本发明公开了一种从废旧磷酸铁锂电池中选择性浸出锂的方法,涉及电池回收技术领域,所述浸出方法具体包括以下步骤:S1:预处理;S2:碱浸;S3:湿法球磨;S4:选择性浸出。本发明回收方法简单,操作方便,通过湿法球磨产生摩擦、剪切等机械力,有效降低了锂的活化能、增强了其反应活性,改善了锂的浸出特性,提高了锂的回收率,回收率可达98%以上,且本发明浸出方法中强酸和强碱的用量大大减少,生产成本较低,同时减少了对环境及人体的危害,节能环保效果明显,解决了现有技术中锂回收方法回收率低,生产成本高及回收过程中易对环境以及人体健康易造成危害的问题。
本发明涉及一种废旧锂离子电池极片的处理方法和废旧锂离子电池的处理方法,将有机溶液和待处理的废旧锂离子电池极片混合后,热解,筛分,获得集流体和极粉;其中,所述有机溶液为有机物的纯溶液或水溶液,所述有机物为有机酸、有机碱、有机胺、醇中的一种或几种。本发明中,正负极粉与金属铜铝的回收率可达99%以上,有效解决了目前废旧锂离子电池回收利用领域正负极粉脱除困难的问题,并且可以有效地降低热解温度,缩短热解时间,提升废旧锂离子电池热解环节的效率。
本发明涉及一种方形锂电池及方形锂电池的气密检测方法。方形锂电池包括电池本体,电池本体上开设有注液孔以及与注液孔连通的注液口;密封塞,与注液孔密封配合;补焊片,与注液口焊接密封;气袋,气袋内部包含被检气体,气袋设置于密封塞与补焊片之间;其中,在补焊片焊接密封于注液口时,提供使气袋熔破的热量,以使气袋释放被检气体至密封塞与补焊片之间。本发明提供的方向锂电池及方形锂电池的气密检测方法,通过在密封塞与补焊片之间放置气袋,利用补焊片焊接时的热量熔破气袋,从而释放被检气体至密封塞与补焊片之间,可检测补焊片是否完成了对注液口的密封,从而提高方形锂电池的使用可靠性及安全性。
本发明涉及锂离子电池领域,公开了一种新型锂离子电池组及其制备方法。机构包括:绝缘壳体,在所述绝缘壳体的底部设置有第一极耳槽、第二极耳槽,在所述绝缘壳体内还设置有前后相对的第一滑块、第二滑块,所述第一滑块、第二滑块的背面分别通过弹簧与所述壳体的内壁连接,所述第一滑块、第二滑块可相互靠近或远离滑动,在所述绝缘壳体顶部设置有可开合的阀门,在所述第一滑块、第二滑块之间的空间内填充有导电珠体,当所述导电珠体填充在所述第一滑块、第二滑块之间的空间内时,任意相邻的所述导电珠体之间互相紧密接触,采用该技术方案有利于方便锂离子电池组的维修以及拆装。
本发明公开了一种基于化学转换反应锂离子电池正极材料BiPO4的制备方法及用于制作的锂离子电池。本发明具有如下的技术效果,提出了基于化学转换反应锂离子电池正极材料BiPO4的制备方法及用于制作的锂离子电池,所述正极材料BiPO4包括含结晶水的六方型、未含结晶水的低温单晶型及高温单晶型三种晶型。正极材料BiPO4具有3.1V左右的理论输出电压,265.5mAh?g-1的理论放电比容量,830.5Whkg-1的理论质量能量密度,及5253.1Wh?L-1的体积能量密度,0.1C倍率下首次放电比容量均大于240mAhg-1。且制备工艺简单易控,原材料成本低廉,环境友好,可进行大规模产业化生产,是一类很有潜力的新型正极材料。将制得的三种不同晶型的正极材料BiPO4应用于锂离子电池中,具有很好的应用前景。
