本发明公开了一种降低氢氧化稀土中硫酸根含量的方法。该方法包括以下步骤:将含硫酸根的氢氧化稀土加入含有苹果酸、乙酰丙酮、乳酸、乙酸、丁二酸、羟基乙酸、丙二酸中的一种或多种有机物的配位溶液中进行搅拌脱硫,其中配位溶液的pH为7-10,然后固液分离、水洗、干燥,得到硫酸根含量小于0.5%的氢氧化稀土。该方法采用引入与硫酸根竞争配位的方法去除硫酸根离子,过程简单易控,脱硫的效果明显,而且进入到氢氧化稀土中的有机物可通过焙烧的方式去除,最终不影响稀土氧化物产品的纯度。
一种稀土分离用萃取剂的在线皂化与除Ca2+的方法,首先,通过在皂化反应槽中连续给入萃取剂、固体皂化剂、和补充水进行在线顺流皂化反应,完成萃取剂的皂化。然后,皂化萃取剂直接进入除Ca2+槽,与连续给入的稀土料液进行逆流交换反应,完成皂化萃取剂的除Ca2+。含Ca2+的稀土余液返回皂化槽,不进入稀土萃取过程。负载萃取剂进入萃取分离体系经反萃再生后返回皂化槽皂化,萃取剂在萃取体系中闭路自循环。本发明使用价廉易得的氧化钙、氢氧化钙、和碳酸钙为原料,不仅降低了生产成本,而且避免了氨氮废水对环境的污染。采用直接给入固体皂化剂的在线皂化方法,使皂化工艺简单连续,节省了萃取剂的周转和与皂化相配套的设备、厂房。
本发明公开了一种电还原-P507萃取分离法回收废钕铁硼中稀土及钴的方法,包括电还原、P507萃取分离RE3+与Fe2+、Co2+,沉淀回收钴,负载有机相直接进料分馏萃取获得单一稀土产品。其主要技术特征是采用电还原方法将酸分解完全的废旧钕铁硼分解液中Fe3+还原成Fe2+,在密闭萃取槽中,用惰性气体保护,P507萃取剂分馏萃取分离RE3+与Fe2+、Co2+,负载有机相直接进料进行稀土分离,获单一稀土产品,萃余液通过加入沉淀剂将钴沉淀与Fe2+分离,沉钴余液用于制备涂料铁红或硫酸亚铁。本发明方法中间环节少,工艺流程简单,消耗化工材料少,回收成本低,避免了原生产工艺中将钴随废水直接排放,对环境造成污染。
本发明公开了一种净化钨酸钠溶液的方法,该方法包括:在50-100℃的条件下,调节所述钨酸钠溶液的pH值,以便使硅沉淀,得到含有所述硅沉淀的第一钨酸钠混合溶液;向所述第一钨酸钠混合溶液中加入镁盐,以便得到第二钨酸钠混合溶液;在50摄氏度以上的条件下,并不断搅拌,以便得到含有沉淀的第三钨酸钠混合溶液;以及将所述第三钨酸钠混合溶液进行过滤,得到滤液为净化后的钨酸钠溶液。本发明的方法利用固体盐类进行净化处理,既可以综合去除氟、磷、砷、硅等杂质,又不会带入杂质阴离子和阳离子而影钨酸离子交换和产品纯度。通过处理后,钨酸钠溶液的氟、磷、砷、硅等杂质含量大幅降低。
本发明公开了一种应用于离子型稀土矿浸矿过程的助浸剂及其浸矿方法。该助浸剂为水溶性的表面活性剂,采用将浸取剂和助浸剂混合配置成的浸矿液浸取离子吸附型稀土矿,能够形成稳定的稀土络合物,且有利于土壤表面的润湿,起到强化浸取的效果。同时浸矿液中助浸剂的加入能有效地抑制粘土水化膨胀和微粒运移,起到了土壤防止膨胀的效果。该助浸剂在离子吸附型稀土矿浸矿过程的使用,提高了稀土浸出率,减少了浸取剂的用量,减小了生产成本、降低了氨氮污染;并且起到了防止土壤膨胀的作用,减小山体滑坡发生的概率。
