本发明公开了一种基于还原钠化焙烧物相转化的废锂离子电池粉末选择性提取有价金属方法,包括如下步骤:将废锂离子电池粉末与硫酸钠按照预定摩尔配比混合并球磨预定时间,得到混合料;将混合料置于电炉中在预定温度下进行还原钠化焙烧,所得还原钠化焙烧产物称为焙砂;将焙砂采用纯水浸出,获得含锂浸出液与转化渣;将转化渣采用硫酸浸出提取镍、钴、锰等有价金属。本发明流程简单、生产成本低、有价金属回收率高;本发明通过还原钠化焙烧使锂从电池粉末中脱嵌并形成水溶性硫酸锂,采用纯水浸出即可实现锂的优先选择性提取;同时镍钴锰等有价金属物相转化为易于酸浸的低价氧化物,为后续湿法浸出回收镍钴锰创造有利条件。
一种降低锰酸锂电池储存后容量衰减的正极材料,由下述组份组成:锰酸锂、Li2CO3、LiF或LiOH、纳米碳纤维;本发明具有组分简单合理、生产成本低、可有效提高锰酸锂电池的循环性能,提高锰酸锂电池储存后的容量恢复率,提高锰酸锂电池的能量密度和克容量;可实现工业化大生产,可与各种型号的锂电池配套,替代现有锰酸锂电池正极。
本发明提供了一种四氟化锆包覆的氟铝双掺杂锰酸锂正极材料及其制备方法,属于锂离子电池领域。本发明提供的四氟化锆包覆的氟铝双掺杂锰酸锂正极材料包括核芯和壳层;所述核芯具有式I所示化学组成:Li1+xAlyMn2‑yO4‑zFz式I,其中0≤x≤0.5,0<y≤0.3,0<z≤0.2;所述壳层为ZrF4。本发明采用Al和F为二元离子进行双掺杂改性锰酸锂,可提高锰酸锂的有序度,以稳定尖晶石结构,并抑制晶格畸变,并使用ZrF4包覆氟铝双掺杂改性的锰酸锂,能有效缓解容量衰减,且能够有效防止电解液的腐蚀,减少锰离子的溶解,所得正极材料不仅具有优异的倍率性能,同时还具有优异的循环稳定性。
本发明公开了用仲酰胺型溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用。萃取体系中含有仲酰胺由其单一化合物或两种以上的混合物组成,其中R1选自C2~C12烷基或含有单环结构的C3~C12环烷基,R2选自C1~C11烷基或含有单环结构的C3~C11环烷基,分子中碳原子总数为12~18,萃取体系的凝固点小于0℃。在有机相与卤水相体积比1~10:1、卤水密度为1.25~1.38g/cm3和温度0~50℃下进行单级或多级逆流萃取,反萃取得到低镁锂比水相,经过浓缩、除杂与制备,分别得到氯化锂、碳酸锂和氢氧化锂。本发明的仲酰胺分子结构简单,Li+多级萃取率高,锂镁分离系数大;用水反萃取,酸碱消耗大大减少;萃取分离工艺流程短,萃取体系溶损小,具有工业应用价值。
本发明公开了一种锂离子电池用电解液,包括:锂盐、碳酸酯类化合物、离子液体和添加剂,本发明通过优选电解液的溶质和溶剂,优化电解液中各个组分的配比以及加入离子液体和添加剂的方式,自控制调整电解液体系的粘度、凝固点、沸点、热稳定性和化学稳定性等方面的参数随电解液的使用环境的变化而保持微量变化,能够有效提高电解液对钛酸锂锂离子电池的正极极片和负极极片以及隔膜的浸润性及兼容性;另外,电解液中的离子液体还与添加剂之间产生协同效应,能够有效提高电解液的稳定性和功能性,从而改善钛酸锂锂离子电池的高倍率性能,解决多次循环后电池胀气的问题。