一种锂离子电池正极材料磷酸氧钒锂的制备方法,包括以下步骤:(1)将锂源、钒源、磷源按照LiOVPO4的原子配比混合于水中,加入还原剂,得混合液;(2)将所得混合液置于60-100℃恒温水浴中搅拌;(3)调节pH至6-9;(4)转移到真空冷冻干燥机中,在温度为-10℃~-50℃、真空度为5Pa~30Pa下冷冻干燥24~72h,得磷酸氧钒锂前驱体;(5)将步骤(4)所得磷酸氧钒锂前驱体取出,研磨均匀、压片后置于管式烧结炉中,于非还原气氛下300℃~600℃烧结1-30h,冷却到室温,得磷酸氧钒锂正极材料。本发明通过真空冷冻干燥的技术制备得到LiVOPO4正极材料,制备过程简单,易操作。
本发明公开了一种锂离子全固态电池用硼掺杂&亚磷酸盐包覆镍基正极材料及其制备方法。利用硼化合物熔点低、沸点高的特点,促进包覆元素在高镍正极材料表面均匀分布,形成连续完整的包覆层,即锂离子导体亚磷酸盐层(LLP),同时硼经过高温扩散进入材料体相掺杂起到稳定材料结构的作用。本发明的正极材料表面形成的亚磷酸盐包覆层能够有效的改善高镍正极材料和硫合物固态电解质之间的界面兼容性,避免了两者之间由于空间电荷层效应而导致的界面阻抗急剧增大,推进了高镍正极在锂离子硫基电解质全固态电池中的应用。
本发明公开了一种从含锂多金属混合溶液中高效回收锂的方法,包括以下步骤:(1)调节含锂多金属混合溶液的pH至3‑7,然后采用皂化有机相萃取,得到负载有机相和富锂萃余液;(2)所述负载有机相加酸反萃处理,得到反萃液和反萃有机相;所述反萃液根据其中金属离子种类及含量,选择性回收利用,反萃有机相经洗涤、皂化后返回到步骤(1)中再利用;(3)所述富锂萃余液经深度除油处理后进入双极膜电渗析系统,产出氢氧化锂溶液和酸溶液;(4)所述氢氧化锂溶液经蒸发浓缩,得到单水氢氧化锂粉料和浓缩母液。本发明的方法,实现酸碱的一次性投入、全流程闭路循环,生产运营成本低、过程自动化可控;采用本发明的方法,可使含锂多金属混合溶液中锂的回收率大于95%。
一种由废旧金属锂电池制备电池级碳酸锂的方法,包括以下步骤:步骤一、将废旧金属锂电池通过盐池放电完全;步骤二、将步骤一中放电后的废旧金属锂电池通过撕碎机撕碎;步骤三、将步骤二中撕碎后的废旧金属锂电池送入焙烧窑于600~1200℃温度下焙烧,然后送入振动筛分离得到料粉和铁壳,向料粉和铁壳按照1:1的固液比加入水或酸液,从而将料粉和铁壳中的锂浸出并得到含锂溶液,分离出石墨粉和铁壳作为副产品出售,向含锂溶液中加入氢氧化钠调节pH为10,然后过滤并向所得滤液中加入碳酸钠进行反应,反应完全后蒸发浓缩即得本发明中所述的电池级碳酸锂。通过本发明提供的方法可直接制备得到电池级碳酸锂,不仅减少了资源的浪费,而且保护了环境。
本发明提供了一种LNCM锰系三元锂离子电池电解液、锂电池及其制备方法。该电解液制备原料包括:电解液添加剂、锂盐和溶剂,电解液添加剂在电池电解液中的占比为1~10 wt%,电解液添加剂为碳酸亚乙烯酯、氟代碳酸乙烯酯和硼酸三甲酯的混合。电解液中,将介电常数高的EC和粘度低的DEC、EMC混合使用,满足了电解液工作温度范围、电导率等多方面的要求。通过减少高熔点溶剂EC(熔点35‑38℃)的含量,而增大低熔点的共溶剂DEC(熔点‑43℃)和EMC(熔点‑55℃)的含量,拓宽了电解液的工作温度范围。