本发明涉及一种从铜阳极泥高砷净化锑渣中浸出锑的方法,先将粒度小于2mm的高砷净化锑渣进行磨矿,磨矿后进行预处理,加入氢氧化钠和高锰酸钾,控制浸出温度、浸出时间、液固比和搅拌速度,反应结束后进行固液分离,得到富含砷的预处理液和预处理渣;然后在预处理渣中加入氢氧化钠和硫化钠,控制浸出温度、浸出时间、液固比和搅拌速度,反应结束后进行固液分离,得到富含锑的浸出液和浸出渣。本发明具有锑浸出率高,锑浸出液中含砷较少,工艺简单,处理成本低等优点。
本发明公开了一种提高离子吸附型稀土矿浸出率的浸取方法,在浸取剂中加入助浸剂配制成浸取液后对离子吸附型稀土矿进行浸取;或者先采用助浸剂溶液对离子吸附型稀土矿进行淋洗,收集其淋洗液后再加入浸取剂配制成浸取液对经助浸剂淋洗的离子吸附型稀土矿进行浸取;所述助浸剂为丁二酸、丁二酸钠、丁二酸钾、丁二酸铵中的一种或多种的混合。本发明通过采用丁二酸、丁二酸钠、丁二酸钾、丁二酸铵中的一种或多种作为助浸剂,在保持矿土中黏土颗粒团聚性、减少浸出过程中黏土矿物颗粒的迁移的同时能适度增加矿土的渗透性能,提高浸取速率。
本发明公开了一种硫酸镍的制备方法,包括如下步骤:提供镍原料;将所述镍原料与硫酸混合,充分反应后过滤并保留第一滤液;向所述第一滤液中加入硫化钠,充分反应后过滤并保留第二滤液;向所述第二滤液中加入双氧水,充分反应后过滤并保留第三滤液;向所述第三滤液中先加入硫酸锰直至Mn2+的浓度为0.2g/L以上,接着加入可溶性过硫酸盐,充分反应后过滤并保留第四滤液;向所述第四滤液中加入磷酸和碳酸氢铵,充分反应后过滤并保留第五滤液;向所述第五滤液中加入氟化钠,充分反应后过滤并保留第六滤液;第六滤液蒸发浓缩后,冷却结晶,得到硫酸镍。这种制备硫酸镍的制备方法通过一系列的化学除杂方法除去杂质元素,制得的硫酸镍纯度较高。
本发明公开了一种从锌氧压浸出渣中回收单质硫的工艺,包括以下步骤:(1)对浸出渣进行预处理得到溶硫粉料;(2)将步骤(1)中得到的溶硫粉料与硫浸出剂混合,加热、搅拌进行浸出处理得到滤液A与滤渣A;所述硫浸出剂为C10‑C18的烷烃中的任一种或多种的混合物;(3)对步骤(2)中的滤液A进行结晶处理,收集结晶即得到单质硫。本发明的从锌氧压浸出渣中回收单质硫的工艺中采用的硫浸出剂为C10‑C18的烷烃中的任一种或多种的混合物,相较于现有有机溶剂,具有反应速度快,反应时间短等效果,大大提高了提硫的效率,还可以循环利用,节省原料。
本发明提供一种用于草酸和盐酸的混合酸中草酸定量检测的方法,包括以下步骤:(1)配制标准工作溶液和待测样品溶液;(2)采用总有机碳分析仪对步骤(1)所述的标准工作溶液进行检测,根据检测结果制作标准曲线;(3)采用总有机碳分析仪对步骤(1)所述的待测样品溶液进行检测,并根据步骤(2)得到的标准曲线推算得到所述待测样品溶液中总有机碳的质量含量,换算后得到所述待测样品溶液中草酸的质量含量;所述标准工作溶液中含有草酸根和盐酸;所述待测样品溶液中含有草酸根和盐酸。该方法简单方便,可重复性好,测量结果准确度高,能够实现对不同浓度和比例的草酸和盐酸组成的混合酸中草酸的定量检测,具有普适性。
