本发明提供了一种LiNi0.5Mn1.5O4材料、其制备方法及锂离子电池。该方法采用水热法先制得极细的二氧化锰纳米线,再将二氧化锰纳米线前驱体与锂盐、镍盐按一定比例均匀混合,经过在空气中煅烧得到分布均匀的小尺寸的LiNi0.5Mn1.5O4纳米棒。本发明使用的原料价格低廉,不对环境造成污染,且工艺易于控制,适宜于大规模工业化生产。使用本发明制备的正极材料制成的锂离子电池的放电比能量在480Wh?Kg-1以上;充放电500次时,容量保持率及效率均保持在99%以上。
本发明公开了一种自散热式锂电池,包括壳体和安装在壳体内的多组锂电池本体,所述壳体的两侧壁上均固定连接有安装架,所述壳体下端均设有矩形的安装孔,所述安装孔内壁间转动连接有空心圆柱,所述空心圆柱侧壁内开设有环形储液腔。本发明通过设置蒸发液、冷却液、重力块、第一齿圈、第二齿圈、清洁条、温控片和电磁片,可以利用蒸发液吸收锂电池本体工作散发的热量,从而蒸发推动重力块移动,以实现空心圆柱的转动,并通过冷却液实现蒸发液的降温液化,实现空心圆柱的复位,持续地对锂电池本体散热,还可以将锂电池本体表面的灰尘擦除,并通过电磁片将灰尘转移至壳体外部,使锂电池表面保持清洁状态。
本发明公开了一种偏钛酸型锂离子筛吸附剂的制备方法及其产品与应用,包括以下步骤:将有机锂盐溶解于混合溶剂中,得到A液,将钛酸丁酯溶于溶剂中,得到B液,接着在搅拌条件下,将A液滴加至B液中,滴加完毕后,在设定温度下静置陈化,得到凝胶;将凝胶烘干后,研磨成粉末,然后在空气气氛下焙烧,焙烧完毕后,得到锂离子筛前驱体;将锂离子筛前驱体置于无机酸中进行搅拌解析,得到偏钛酸型锂离子筛吸附剂。本发明所使用的溶胶凝胶法过程温和、易于控制、能耗低,容易获得超细结构产品,在后续对离子筛需要制成交换柱或膜,具有独特得优势。本发明制备的偏钛酸型锂离子筛前驱体晶体结构完整、性能稳定,在酸浸解析过程中溶损率低。
本申请涉及电池材料领域,具体而言,涉及一种硅碳复合材料及其制备方法、锂电池负极。一种硅碳复合材料,硅碳复合材料包括内核和包覆于内核外的外壳;内核包括纳米硅材料,纳米硅的颗粒粒径为10‑500nm;外壳的材料包括碳和含锂固体电解质。本申请的硅碳复合材料具有碳的电子导电特性的同时还具有含锂固体电解质较高的锂离子传输速率,含锂固体电解质可以降低首次充放电过程中锂离子的消耗,从而提高其首次效率;碳材料以及固态电解质形成的外壳与内核具有较强的结合力,可以有效抑制在充放电过程中硅碳复合材料的膨胀。
本发明提供一种锂电池储能系统钝化灭火抑爆系统及方法,该锂电池储能系统钝化灭火抑爆系统包括定位火灾位置并发出火灾发生信号的火灾探测模块、灭火防复燃抑爆模块和控制灭火防复燃抑爆模块开启或关闭的控制模块,灭火防复燃抑爆模块用于快速扑灭明火并防止电池复燃爆炸,其包括用来存储灭火防复燃抑爆介质的存储装置,所述灭火防复燃抑爆介质为90%~99.8%的锂钝化气体和0.3%~10%的卤代烃气体的组合,所述锂钝化气体为氮气、二氧化碳中的一种或两种的组合。本发明采用灭火防复燃抑爆介质中卤代烃气体快速灭初期明火,迅速防止明火的蔓延和扩散;同时锂钝化介质钝化活性锂物质,吸热降温,抑制可燃易爆气体生成,同时实现高效灭火、防复燃和抑制爆炸三种功能。
本发明提供了一种提高冷变形铝锂合金强塑性的前处理方法,对所述铝锂合金进行退火处理,所述退火处理的温度为250~400℃,所述退火处理的时间为1~4h;所述铝锂合金为冷变形铝锂合金。本发明提供的前处理方法,通过对铝锂合金进行1~4h的温度为250~400℃的退火处理,改变铝锂合金的储能状态,调整合金再结晶晶粒形态与分布,达到适当的再结晶晶粒纵横比,并与时效过程中形成的强化相T1联合作用,实现对综合力学性能的提高,提高强度和塑韧性。