本发明公开了一种基于功能性聚合物的复合电解质膜,其主要由聚合物多孔隔膜、涂布在聚合物多孔隔膜一侧的全氟磺酰胺锂型单锂离子型聚合物电解质涂层和涂布在聚合物多孔隔膜另一侧的对锂负极具有稳定性和具有自由基捕捉功能的凝胶聚合物涂层组成;其制备方法包括:将全氟磺酰氟树脂与含有双吸电子基团的甲基锂反应,得到全氟磺酰胺锂聚合物;洗涤后溶解,将其涂布在准备的聚合物多孔隔膜的一侧,加入非溶剂二次成膜,再将对锂负极具有良好稳定性的含添加剂的凝胶聚合物体系,包括聚合物、溶剂、自由基湮灭效应添加剂及纳米填料的混合液涂布在复合膜的另一侧,干燥后制备得到复合电解质膜。本发明的复合电解质膜可提升锂硫二次电池的循环稳定性。
本发明属于湿法冶金技术领域,公开了一种高纯度锂盐的制备方法。本发明制备方法,其特征在于包括以下步骤:(1)将粗制碳酸锂加水制成浆料,升温;(2)向步骤(1)的浆料中加入浸提剂,反应;(3)将反应后体系过滤,滤液调节pH值至6.0‑8.0;(4)将调节后滤液蒸发结晶,过滤,烘干,得到高纯度锂盐。采用本发明的方法制备得到的锂盐产品中,氯化锂主含量达到99.8wt%以上,硫酸锂主含量达到99.9wt%以上,硝酸锂主含量达到99.7wt%以上,远高于电池级99.5wt%的标准。本发明工艺简单,流程短,设备要求低,具有很好的工业化可行性,能耗成本低廉,产品价值高,具有可观的经济效益。
本发明公开一种表面包覆硅酸铝锂和表层掺杂氟的高镍材料,包括硅酸铝锂包覆层和高镍三元材料中心层,包覆层厚度为1nm~200nm,并掺杂有氟元素。同时公开一种高镍材料的制备方法,包括混合,干燥过筛,加锂烧结,加氟热处理。本发明硅酸铝锂快离子导体材料包覆层具有好的锂离子导电性能,通过氟离子的掺杂取代包覆层或者高镍材料中的氧,从而提高材料的电子电导率,最终使得高镍材料表面同时具有较好的锂离子和电子传导性能,有利于锂离子电池正极材料的倍率性能的发挥,本发明的制备方法成本低、工艺简单,易于实现产业化。
本发明公开了一种电池级碳酸锂的多级浆洗提纯方法,属于化工材料制备技术领域,该方法包括:采用2~3道浆化洗涤工序,浆洗温度控制均在88~92℃;浆化洗涤工序之间进行浆洗压滤,压滤液返回利用;浆化洗涤完成后,进行离心分离,得到碳酸锂滤饼,离心滤液返回浆化洗涤作为浆洗液,离心过程采用RO水对碳酸锂滤饼进行淋洗,淋洗液返回浆化洗涤作为浆洗液;对淋洗后的碳酸锂滤饼进行干燥、除磁、粉碎处理,即得电池级碳酸锂。本发明电池级碳酸锂的多级浆洗提纯方法,可以实现电池级碳酸锂中的杂质离子进一步脱除,降低蒸汽消耗,提高产品的质量和市场竞争力,增加企业效益。
本发明提供了一种退役锂离子电池负极石墨的回收再生方法,目的是解决退役负极石墨经济附加值低、再利用困难的问题。具体步骤如下:(1)将退役锂离子电池放电至2.5V,拆解,获得新鲜的负极极片,再将新鲜的负极极片展开、平铺并烘干,然后进行敲击使退役石墨与铜箔分离,回收退役石墨;(2)将退役石墨直接焙烧,利用升温速率将退役石墨中的有机组份转化成无定型炭,然后根据锂原子在不同温度下的迁移特性,实现退役石墨的预锂化,获得预锂石墨;(3)将预锂石墨与有机混合碳源混合均匀,在回转炉中焙烧,获得再生石墨负极材料。本发明获得的退役石墨无需进行除铜、纯度高,具有优异的电化学性能,可直接再应用于锂离子电池中。