本发明公开了一种高La稀土氧化物预分离Ce、Sm、Eu、Gd、Dy的方法,包括如下步骤:把高La稀土氧化物缓慢加入至Na2CO3溶液中,搅拌过程中缓慢通入CO2气体,快速过滤,得到滤渣和浸出液;滤渣为La2O3;在室温下往浸出液中缓慢通入CO2并慢速搅拌,使pH降到8.0后停止通气与搅拌,快速过滤,得到沉淀物;得到的沉淀物放入热风烘箱内,在65‑75℃下烘24h后,冷却至室温,用水溶解后过滤,得到的滤液为Na2CO3溶液,得到的不溶固相为Ce、Sm、Eu、Gd、Dy的碳酸稀土复盐。本发明方法根据中稀土氧化物与重稀土氧化物在碳酸钠水溶液中溶解‑络合性质的差异,优先使中稀土氧化物溶解在碳酸钠溶液中,从而达到预分离的目的,以减少中重稀土元素萃取分组与萃取分离的级数。
一种废动力电池回收有色金属除杂的方法,包括除渣料液准备、料液除杂、碱浸出除铝、铝酸钠中沉淀氢氧化铝几个步骤,它是利用铝具有两性的特点,通过一定浓度的氢氧化钠溶液对除杂产生的氢氧化铝和有色金属混合渣进行浸出,使得氢氧化铝进入溶液而有色金属氢氧化物为沉淀达到分离,这样的固液分离后渣相无需洗涤直接回用到料液除杂或酸分解工序使用,NaAlO2液体可通过沉淀方式生产Al(OH)3产品,既减少了生产环节又提高了有色金属回收率,同时产生了Al(OH)3产品,实现了无渣化。
本发明公开了一种沉淀分离含钙稀土溶液中稀土的方法,具体是以稀土浓度为0.1‑1.5 mol/L,钙离子浓度为0.1‑1.0mol/L,且稀土和钙的摩尔比0.7≤X≤8.0的含钙稀土溶液为对象,采用碳酸氢盐沉淀含钙稀土溶液中的稀土,根据溶液中稀土和钙摩尔比的大小,调节控制沉淀过程中温度、pH、加料速度等条件,从而调节碳酸氢根在溶液中的浓度,以控制碳酸氢钙的稳定性和碳酸稀土的过饱和度,使稀土离子沉淀形成晶形碳酸稀土,而钙离子形成可溶性碳酸氢钙,从而实现含钙稀土溶液中稀土和钙的高效分离,获得纯度大于98%的稀土氧化物。
本发明公开了一种废旧磷酸铁锂电池正极材料还原熔炼回收有价金属的方法,包括以下步骤:将废旧磷酸铁锂电池正极材料和废铅膏混合,再加入还原剂进行还原熔炼处理得到还原渣和金属铅,对还原渣进行水浸提锂处理回收锂,收集剩下渣相回收铁。本发明利用废旧磷酸铁锂电池正极材料协同废铅膏经一步还原熔炼就可得到还原渣和金属铅,还原过程锂发生转型以碳酸锂形式存在,后续可采用碳化水浸提锂进行回收,产出的硫化亚铁可作为炼铁原料进行循环利用,利用废‑废协同作用,实现了资源的综合回收利用。
