了一种纳米多孔铜散热片的制备方法,本发明采用硝酸铜为原料,与丁二酸,四乙基溴化铵,水合肼反应制备纳米铜粉,并将三聚氰胺制备的石墨结构氮化碳作为开孔剂,铜纤维作为增强剂与其共混,在散热片模具中加压成型,制得生坯,并高温烧结成型,再用金相砂纸对多孔铜表面磨平至光亮无划痕,抛光后,制得纳米多孔铜散热片。
本发明公开了一种电池模组用电芯连接板及其制备方法和用途。所述电芯连接板包括金属基体和分散于所述金属基体中的石墨烯。本发明的电芯连接件中,石墨烯发挥超导作用,少量添加不仅能够提高电芯连接件的导热系数和电导率,还能够提升强度并满足电芯连接件的轻量化需求,用于电池模组中电芯和电芯的连接,可以提高模组的性能,对于轻量化电池模组的发展具有重要意义。
本发明属于磁性材料技术领域,具体为一种降低改性磁粉吸附能的高性能烧结钕铁硼制备方法,解决了背景技术中的技术问题,该制备方法为将Nd‑Fe‑B磁粉混入质量百分比K wt%的REαM(1‑α)‑H(x)改性磁粉,进行加热混料,混合好的粉末制得毛坯;将第三步中得到的毛坯进行烧结和热处理,即制得烧结钕铁硼磁体。通过本方法能够降低超细改性磁粉的吸附能,使得烧结钕铁硼磁体显微结构中能够形成良好的晶界富稀土相包覆主相的壳核结构,通过机械混粉加热阶段,减弱改性磁粉之间的范德华力,从而使得改性磁粉间的吸附力降低,有利于改性磁粉均匀分散。
本发明提供一种小尺寸内流道玻璃器件基于3D打印的一体成型制备方法,配制含树脂染色剂的光敏玻璃浆料,采用光固化3D打印技术打印得到小尺寸内流道玻璃器件的素坯件,素坯件通过热处理工艺获得小尺寸内流道玻璃器件。本发明采用添加有机染色剂的方式来吸收紫外光,降低光固化打印过程中的固化厚度,避免过固化现象,从而能避免由于过固化而导致的封盖内流道被堵塞的问题,因此一体成型小尺寸三维内流道玻璃器件,无需键合拼接,工艺得到简化,可更方便的成型复杂结构流道,可打印流道宽度达0.5mm,有效解决了过固化现象引起的封盖内流道堵塞难以成型的问题。
本发明适用于金属表面加工技术领域,提供了一种提升耐腐蚀性能的金属件表面加工工艺,包括采用喷涂设备将底漆喷涂在基体表面,形成底漆层;采用喷涂设备将耐腐蚀喷涂用粉末熔解后喷射至底漆层的表面,形成包覆在底漆表面的耐腐蚀涂层;并且所述粉末包括碳化物和金属单质;所述碳化物包括TiC和WC,还包括TaC和NbC中的一种或两种,所述金属单质包括Co、Ni和Cr。本发明通过采用底漆和耐腐蚀涂层作为两层涂层并依次涂覆在金属件表面,底漆和耐腐蚀涂层均具有高耐腐蚀性能,还采用金属单质Co、Ni和Cr作为喷涂原料,从而制备具有很好的耐锌液、铝液及锌铝合金熔液粘附,耐金属腐蚀,抗氧化,抗热冲击、耐高温等性能的金属件表面涂层。
一种高亮度高热稳定性黄绿光荧光陶瓷及其制备方法,其化学式为(Lu0.8‑x‑yLixCeyGd0.2)3Al5O12,其中x、y分别为Li+和Ce3+掺杂Lu3+位的摩尔比,0.001≤x≤0.008,0.005≤y≤0.015。制备方法:称取Lu2O3、Gd2O3、Al2O3、CeO2和Li2O作为原料粉体,将原料粉体、MgO和无水乙醇混合球磨干燥后过筛得到混合粉体,再经过第一次煅烧后放入模具中经干压成型得到素坯;将素坯置于真空炉中烧结后并在空气中退火、双面抛光后得到荧光陶瓷。本发明制备得到的陶瓷热稳定性高、热导率高,该方法使用原料种类少,烧结温度低,能有效实现陶瓷发光亮度的提升。
本发明公开了一种梯度多孔陶瓷预制体、铝合金增韧陶瓷复合材料及制备。该梯度多孔陶瓷预制体包括依次设置的第一多孔陶瓷预制体层、第二多孔陶瓷预制体层、第三多孔陶瓷预制体层、第四多孔陶瓷预制体层和第五多孔陶瓷预制体层;所述第一多孔陶瓷预制体层的气孔率、第二多孔陶瓷预制体层的气孔率、第三多孔陶瓷预制体层的气孔率、第四多孔陶瓷预制体层的气孔率和第五多孔陶瓷预制体层的气孔率依次增大。本发明的梯度多孔陶瓷预制体通过五层叠设的结构,具有良好的耐蚀性、高比模量、高比强度和高耐磨性,同时在高温环境下能表现出良好的性能,符合安全钳楔块的性能需求,在电梯安全钳楔块制造领域具有广阔的应用前景。
本发明公开了一种采用Isobam体系凝胶注模成型钛合金的方法,属于金属材料成型和制造工艺技术领域。该方法将Isobam凝胶注模体系用于钛合金的制备,同时加入KMT‑310作为分散剂。本发明可高效解决浆料的均匀性和金属坯体内部致密性不一致的问题,且设备简单,工艺过程可控,极大地提高了浆料的均匀性,分散性,制备出的高质量浆料有利于得到结构均匀性好,强度高的钛合金材料。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!