本发明公开了一种锂电池储能电站倍率控制方法、系统及存储介质,应用于基于锂离子电池储能单元短时高过载能力特性的倍率,设置储能变流器冗余配置的情况下,控制过程包括:获取要求输入输出功率、要求持续时间、锂离子电池储能电站额定功率、锂离子电池储能单元额定功率、满足要求输入输出功率下的预期可持续时间、锂离子电池储能单元的倍率;基于获取的数据,控制锂离子电池储能电站在高倍率过载模式、常规过载模式、智能运行模式三种模式下切换运行。通过提高储能变流器冗余配置,在少量增加储能电站成本的情况下,增大了锂离子电池储能电站的倍率充放电能力;降低了主动支撑时单位千瓦整体成本,更好的利用储能电站灵活性调节能力。
本实用新型提供了一种用于锂电池材料制备的辅材预混合装置,用于对进入锂电池材料混合装置前的各辅材进行预混合,预混合装置的壳体包括倒锥段和圆柱段,所述圆柱段的内径与倒锥段中小直径端的内径相同,所述圆柱段一端与倒锥段的小直径端固定连接,另一端设有与锂电池材料混合装置连通的出料口,倒锥段中大直径端的端面上设有允许辅材进入的进料口,所述壳体内设有多组打散混合组件。本实用新型的用于锂电池材料制备的辅材预混合装置具有结构简单、缩短锂电池材料制备时间、提高辅材混合均匀程度和保证锂电池电性能等优点。
本实用新型公开了一种带有保护装置的梯次利用锂电池,包括保护箱,所述保护箱的两侧均开设有连接绳槽,保护箱的两侧均开设有散热槽,所述保护箱的底部固定连接有防滑垫,保护箱内部的底部通过弹簧固定连接有支撑板,所述保护箱内部底部的两侧均固定连接有滑槽长块,所述滑槽长块的顶部通过滑槽滑动连接有滑块,滑块的顶部固定连接有夹持固定板,所述保护箱外部的两侧均固定连接有短接杆,短接杆的顶部通过铰接环A转动连接有伸缩散热杆,两个伸缩散热杆相对的一端均固定连接有连接绳,该带有保护装置的梯次利用锂电池,防止在运输的过程中灰尘落在锂电池的顶部,防止锂电池在运输的过程中晃动,导致锂电池损坏,防止锂电池发热发生损坏。
本发明公开了一种废旧锂电池正极材料电解剥离处理方法,具体是通过低电流密度或者高电流密度电解剥离出锂电池正极材料中的铝箔,同时获得正极活性物质锂钴浸出液;所述的电解是指在硫酸溶液中以含铝箔的废旧锂电池正极材料为阴极,铂电极为阳极;所述的电解在低电流密度下进行时,正极粉溶于电解液,溶解完时剥离得到铝箔,同时得到含锂钴的浸出液,或在高电流密度下电离时,得到剥离正极粉的铝箔,同时收集正极粉,并将正极粉溶解在电解液中得到含锂钴的浸出液;所述的低电流密度为100~500A/m2,高电流密度为600~1000A/m2。此工艺过程简单,酸浓度低,浸出时间短,处理成本低。
本发明提供了一种高电压尖晶石锰酸锂正极材料及其制备方法。本发明的制备方法采用湿法制备的尖晶石型镍铝共掺杂的四氧化三锰作为重要原料,包括以下步骤:(1)将锂源和镍铝共掺杂四氧化三锰混合均匀,得到混合物料;(2)将混合物料进行烧结处理,得到镍锰酸锂正极材料。本发明的制备方法流程简单、无须添加有机溶剂;由本发明的方法制备得到的高电压尖晶石镍锰酸锂正极材料产品的D50为8.932~9.466μm,比表面积为2.185~2.434m2/g,其组分颗粒均为单晶,锰元素、镍元素和铝元素分布均匀,大小组分颗粒均为单晶,从而结构稳定,具有高放电容量、良好的倍率性能和优异的循环性能。