本发明公开了一种机械化学法回收退役锂电池中有价金属的方法,包括以下步骤:包括以下步骤:将退役锂电池进行放电处理;将放电后的锂电池进行拆解;采用热解法去除正极材料中的粘结剂,得到正极活性粉末;将正极活性粉末与氮化硅混合后放入球磨机中进行机械化学反应;球磨结束后,用水浸出处理球磨产物,得到锂提取液和锂提取渣;对锂提取渣中有价金属通过氢氧化钠溶液浸出处理与二氧化硅分离,浸出完成后过滤分离,除锂外的有价金属富集于滤渣中,滤液为硅酸钠溶液。本发明以氮化硅为添加剂球磨处理退役锂电池,球磨发生的是固相反应,无腐蚀酸使用,环境污染小。
本发明公开了一种氢氧化物沉淀法制备低硫稀土氧化物的方法,主要包括以下步骤:1、往硫酸稀土溶液中加入含有苹果酸、乙酰丙酮等可溶性有机物,混合配置成沉淀原液;2、往沉淀原液中加入碱性沉淀剂进行沉淀反应,所述沉淀剂的用量为沉淀所述硫酸稀土溶液中的稀土的理论用量的105%~120%;3、固液分离,获得氢氧化稀土沉淀和沉淀母液,氢氧化稀土沉淀经过600~900℃煅烧得到低硫稀土氧化物。该方法采用引入与硫酸根竞争配位的方法防止硫酸根离子的化学吸附,同时可形成类均相沉淀体系,有利于形成晶型沉淀,过程简单易控,进入到氢氧化稀土中的有机物可通过焙烧的方式去除,最终获得低硫的稀土氧化物。
本发明公开了一种离子吸附型稀土矿的浸矿方法。该方法通过先采用浸取剂溶液对离子吸附型稀土矿进行第一次浸取,此时大部分易解吸的水合稀土离子与浸取剂溶液中的阳离子进行交换解吸,稀土离子进入第一次稀土浸出液中;然后再采用助浸剂溶液或助浸剂和浸取剂的混合溶液对离子吸附型稀土矿进行第二次浸取,此时助浸剂的存在能与离子吸附型稀土矿中难解吸的水合稀土离子进行络合,促进难浸稀土的解吸,得到第二次稀土浸出液。该浸矿方法简单易控,提高了稀土浸出率,减少了浸取剂和助浸剂的用量,同时减小了生产成本、降低了氨氮污染。
本发明公开了一种锌电积用铅合金阳极表面预处理方法,该方法分两个步骤:首先,采用含氟硼酸铅电解液体系在铅合金阳极板表面构建具有高比表面积的“杨桃状”Pb结构;然后,将具有“杨桃状”Pb结构的铅合金阳极放置在乙二醇‑氯化胆碱‑氟化铵溶液中进行阳极氧化处理。通过该预处理方法,铅合金阳极表面可形成一层致密氧化膜层。预处理铅合金阳极在长时间电积过程中表面氧化膜层与基底结合强度高,氧化膜层内部稳定性好,阳极泥生成量显著减少。
本发明涉及一种精准除杂分步沉淀回收无铵稀土母液中稀土的方法,采用无铵沉淀剂氧化钙(镁)进行除杂沉淀,将除杂沉淀过程分三步,第一步除杂,即添加合适沉淀剂,精准控制溶液pH值,既沉淀铝又不损失稀土;第二步沉淀得到稀土产品,即添加少量沉淀剂,使部分稀土沉淀成为稀土产品;第三步过量沉淀,即添加过量沉淀剂,使溶液中的稀土完全沉淀,得到具一定碱性杂质的稀土混合物称为中矿;将中矿返回继续溶解沉淀,构成只有沉淀产品和液体返回利用的闭路。本发明解决了稀土矿山氨氮污染问题,同时将中矿返回至前一作业段,既可以保证稀土的充分回收,又可以为前一作业段提供碱性物质,降低整个作业中沉淀剂氧化钙或氧化镁的用量,节约了生产成本。