本发明公开了一种乙酰磺胺酸锂络合物,其结构通式为式(Ⅰ)或(Ⅱ)所示:
本发明属于锂金属电池领域,具体公开了一种锂金属阳极的制备方法,包括以下步骤:步骤(1):第一段电处理:采用集流体作为工作电极,金属锂作为对电极,在电解液A中以0.01~10mA/cm2的电流密度循环1‑100圈;所述的电解液A包含基础电解液和添加剂A;步骤(2):第二段电处理:将步骤(1)处理后的集流体继续作为工作电极,金属锂作为对电极,在电解液B中以0.01~20mA/cm2的电流密度下进行第二段电处理,处理后的工作电极即为所述的锂金属阳极;所述的电解液B包含基础电解液和添加剂B。本发明经过所述的二段电处理配合处理过程的添加剂以及电流密度等条件的协同控制,能够制得具有优异电化学稳定性和高容量、高循环稳定性的金属锂阳极。
本发明公开了一种综合利用钛铁矿制备磷酸铁锂前驱体的方法:将钛铁矿用酸浸出,过滤得滤液,在滤液中溶解一定量的其它铁源,使得混合溶液中FE的浓度为0.01-3MOL/L,TI与FE的摩尔比为0.0005-0.5;向混合溶液中加入适量的氧化剂,用碱的水溶液调节体系的PH=1.5-6.0,使得部分铁和某些杂质离子共沉淀,过滤,得到滤液;向滤液中加入沉淀剂(0.01-6MOL/L),并用碱的水溶液调节体系的PH=4.0-14.0,在10-90℃的搅拌反应器中反应10MIN-24H,过滤、洗涤,将沉淀于50-150℃下烘干后在空气中300-800℃下煅烧1-24H即得锂离子电池正极材料磷酸铁锂的前驱体—掺杂型金属元素的三氧化二铁。本发明具有原料来源广、工艺流程简单、产品质量好且稳定、成本低等特点。
一种提高锰酸锂正极材料性能的方法,包括以下步骤:(1)将粒度D50≤35μm的锰酸锂用蒸馏水洗涤除杂,然后脱水干燥,得除杂锰酸锂产品;(2)将除杂锰酸锂产品加入阴离子化合物,混匀后在400~600℃温度下恒温煅烧2~8h,然后继续升温到700~1000℃恒温煅烧7~20h,冷却至室温,研磨至粒度D50≤35μm,得锰酸锂正极材料。本发明方法制得的锰酸锂正极材料首次放电容量比容量可达125mAh/g;在55℃高温条件下,经过50次循环后,放电容量保持率达95%以上;本发明方法采取二次煅烧锰酸锂产品,能提高材料的容量,增强结构的稳定性,改善材料的性能;工艺简单,条件温和,适宜规模化工业化生产。
本发明公开一种锰酸锂正极材料及其制备方法,该制备方法包括以下步骤:取氟化物做粉碎处理;将粉碎处理后的氟化物、以及碳酸锂、锰源材料和硼酸混合得到混合物,将所述混合物进行一次烧结生成掺氟的锰酸锂;按比例称取所述掺氟的锰酸锂和氢氧化铝,进行二次烧结,生成所述锰酸锂正极材料,所述掺氟的锰酸锂和所述氢氧化铝的摩尔比为1:0.02~0.1。本发明提供的制备方法制备成本低制备方便,制备的碳酸锂正极材料循环性能好、容量高。
本发明公开了一种原位包覆锂离子电池正极材料的改性方法,包括下述的步骤:将经过干燥的包覆原料加入电解液中,并使包覆原料均匀分散在电解液中;将上述电解液与锂离子电池正极、负极组装成锂离子电池;将组装好的锂离子电池进行充放电循环,在充放电循环过程中包覆原料在正极材料表面原位形成一层包覆层。本发明将包覆原料加入锂离子电池电解液中均匀分散后,不需改变正负极制备工艺和电池组装工艺,不需改变锂离子电池充放电电压,可在原有的生产条件下生产,不用增加包覆工艺流程。只需在配制电解液时将添加剂加入其中,通过充放电循环便可实现原位包覆,并且对锂电池性能改善显著。