本发明公开了一种高电压宽温锂离子电池电解液,由复合有机溶剂、复合锂盐、硫酸酯类添加剂以及有机腈类添加剂组成,在100重量份的复合有机溶剂中,复合锂盐的摩尔浓度为1.0‑1.5mol/L。本发明的有益效果是:复合有机溶剂能减小低温粘度同时提高溶剂的氧化稳定性,改善锂离子电池的低温放电和高电压性能;复合锂盐具有更好的热稳定性和电极成膜特性,改善锂离子电池的高温和高电压性能;多种添加剂能消除HF,同时有效降低SEI膜的阻抗,改善锂离子电池的高温循环性能和低温充电性能,最终改善锂离子电池电解液在宽温(‑30℃‑60℃)下5V高电压的电化学性能。
本发明提供了一种退役锂离子电池负极材料的修饰方法,属于锂离子电池负极材料回收技术领域。本发明以退役磷酸铁锂电池回收Li、Fe、P元素后的石墨负极粉末为原料,针对石墨粉中残存的含氟组分以及粒径较小、形貌不规整的碎屑夹杂物,在不需加入其他化学试剂条件下进行单体强化解离和氧化焙烧热处理,在高效脱除含氟组分的同时,使碎屑夹杂物在低温下充分燃烧,实现石墨粉的表面形貌修饰。本发明得到的再生石墨粉形貌规整、杂质氟含量低,电化学充放电性能得到有效提升,本发明的方法还具有操作简单、成本低的优势。
一种无钴正极材料及其制备方法与锂离子电池。无钴正极材料的分子式为Li1+nNixMnyMzO2,其中:x+y+z=1,0.5≤x<1.0,0<y<0.5,0≤z≤0.1,‑0.1≤n≤0.5;M为除Co外的Al、Mg、Sr、Ti、Fe、Sc、V、Y、Zr、Nb、Mo中一种或多种。制备方法包括如下步骤:将包括镍源、锰源、锂源、M源、成核剂氧化石墨烯水凝胶、沉淀剂和络合剂在内的原料混合制成混合溶液,在原料混合溶液水热过程中施加微波场;保护气氛下水热反应得到正极材料过程样;过程样在含氧气氛中烧结得到所述无钴正极材料。本发明通过调控微观形貌,优化制备工艺,使材料性能提升,同时节省了成本,又简化了制程;采用本发明的无钴正极材料制得的锂电池,具有优异的化学稳定性和电性能。
本发明公开了一种用于处理锂电池废正极料的还原炉,包括处理炉体以及配套安装在处理炉体中的焙烧部件、上层联动机构、水浸部件、下层联动机构,其中,焙烧部件用于将锂电池的正极废料与盐类助剂和还原剂混合并在设定温度范围内进行焙烧处理,所述上层联动机构用于控制焙烧部件中物料进入水浸部件中,水浸部件用于对经过焙烧处理的产物与水混合制成浆液,并选择性加酸处理进行还原反应,并将获得的料液与渣料分离,所述下层联动机构用于控制水浸部件中的物料外排。本申请通过上层联动机构、下层联动机构、驱动机构的配合工作,能够快速完成各流程之间物料的传输、反应工作,能够高效快速的完成对锂电池正极废料的还原回收工作。
一种锂离子二次电池用硬碳负极材料及其制备方法,所述硬碳负极材料由生物质原料经低温酸洗纯化处理得到,所述硬碳负极材料具有孔道结构,所述硬碳负极材料的磁性物质总量低于5ppm,所述硬碳负极材料的氧含量低于5%。本申请提供的一种锂离子二次电池用硬碳负极材料及其制备方法具有如下有益效果:(1)本发明制备的硬碳负极材料具有孔道结构,且具有较高的比容量,其首次可逆容量大于420mAh/g。(2)本发明制备的硬碳负极材料中,磁性物质含量低,有利于电化学性能提升,尤其能改善硬碳作为负极材料在电池中使用时的高温存储性能。(3)本发明制备的硬碳负极材料中,氧含量低,能减少不可逆锂离子损失,提升首次效率,其首次库伦效率大于86%。