本发明公开了分步沉淀回收离子吸附型稀土矿浸出液中稀土的方法。该方法首先在经除杂处理后的离子吸附型稀土矿浸出液中加入含镁碱性化合物进行沉淀反应,然后再加入含钙碱性化合物进行沉淀反应,固液分离后得到稀土沉淀富集物和沉淀母液;该方法所采用原料廉价易得且过程简单易控,降低了生产成本,革除了离子吸附型稀土矿浸出液沉淀过程中氨氮污染的问题,同时通过控制含镁/钙碱性化合物的加入量,使沉淀剂尽可能完全溶解,提高稀土沉淀富集物的纯度,并且浸出液中的硫酸根离子与钙离子可形成少量结晶性能良好的硫酸钙沉淀,可诱导氢氧化稀土的结晶,也可解决氢氧化稀土不易形成晶型沉淀的问题。
本发明公开了一种氧化水解沉淀分离铈和钙镁的方法,即往含铈、钙或/和镁的料液中并流加入氧化剂和碱溶液,控制反应过程中的pH为4.0‑6.0,反应温度为70‑90℃,然后经固液分离获得晶型稀土沉淀产物和滤液;氧化剂的加入将含铈、钙或/和镁的料液中的三价铈变成四价铈,而碱性浆液的加入用来调节反应pH,通过控制反应的pH和温度使四价铈离子进行氧化水解沉淀。pH和加料速度的控制可以实现铈离子的缓慢类均相水解,而高温下水解反应有利于稀土沉淀产物的晶型控制;最终晶型稀土沉淀产物在300℃‑600℃下焙烧后可得纯度为98wt.%以上的二氧化铈。
本发明涉及一种钕铁硼废料中有价元素的萃取回收方法,所述回收方法包括如下步骤:(1)将钕铁硼废料的浸出液进行第一萃取得到,第一有机相和第一水相,所述第一有机相经第一反萃得到含铁溶液;(2)将步骤(1)得到的所述第一水相进行第二萃取,得到第二水相和第二有机相,所述第二有机相经第二反萃得到含钕溶液。通过对回收流程的合理设计,采用分步的萃取流程实现了钕铁硼废料中有价组分的回收,除铁效果好,钕的回收率和纯度高,对有价金属进行了全回收;有机相可循环使用,生产成本低,环境友好。
一种利用锰废液生产硫酸锰的新工艺,包括以下步骤:加入Na2S,除去锰废液中的重金属离子,除铁铝:将上述滤后液加碳酸盐或碳酸氢盐调整溶液pH到3.5~5.5,使铁铝形成氢氧化物沉淀过滤除去,控制溶液温度50~85℃,搅拌反应,趁热过滤,滤渣洗涤后排出废弃;P204锰钙分离:除铁铝后液进入P204系统进行锰钙萃取分离,杂质经过洗涤留在萃余液中,钙经过洗涤、反萃得到氯化钙反萃液,由4~6N硫酸溶液反萃,硫酸锰液由反萃段排出去浓缩蒸发;硫酸锰液的浓缩蒸发、冷却、脱水、包装:硫酸锰液进入蒸发器加热进行浓缩脱水,使其结晶析出,然后进行过滤脱水,使晶体硫酸锰和母液分离,母液返回浓缩。
本发明是一种对离子型稀土原矿进行加压洗提 的工艺及装置。洗提槽内的厚稀土原矿料层,在加压 条件下洗提剂中的NH4+或Na+与吸附于高岭石等粘 土矿物上的稀土离子发生交换反应,达到加速洗提过 程目的。洗提槽由耐压槽体、锥形密封盖和带孔的活 动底板等十多个零部件构成。本发明可使洗提周期 由渗滤洗提的24~72小时缩短到4小时左右,且稀 土收率可提高10~25%。本发明尤其适应于渗滤性 能差的稀土原矿的洗提。