本发明公开了一种从含镍钴锰锂的混合溶液中高效分离有价金属的方法,包括以下步骤:(1)向装有底流的反应釜中同时加入含镍钴锰锂的混合溶液和碱溶液进行沉淀反应,保持加热和搅拌,控制含镍钴锰锂的混合溶液和碱溶液的添加速度以控制溶液的pH值为8‑14;(2)待含镍钴锰锂的混合溶液添加完毕后,继续添加碱溶液控制浆料的pH值稳定在10‑12,停止添加碱溶液,保温搅拌陈化反应;(3)将步骤(2)中陈化后的浆料进行固液分离得到沉淀渣与沉淀母液,所得沉淀渣为镍钴锰氢氧化物与氧化物的混合物,所得沉淀母液为富锂溶液。本发明的方法,含镍钴锰锂混合溶液中镍、钴、锰、锂的回收率均大于99%。
本发明提供一种含偏磷酸盐锂离子电池正极材料的制备方法。含偏磷酸盐锂离子电池正极材料的制备方法,包括:将含锂氧化物与磷酸二氢盐混合后在氧化性气氛中煅烧得到锂离子电池正极材料;含锂氧化物的通式为LiaNibCocMndX1‑b‑c‑dO2,其中X包括Al、Mg、Zr中一种或多种。本申请提供的含偏磷酸盐锂离子电池正极材料的制备方法,包覆效果好,包覆物杂质少,制备方法简单,使用其制得的锂离子电池,循环性能和安全性好。
磷酸铁锂铝碳复合正极材料及其制备方法。本发明的磷酸铁锂铝碳复合正极材料是在磷酸铁锂或掺杂有金属离子的磷酸铁锂晶格表面均匀包覆有铝单质和碳复合微粒构成的导电层,所述铝单质占复合材料重量百分比的0.1~10%;所述碳复合微粒占复合材料重量百分比的0.1~10%。本发明通过单质铝和碳复合微粒的包覆,有效地提高了磷酸铁锂材料的导电性。具有导电性能好,低温性能优越,材料结晶度好,颗粒细小,综合性能好等特点。本发明的制备方法根据金属铝熔点较低(660.4℃)的特点,对磷酸铁锂半成品在高温下进行熔融包覆,简化了磷酸铁锂的包覆工艺,且采用金属铝及碳包覆成本低廉,适合于工业化生产。
本实用新型涉及一种低电压锂离子电池,其正极集流体到负极集流体之间包括依次设置的正极材料层、电解质层和负极材料层,所述正极材料层中的活性材料为TiNb207材料或钛酸锂材料,所述电解质层为固态电解质层或由隔膜和液体电解质层组成液膜层,所述负极材料层中的活性材料为石墨材料、硅碳材料、硬碳材料、软碳材料或锂金属材料;所述低电压锂离子电池中TiNb207材料或钛酸锂材料的中值电压范围为1.5V~1.8V(vs.Li/Li+),该类材料晶体结构稳定,一直被用于锂离子电池的负极材料,在本实用新型中将其作为提供低电压长寿命的正极材料使用,不仅具有创新性和挑战性,同时使锂离子电池具有更好的循环寿命。
本发明属于锂硫电池电解液技术领域,具体公开了一种锂硫电池电解液,其包含导电锂盐、有机溶剂和添加剂A,所述添加剂A的结构式为X为卤素原子(F、Cl、Br、I)中的一种,其在电解液中的质量百分含量为0.1%~5wt%。所述添加剂A可在锂金属负极表面发生反应,反应形成的无机物LiX、Li2SO3Li2SO4和‑N=C=O电聚合形成的有机物改善了SEI膜的组分,提高了锂金属负极的界面稳定性,有效提升了电池的放电比容量和循环稳定性。
本发明公开了一种复合包覆剂、高电压钴酸锂及其制备方法,该复合包覆剂包括第一包覆剂和第二包覆剂,第一包覆剂为吸附锂离子的α?磷酸锆,第二包覆剂为吸附稀土离子的铵代α?磷酸锆。在第一包覆剂中,锂离子与α?磷酸锆的摩尔比为1:1~1 : 3,在第二包覆剂中,稀土离子与铵代α?磷酸锆的摩尔比为1:1~1 : 3。上述复合包覆剂,将α?磷酸锆进行吸锂处理,形成负载有大量锂离子的磷酸锆,一方面提高磷酸锆本身的电导率,另一方面形成层状嵌锂化合物,提高锂离子扩散速率。同时,将一部分α?磷酸锆进行负载稀土金属元素处理,为稀土金属的均匀包覆提供载体。上述复合包覆剂可在钴酸锂表面形成均匀包覆,并且导电性好。