本发明属于湿法冶金领域,公开了一种从含锂废水中回收锂的方法,包括如下步骤:(1)调节含锂废水的pH至酸性或中性;(2)先配制有机相,再皂化,加入含锂废水进行萃取,再分离出水相,即得含锂离子的负载有机相;所述调节含锂废水的pH的溶液为硫酸;所述有机相包括以下组分:萃取剂、协萃剂和稀释剂。本发明的组合萃取剂体系不需要加入三氯化铁作为共萃剂,避免Fe3+水解造成的乳化现象发生;本发明的组合萃取剂体系锂钠选择性好,负载量高,经4级逆流萃取,废水中的Li可以由3.7g/L降到0.126g/L,萃取率可以达到96.6%。
本发明属于锂离子电池材料回收技术领域,公开了一种磷酸铁锂废料中锂的回收方法及其应用,该方法包括以下步骤:(1)将磷酸铁锂废料加水制浆,磷酸铁锂浆料;(2)在磷酸铁锂浆料中加入可溶性铁盐,反应,过滤,得到含Li+、Fe2+的滤液和磷酸铁渣;(3)在滤液中加入氧化剂,过滤,得到含Li+、Fe3+的滤液和氢氧化铁;(4)将滤液与磷酸铁锂电池粉进行多级逆流循环浸出,得到锂溶液。本发明采用可溶性铁盐,可溶性的铁盐属于强酸弱碱盐,可加快磷酸铁锂转化,再结合氧化剂氧化,一次转化磷酸铁渣直回收率在98.5%左右,锂直收率在98.5%左右。
本发明公开了一种制备锂离子电池正极材料镍钴铝酸锂的方法,该方法包括以下步骤:(1)将镍钴金属盐水溶液、偏铝酸钠溶液、络合剂和沉淀剂混合,调节反应体系的pH值为9-12,然后保持搅拌、30-80℃下反应20-200小时,得到镍钴铝氢氧化物沉淀;(2)将镍钴铝氢氧化物沉淀用50-100℃纯水洗涤、干燥,筛选能过300目筛的部分,加入锂源,混合均匀后在600-1000℃下烧结,期间通入氧气,烧结5-50小时后得到镍钴铝酸锂。本发明的方法中,铝源采用偏铝酸钠,能使镍钴铝元素均匀形成共沉淀,使铝均匀分布在镍钴铝酸锂材料中,能提高材料电性能,尤其是循环性能。
本发明涉及一种利用乙醇从锂云母沉锂后液中回收钾钠盐的工艺,属于工业水处理技术领域。本发明包括矿石焙烧、水浸、净化、沉淀碳酸锂、沉锂母液与乙醇混合沉降、诱导结晶、晶浆离心分离、MVR蒸发分离醇水混合液等工艺步骤,本发明利用乙醇的盐析效应使硫酸钾和硫酸钾钠盐过饱和析出、而硫酸锂不析出的特点,通过添加不同体积的乙醇及硫酸钾晶种,实现了钾钠盐的分级回收以及乙醇、水的循环利用,具有能耗低、环保高效、易于工业化的优点。
本发明公开了一种盐湖卤水中镁/锂分离及富集锂的装置及方法,该装置包括电解槽,电解槽通过阴离子交换膜分隔成阳极室和阴极室,阳极室和阴极室内分别盛有不含Mg2+的电解质溶液和盐湖卤水;阴极室和阳极室内分别设置有阴极和阳极,阴极和阳极与电源相连。该方法为:制备涂覆有钼‑硫化合物的导电基体作为阴极,制备涂覆有LixMo6S8的导电基体作为阳极,在外电压的驱动下,使盐湖卤水中的Li+嵌入到Mo6S8中生成LixMo6S8,作为阳极的嵌锂态LixMo6S8将Li+释放到支持电解质溶液后,恢复为Mo6S8,更换新盐湖卤水,电极交换放置,重复操作。本发明能够实现锂与其他离子的分离,并获得富锂溶液。