本发明公开了一种从稀土料液中络合分离除铝的方法,采用含磷有机配体3‑羟基苯基磷酰丙酸、2‑[羟基(苯基)磷酰基]乙酸及其盐中的一种作为络合分离剂对稀土料液进行处理,将稀土溶液中所含的稀土离子以沉淀的形式从稀土溶液中分离出来。通过对络合分离剂的用量、反应温度、溶液的pH值、反应时间的控制可以实现稀土料液中稀土的沉淀率达90%以上,而铝离子的沉淀率不超过10%。与现有的技术相比,络合分离法从稀土溶液中分离铝的方法对设备要求低,操作简单,所得沉淀物易过滤,回收产物通过再生可以循环使用络合沉淀剂,实现闭路循环,减少对环境的影响并降低处理成本。
本发明实施例所述的稀土矿浸取剂,包括硫代硫酸铵、硫酸铵和氯化铵。稀土离子被三种铵盐中的NH4+交换解吸,由于硫代硫酸铵、硫酸铵和氯化铵的正协同效应,使得本发明实施例所述的稀土矿浸取剂不但可以提高稀土离子的浸出率、降低浸出液中铝铁杂质离子含量,而且药剂成本低,能够用于半风化离子吸附型稀土矿的开发利用。本发明实施例所述的稀土浸取工艺,工艺简单,能够实现稀土离子的高浸取率、高选择性地浸取,适合工业规模使用。
本发明公开了一种硫酸盐无酸浸取钴中间品的方法,该方法旨在解决钴中间品浸出过程中需加入无机酸和还原剂,易产生气体污染,后续还需对酸性浸出液进行中和回调pH,导致酸碱消耗量大,且会产生氨氮或钠的污染物,同时其过滤困难、作业效率低、生产成本高,而且含硫酸亚铁的钴浸出液在除铁过程中辅料消耗量大等技术问题。该方法利用含硫酸亚铁的溶液对钴中间品进行浸出,再固液分离,将钴和铜等有价元素留在滤液中,将铁和硅等杂质元素留在滤渣中。该方法无需使用硫酸等无机酸和还原剂便可浸出钴中间品,从而彻底消除了二氧化硫污染环境的情况,同时使用含硫酸亚铁的钴浸出液进行浸出,不仅避免碱的消耗,而且还实现了钴中间品的浸出,一举两得。
本发明提出了一种钨酸钠溶液处理方法,包括:(1)将钨酸钠溶液调节为酸性,将所述钨酸钠溶液与酸性树脂混合,以得到第一混合液;(2)对所述第一混合液进行超声和搅拌,以得到第二混合液;(3)对所述第二混合液进行过滤,以得到钠盐溶液。由此,该方法可直接对生产得到的钨酸钠溶液进行树脂交换,无需对钨酸钠溶液进行稀释,由于在处理过程中引入了超声和搅拌,可提高树脂对钨酸根的吸附率,降低钠盐溶液中钨酸根的浓度,使钨酸根的浓度降低到1g/L以下,同时,交换后得到的钠盐溶液可通过钡盐制碱技术进行二次处理,无需再进行废水处理,减少废水的排放量。
本发明公开了处理白钨矿的方法。该方法包括:(1)从待处理白钨矿中选择高钙低品位矿和中钙中品位矿,所述高钙低品位矿中的钨含量低于所述中钙中品位矿、钙含量高于所述中钙中品位矿。(2)将所述高钙低品位矿与酸混合并进行酸解,以便得到钨酸和酸解母液;(3)将所述中钙中品位矿与碱混合并进行碱解,以便得到碱解母液;(4)将所述钨酸与所述碱解母液混合,以便得到中和液;(5)将所述中和液进行离子交换处理,以便得到钨酸铵溶液和离子交换后液。该方法采用酸‑碱联合冶炼工艺处理低品位白钨矿,可显著降低工艺中的碱用量,并提高钨的回收率,具有显著的经济效益和环境效益。
中冶有色为您提供最新的江西赣州有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!