本发明公开了一种含腈类化合物的电解液、其制备方法及锂二次电池,属于锂电池技术领域。本发明公开的一种含腈类化合物的电解液,该腈类化合物的结构式为R‑O‑CH2CH2CN,其中R基团可为碳链为1‑10的烷基、取代烷基、氟代烷基;该电解液的制备方法为将锂盐溶解到该腈类化合物和氟代碳酸乙烯酯的混合溶剂中,其中所述电解液的锂盐浓度为1 mol/L,氟代碳酸乙烯酯与腈类化合物的体积比为1∶(2~9);本发明还公开了使用该含腈类化合物电解液的锂二次电池,锂金属负极和高压正极在该含腈类化合物电解液体系中可分别表现出良好的循环性能和容量发挥。本发明的腈类化合物制备简单、对锂盐有较好的溶解性,用作锂二次电池电解液具有一定的应用前景。
本实用新型公开了一种锂电池生产线智能管理系统,包括:检测系统、分析系统和控制系统;其中:检测系统与分析系统电连接,对锂电池的生产过程进行实时参数检测,并将检测到的参数信息发送至分析系统;分析系统与控制系统电连接,接收所述参数信息,并对参数信息进行分析和计算,并将分析和计算后的信息发送至控制系统;控制系统根据接收到的分析系统发送的信息生成控制信号,对锂电池的生产设备进行实时控制。本实用新型能够实现对锂电池的生产线进行实时的检测和管理,进而提高锂电池生产的自动化水平和锂电池的质量。
本实用新型提供一种船舶用的可快速更换的锂电池组,它包括有控制电路,控制电路分别与稳压电源ECH、应急电源EGB连接,稳压电源ECH包括有电池架,电池架内设有锂电池放置层,锂电池放置层内设有若干个锂电池放置区,每个锂电池放置区下部两侧均固定有L形的导向轨道,两条导向轨道之间活动安装有电池箱,电池箱前侧侧壁上设有供电接口,每个锂电池放置区下方的水平支撑梁上均设有一组限位组件,竖向隔条上安装有接头组件,接头组件与供电接口配合使用,电池架顶部设有U形的冷却水管。本方案后的结构紧凑、使用效果好。
本实用新型公开了一种锂电池组的密封结构,包括锂电池本体,所述锂电池本体由锂电池壳体、铜合金极柱、铝合金极柱、密封层和电解液组成,所述锂电池本体的上端设有铜合金极柱和铝合金极柱,所述铜合金极柱和铝合金极柱的下侧设有密封层,所述密封层下侧设有电解液,所述密封层和极柱之间设有金属化陶瓷环,所述密封层包括盖板、减震层、保护板、吸水垫片和绝缘板,所述极柱通过金属化陶瓷环利用钎焊工艺与盖板焊接连接,所述锂电池本体的底部设有绝缘板。该实用新型采用陶瓷作为密封结构的主要材料,提高了密封结构的可靠性和寿命,ABS/PC合金树脂作减震层使其更具密封性、耐热性、抗震性、防漏电和强度阻燃性,环保无污染。
本实用新型公开了一种锂电池的厚度整形装置,包括顶进装置基座、挤压装置主体、挤压装置副体、顶进装置主体、挤压槽、挤压块,所述连接固定杆的顶部连接于限位块,所述连接固定杆远离所述顶进装置基座的一端连接于连接固定孔,所述挤压装置副体上靠近所述挤压装置主体的一侧设置有所述连接固定孔,所述挤压装置副体位于所述连接固定孔的一侧设置有所述挤压槽。本实用新型一种具有结构简单牢固并且安全可靠,方便操作,能够一次对多块锂电池的厚度进行整形,同时还能让整形完成后的锂电池厚度均匀,提高锂电池整形工作的效率,增加锂电池整形生产的效益,并保障锂电池整形工作的质量等优点的锂电池的厚度整形装置。