本发明公开了一种锂电池安全装置,采用的技术方案是,本发明通过导热杆将锂电池内的温度传递至温度传感器内,通过温度传感器将数据反馈给第一单片机,当温度达到一定数值时,第一单片机启动散热风扇,通过散热风扇对锂电池内部进行散热,通过氢弗检测传感器对锂电池内产生的气体进行检测,并将检测信息传递至第二单片机,氢弗含量超出设定值时,第二单片机将控制第一单片机,通过第一单片机启动电加热管,通过电加热管温度升高将低熔点分隔板进行熔断,将碱性粉尘放置槽内的碱性粉尘进入锂电池内进行酸碱中和,避免锂电池内的电解液发生膨胀,通过第二单片机反馈给使用人员,使用人员通过转动按钮对锂电池进行断电保护。
本发明公开了用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用。萃取体系中含有仲酰胺和烷基醇分别作为萃取锂和硼的萃取剂由其单一化合物或两种以上的混合物组成,分子中碳原子总数分别为12~18和8~20,萃取体系的凝固点小于0℃。在有机相与卤水相体积比1~10:1、卤水密度为1.25~1.38g/cm3、卤水pH值0~7和温度0~50℃下进行单级或多级逆流萃取,反萃取得到低镁锂比水相,经过浓缩、除杂与制备,分别得到氯化锂、碳酸锂、氢氧化锂和硼酸。本发明的仲酰胺分子结构简单,由烷基醇改进的复合溶剂能同时萃取锂和硼;多级萃取率高,用水反萃取,酸碱消耗大大减少;萃取分离流程缩短,萃取体系溶损小,具有工业应用价值。
本发明属于金属锂电池技术领域,具体公开了一种稳定金属锂沉积的电解液。该镀液为锂盐、有机溶剂和添加剂所组成的有机溶液,具体组成为:锂盐/有机溶剂体积比值的范围为0.5~3mol/L、添加剂含量为0.1~5wt.%。本发明所述镀液配方简单,成本低廉且实用,采用本发明所述特定组成和配比的电镀锂液可以在集流体表面实现均匀的锂沉积,有效避免枝晶的生长。所得到的电解液可以作为锂硫电池的电解液,实现长时间稳定的循环。
本发明属于电池材料领域,具体公开了一种多金属磷酸盐包覆钴酸锂正极材料及其制备方法,本发明创造性地在钴酸锂正极材料基体的表面包覆多金属磷酸盐层,制备方法如下:在纯水中加入配制好的金属盐溶液和高分子化合物进行反应,分散后再加入钴酸锂水溶液,搅拌同时加热形成凝胶;将凝胶混匀后添加到机械融合振实机中完成对材料的包覆;最后较低温度快速高效烧结后随炉自然冷却,得到多金属磷酸盐包覆的钴酸锂正极材料。本发明的钴酸锂正极材料基体表面的包覆层为快离子导体,可以提高材料的倍率性能;还能够阻止电极与电解液之间的反应,减缓钴酸锂材料的容量衰减;同时本发明的技术可以有效降低成品的残锂量,提高其存储性能。
本发明一种高稳定性三维多孔锂金属阳极及其制备方法和应用,包括平板金属集流体、复合在平板金属集流体表面的活性层;所述的活性层包括胶黏剂以及分散胶黏剂中的Ni2P纳米粒子和含磷官能团共掺杂的介孔碳,所述的介孔碳为具有内部连通孔结构的多孔碳骨架,连通孔形成的装填腔室内填充有金属锂。本发明的三维多孔锂金属阳极具有良好的导电性、丰富的腔体结构、均匀共掺杂的Ni2P纳米粒子和含磷官能团良好的亲锂性,有效地减小极化电压、锂沉积的形核过电位和体积效应,实现了大电流高锂载量下的持续均匀沉积/溶解,有效缓解体积变化和界面效应,显著提高了锂金属电池的循环寿命。