本实用新型公开了一种锂离子电池拼接式层单元框架及其构成的锂离子电池模块,锂离子电池模块包括底板、顶板、多个层单元,层单元由拼接式层单元框架、软包锂离子电池、弹性调整垫、散热板组成,散热板冲有凹坑构成软包锂离子电池、弹性调整垫的容纳空间,散热板两端延设有凸耳,凸耳上设有通孔,多个散热板平行布置在拼接式层单元框架中,每一个散热板上设置的凸耳均夹装在拼接式层单元框架中的上端边框与下端边框之间,构成一个层单元,在底板与顶板之间叠置多个层单元,通过螺栓紧固定位。本实用新型模块结构紧凑,方便维修,容易扩展,实现电池单体的隔离,对电池起到保护作用,对提高电动汽车锂电池组使用寿命和能量密度具有显著的作用。
本发明公开了一种基于抗坏血酸的富锂锰基锂离子电池正极材料的改性方法,包括如下步骤:(1)将抗血酸溶于去离子水中,形成抗坏血酸溶液;(2)将需要改性的富锂锰基锂离子电池正极材料加入到所述步骤(1)后得到的抗坏血酸溶液中,进行加热搅拌处理,形成悬浊液;(3)将步骤(2)后得到的悬浊液进行过滤,洗涤,干燥,获得经抗坏血酸处理的正极材料粉体;(4)将步骤(3)后经抗坏血酸处理的正极材料粉体在空气中进行后续烧结处理,即获得改性的富锂锰基锂离子电池正极材料。该改性方法在改性过程中能够实现对富锂锰基锂离子电池正极材料体相微结构的调控,能够显著提高正极材料在循环过程中的稳定性和倍率性能。
一种锂离子电池正极极片,包括集流体和正极膜片,正极膜片由正极活性材料、导电剂与粘结剂组成,膜片的表层喷涂有机高分子物质层,其主要组成物为聚酰亚胺、聚偏氟乙烯、聚四氟乙烯、聚丙烯腈中的至少一种;该正极极片的制备包括:先将正极活性材料、导电剂、粘结剂混合加入有机溶剂中得到正极浆料;将正极浆料涂布在集流体上,烘干得到正极极片;将正极极片置于通风橱中的加热板上,在正极极片的表层喷涂可溶性有机高分子物质溶液,形成可溶性有机高分子物质层,再烘干得到锂离子电池正极极片。该正极极片可与负极、隔膜以及电解液组装成本发明的锂离子电池。本发明能适应高电压锂离子电池环境,并能提高锂离子电池的循环性能和倍率性能。
本发明公开了一种高容量的锂电池负极材料,其制备方法为首先通过水热反应制备好多孔Fe‑Sn‑La‑O‑B‑F初品,之后在多孔Fe‑Sn‑La‑O‑B‑F初品表面发生自由基聚合形成聚合物修饰的多孔Fe‑Sn‑La‑O‑B‑F,最后在氮气氛围下450‑550℃煅烧得到/F/B/Si/P共掺杂的碳层包覆的Fe‑Sn‑La‑O‑B‑F。本发明公开的容量高的锂电池负极材料制备价格低廉,能源密度大,电池容量高,循环寿命长,导电性好。
本发明涉及一种新型锂离子二次电池用正极材料—NbOx(x=1~2)。含有此活性物质的正极材料与负极为锂片制成的锂离子二次电池的特征在于其充放电电压平台分别为1.8V和1.6V,具有良好的充放电循环性能和环境友好无污染等特性。NbOx(x=1~2)是一种具有应用前景的高容量、高安全新型锂离子电池正极材料。