本发明公开了一种锂电池用磷酸铁的制备方法,所述磷酸铁包含由多个一次粒子凝聚的二次粒子,所述一次粒子呈中空多孔球形结构;二次粒子呈中空多孔类球形结构。本发明方案的磷酸铁呈独特的中空多孔类球形结构,以其为前驱体制得的磷酸铁锂具有多孔结构,增大了电解液与正极材料的接触面积,具有良好的浸润性;同时,多孔结构还具有降低离子扩散阻力等优点;中空结构,缩短了锂离子的扩散路径,同时还为锂离子的扩散提供了多种路径,解决了现有技术中的磷酸铁锂材料存在的扩散速度低、极化等问题,因此,利用该磷酸铁锂为前驱体可以制得具有良好性能的磷酸铁锂,尤其具有良好的低温性能。
本发明公开了一种锂电池回收用收集装置,包括基座、第一标签、不可回收箱、挂钩、保持架、投放口、遮挡棚、密封盖、锂电池收集口、锂电池回收箱、第二标签、把手、锁、可回收箱、废旧锂电池、电解液、正极、隔膜、负极、弹簧座、挡板、风机和隔板,保持架的上方设置有遮挡棚,投放口的内部靠近上方位置安装有挂钩,不可回收箱的右侧设置有可回收箱,本发明结构新颖、设计合理、制作成本低,可以对废旧锂电池进行分类回收,避免废旧锂电池对环境造成污染,同时对其他垃圾也能合理收集,增强功能的多样化,提高废旧锂电池回收效率,使得二次污染残留得到改善,节约资源,保护环境,适合广泛推广。
本申请涉及电池材料回收工艺技术领域,尤其涉及一种碳酸锂的回收方法和装置,该方法包括如下步骤:将废旧三元正极材料进行还原处理得到含单质镍和钴以及锂离子的还原料;向还原料中加水进行研磨得到浆料;将浆料进行第一过滤处理得到第一滤液和滤渣;将二氧化碳通入第一滤液中进行碳化沉锂处理得到沉锂浆料;将沉锂浆料进行第二过滤处理得到碳酸锂。本申请将废旧三元正极材料中的锂以碳酸锂的形式回收,不仅过程条件易于控制,用时短,耗能少,而且锂回收效率高,因此降低了回收成本,另外整个工艺过程不易产生废水,过程绿色环保,在废旧三元正极材料回收领域中具有很好的应用前景。
本发明公开了一种锂电池保护组件,涉及锂电池保护技术领域,包括保护壳,所述保护壳的底端连接有底座,且保护壳的外壁设置多组卡扣机构,所述保护壳的外壁位于卡扣机构的上方设置有延伸至保护壳内部的两组散热窗。本发明通过设置储热层、固定座机构和密封条,一号吸热环将锂电池工作时产生的热量通过导热芯传递至储热层的内部,储热层持续的对密封条传递热量,致使密封条受热体积变大,继而密封保护壳与底座之间的缝隙,防止外界灰尘和水分进入,二号吸热环吸收锂电池工作时产生的热量进入本体内部,且将热量传递至膨胀环的内部,膨胀环受热体检变大与锂电池外壁紧密贴合,避免外界的撞击力造成锂电池晃动的现象,且提高锂电池的使用寿命。
本发明公开一种高循环锂电多元正极材料NCM及其制备方法。本发明的多元正极材料包括表面改性层,其结构式为:LixNi1-y-zCoyMnzO2,1< x≦1.2,0≦y≦1/3,0≦z≦1/3;本发明的制备方法为将可溶性锂盐、多元前驱体与分散剂一起混合均匀后进行烧结,然后与包覆物质B混合后再次烧结,得到本发明的多元正极材料。本发明在反应的过程中加入分散剂,提高反应的均匀性,减少或消除反应过程中产生的氧缺陷。使用本发明制备的正极材料提高了材料的结构稳定性,同时减少了材料在电阻和放电电位之间的差异,可以使得二者在锂离子的脱嵌上较为达到一致,稳定了物质的结构,提高了材料的安全性和电化学性能。
中冶有色为您提供最新的湖南有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!