本发明涉及一种锂离子电池隔膜及其制备方法。本发明提供的锂离子电池隔膜分为三层,其中芯层为棉纤维薄膜层,上下表层为聚丙烯纤维薄膜层。其中隔膜芯层由棉纤维经打浆后再配以抗氧化剂、阻燃剂等采用湿法抄造工艺经抄造成膜;表层由聚丙烯纤维经亲水性改性后再配以粘接剂采用湿法抄造工艺经抄造成膜;然后以棉纤维膜为芯层,聚丙烯纤维膜为上下表层在110℃~150℃条件下以双热压辊热压而成锂离子电池隔膜。锂离子电池隔膜的孔隙率为40%~80%,孔径为0.01微米~0.2微米;纵横向拉伸强度基本一致,为120~300Mpa;穿刺强度>20kg·mm-1;90℃下收缩率<1%;厚度为20微米~60微米。该隔膜具有孔隙分布均匀,机械强度高,收缩率低,热稳定性高,亲/保液性能良好,且制备简单,无污染,适合工业化生产。
本发明提供了一种退役锂离子电池正极粘接剂的回收方法,目的是回收再利用正极粘接剂聚偏氟乙烯(PVDF),不仅降低了氟对正极材料的破坏及对生态环境的污染,还实现了固废再利用。本发明首先将退役锂离子电池正极粉浸泡于有机混合溶剂中,然后放置于反应釜中,机械搅拌使粘接剂充分溶解后,使用离心机分离并获得正极粉和含PVDF的有机溶液,使用真空旋蒸蒸发仪分离并回收有机混合溶剂和PVDF。本发明工艺简单、流程短、技术路线合理可行,利用该技术回收退役锂离子电池正极粉中的粘接剂,纯度高,回收率达98%以上,可作为制作管材和膜材的原材料,且分离的有机混合溶剂可循环使用。
本申请提供一种锂一次电池的制备方法,包括以下步骤:正极片的制备:将正极活性材料、导电剂、以及粘结剂按比例混合均匀,加入到有机溶剂中搅拌形成均匀的正极浆料,将所述正极浆料涂覆在正极集流片上,碾压后剪裁切成所述正极片;负极片的制备:所述负极片为导电箔材;装配:将隔膜夹设在所述正极片和所述负极片之间,形成电芯,将所述电芯放入电池壳体内,注入电解液,封装后得到锂一次电池。本申请提供的锂一次电池的制备方法,工艺简单,对组装环境要求不高,在非干燥环境下即可组装生产,大大降低了组装过程中对环境的要求,提高了组装过程的安全性,同时也节省了干燥房的制造成本和运行成本。
本发明提供一种锂离子电池复合隔膜及其制备方法,涉及电池技术领域,包括基膜和涂布于基膜一侧的芳纶涂层和水性pvdf复合涂层构成,水性pvdf复合涂层按照重量百分比计含有1‑10%的基料,余量为去离子水,基料由以下物质组成:pvdf、分散剂、增稠剂、粘合剂、纳米芳纶粉末、DMAC或DMF、助溶剂、乳化剂和造孔剂组成;本发明中芳纶涂层隔膜整体上比现有的技术具有更良好的耐热性、稳定性、电绝缘性以及阻燃性能,PVDF涂层由水性PVDF浆料经涂布、烘干后获得,摒弃了现有PVDF涂覆锂离子电池隔膜以丙酮等油性物质作溶剂的传统工艺,以本发明隔膜制备的锂离子电池的安全性能、倍率性能和循环性能明显得到改善。
本发明公开一种高纯度双氟草酸硼酸锂的制备方法。依次通过1)预反应、2)催化、3)氮气置换、4)减压反应、5)过滤、6)分子筛除水、7)萃取、8)减压蒸发、9)重结晶、10)真空干燥等步骤,获得高纯度的双氟草酸硼酸锂,本制备方法只需添加一种催化剂,条件温和,产率高,纯度高,可满足高品质锂离子电池电解质的生产需求。
中冶有色为您提供最新的湖南有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!