本发明提供一种高镍锂离子电池正极材料及其制备方法与锂离子电池,其中,方法包括:(1)通过混合或喷雾干燥的方法将金属氧化物包覆在电极材料表面,得到包覆电极材料;金属氧化物与电极材料的质量比为(0.1~2):100;(2)然后,将步骤(1)得到的包覆电极材料加入水中搅拌,包覆电极材料与水的质量比为(0.5~10):1;脱水,干燥,即得。本发明还提供上述方法制得的高镍锂离子电池正极材料及采用该正极材料的锂离子电池。本发明方法既有效降低层状高镍正极材料表面残碱,同时又能最大程度减少降碱过程对材料表面结构和循环性能的破坏;采用该方法制备的层状高镍正极材料残碱含量低、可逆容量高、循环性能优异。
本发明涉及一种表面活性剂辅助制备锂离子电池正极材料磷酸钒锂的方法。该方法包括以下步骤:将磷源和表面活性剂按照适当的比例球磨混合,之后再加入石蜡球磨,再次加入钒前驱体、锂源继续球磨。所得到的混合物在惰性气氛保护中于600~900℃的温度下加热,得到Li3V2(PO4)3纳米颗粒。本发明合成的Li3V2(PO4)3颗粒尺寸小,用于锂离子电池正极,充放电容量高,循环稳定性好,是锂离子电池理想的正极材料。
本方案提供一种废旧镍钴锰酸锂‑钛酸锂电池的回收方法,本方案在密闭设备中,采用低温加热的方式分离并收集废旧电池中的电解液,电池隔膜在低温加热条件下不会分解,有利于后续隔膜的回收利用,同时避免了高温加热产生大量氯化物、二恶英等有毒有害气体。本方案方案采用焙烧的方法,在后续只需用到少量酸就可以浸出镍钴锰锂和钛,不需要的金属铜、铁和铝留在废渣中,减少后续除铁、铝、铜杂质的工作量和原料用量,同时还减少了渣量。此外,采用本回收方法,钛和镍钴锰锂的分离率高,钛、镍、钴、锰、锂的回收率可以达到98.2%。
本发明提出一种双面不对称锂电池复合涂层隔膜、生产工艺及锂电池,提升陶瓷涂覆隔膜的耐高电压性能和热稳定性能,以及在高电压高能量密度的锂离子动力电池的应用性,提升锂离子动力电池的能量密度和安全性。所述一种双面不对称锂电池复合涂层隔膜,包括基体层1、上涂层2以及下涂层3;所述基体层1上具有微孔11,所述微孔11用于导通电解液中的离子;所述上涂层2包括涂覆在所述基体层1的一面的银纳米线层21和涂覆在所述银纳米线层21远离所述基体层1一面的离子导体涂层22;所述下涂层3包括涂覆在所述基体层1的另一面上的碳纳米管层31和涂覆在所述碳纳米管层31远离所述基体层1一面的陶瓷涂层32。
本发明公开了一种四氧化三钴的预处理方法,包括:先使含钛有机物与有机溶剂混溶得混合液;在搅拌条件下将四氧化三钴粉末加入混合液中形成悬浊液,在悬浊液中加入去离子水,再充分搅拌至形成均匀浆状流体物料,烘干,得到四氧化三钴复合物。将获得的四氧化三钴复合物、锂源及掺杂物进行充分混合,进行高温固相烧结和包覆高温处理,即得到高电压钴酸锂。本发明制得的高电压钴酸锂,其振实密度达3.0g/cm3以上,压实密度在4.2g/cm3以上,在2.8V~4.35V的范围内,1C首次放电克容量达164mAh/g以上,300周循环容量保持率为89%以上,具有加工性能好、振实密度高、循环性能好、比容量高等优点。
本发明公开了一种高容量锂离子电池硅基负极材料及其制备方法、锂离子电池,该材料包括纳米硅、石墨、有机物热解碳和氟化锂,制备过程为将纳米硅、石墨和热解碳有机物前驱体进行混合、干燥和真空烘烤,得到复合材料前驱体,然后将复合材料前驱体进行焙烧得到热解碳包覆的复合材料,再利用锂盐溶液和氟化物溶液在复合材料的表面原位反应生成氟化锂包覆层,即得高容量锂离子电池硅基负极材料。本发明通过在硅基复合材料表面原位生成氟化锂,有效改善了材料的界面特性,提高了材料在首次嵌锂过程中形成的固体电解质膜的致密性和稳定性,从而改善了材料的电化学性能,电池首次充放电效率在80%以上,50次充放电循环后的容量保持率在85%以上。
一种制备锂钛氧化物型锂离子筛吸附剂及其前躯体的制备方法,涉及一种用于从盐湖卤水、海水等液态锂资源中吸附富集锂的无机吸附剂的制备方法。其特征在于以二氧化钛和锂盐为原料,采用球磨机研磨,干燥,高温固相焙烧法制备出离子筛前躯体Li2TiO3;然后再经无机酸洗脱锂得到离子筛H2TiO3。本发明的方法工艺简单,获得的离子筛具有溶损小、吸附容量高的优点。
一种锂离子电池用钴酸锂正极材料,包括钴酸锂基体及表面的包覆层,金属氧化物均匀包覆在基体的外表面,纳米纤维素均匀分散在金属氧化物形成的包覆层中,纳米纤维素中心空心以形成电子传导的通道。该正极材料的制备包括以下步骤:将锂源、钴源和掺杂氧化物混合,烧结,粉碎;将粉碎后得到的物料与纳米纤维素按配比混合均匀,在惰性气体保护下烧结;将烧结后得到的物料与金属氧化物按配比混合均匀,在惰性气体保护下烧结,过筛得到锂离子电池用钴酸锂正极材料。本发明的正极材料具有高电压下循环寿命长、阻抗低、能量密度高等优点。
本发明公开了一种锂离子电池隔膜的制备方法、锂离子电池及其制备方法,包括以下步骤:(1)、配置具有粘结性的浆料;(2)、将步骤(1)的浆料通过喷射装置喷射到旋转的圆盘上,浆料从旋转状态的圆盘甩出流经调节区域至陶瓷隔膜的一侧或两侧,以形成分布均匀的浆料附着区和浆料非附着区,浆料附着在陶瓷隔膜表面的面密度为0.2g/m2~1g/m2;(3)、将步骤(2)的带有浆料的陶瓷隔膜进行涂布,烘干,获得锂离子电池隔膜。本发明的锂离子电池隔膜的制备方法,将浆料转移到旋转的圆盘上,圆盘将浆料均匀分散成小液滴甩向陶瓷隔膜表面,由于浆料为局部均匀附着,浆料非附着区给予锂电池极膨胀提供膨胀空间,防止锂电池极片受热膨胀与陶瓷隔膜发生错层。
本发明涉及锂电池技术领域,具体为一种水系粘结剂、锂离子电池负极材料及锂离子电池,所述水系粘结剂为聚苯乙烯磺酸锂‑丁二烯乳液,制备时将水、歧化松香酸钠、苯乙烯磺酸锂、引发剂、磷酸钠加入反应釜中,并降温抽真空使釜内真空度为‑0.1~‑0.08MPa,并通入丁二烯反应4~7h,加入叔十二碳硫醇,反应1~2h,加入终止剂,再继续搅拌反应0.5~1h,升温到20~30℃,调整釜内真空度为‑0.05~‑0.03MPa,继续搅拌反应0.5~1h,本发明所制备的负极材料在5C倍率的电流密度下,具有较好的循环稳定性,即使充放电1000次后仍保持较高的可逆容量,且容量保持率≥90%。
中冶有色为您提供最新的湖南有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!