本发明涉及一种纳米银修饰二维黑磷复合材料的制备及其高效光催化降解抗生素污染物的应用,是利用纳米银修饰的二维黑磷复合材料作为降解材料,加入到含有抗生素污染物的废水中,混合均匀,在紫外光照射条件下进行磁力搅拌反应,从而完成对废水中抗生素污染物的降解去除。本发明的方法制备流程简单、降解速度快、降解效率高,且制备出的纳米银修饰二维黑磷复合材料具有更高的比表面积和光催化活性,对废水中的诺氟沙星等氟喹诺酮类抗生素进行高效光催化降解,在处理含抗生素废水方面具有重要的应用前景和商业价值。
本发明公开了一种用于印染污水处理的复合材料及其制备方法和应用,该复合材料由以下按照重量份的原料组成:聚丙烯酰胺45‑55份、皂石18‑26份、淀粉黄原酸酯7‑15份、鼠李糖脂3‑7份、十二烷基硫酸钠11‑19份、羟基乙叉二膦酸10‑18份、醋酸60‑70份。本发明中将皂石与十二烷基硫酸钠混合烧制后孔径增加,比表面积增大,聚丙烯酰胺、淀粉黄原酸酯超声处理后与鼠李糖脂、羟基乙叉二膦酸混合作用,再与混合粉A混合等制得的复合材料,处理纺织印染废水效果好。不含有对设备腐蚀的成分,延长使用寿命;不会对水质造成二次污染。本发明原料简单、制备工艺简单、易控制,处理效果好,生产成本低,适于工业化生产。
本发明提供一种汽车用高刚性高韧性聚丙烯复合材料及其制备方法,其是由聚丙烯、碱式硫酸镁晶须、高目数滑石粉、增韧剂、润滑剂、偶联剂、抗氧剂按照重量份制备而成,其中所述高目数滑石粉为粒径8000~11000目的滑石粉。本发明通过分批搅拌混合,使碱式硫酸镁晶须和滑石粉分散的更加的均匀且能保证熔体与筒体摩擦损耗小,从而提高复合材料的刚性;同时将碱式硫酸镁晶须分别从挤出机的主、侧喂料进入,并与高目数滑石粉复配使用,得到综合性能优异的高刚性高韧性聚丙烯复合材料,可广泛用作高档及奢华汽车内外饰件。
本发明涉及SERS活性基底的制备方法,具体涉及纳米银/石墨烯复合材料制备方法。其制备过程是(1)制备石墨烯NMP溶液:在NMP溶液中加入膨胀石墨并利用超声分散均匀,得到单层石墨烯NMP溶液,其中PVP浓度为0.01-0.05g/ml,石墨烯含量为0.02-0.1g/L;(2)制备纳米银/石墨烯溶液:将同样浓度的硝酸银水溶液和鞣酸水溶液先后滴加到单层石墨烯NMP溶液中,硝酸银与石墨烯的质量比在10-100范围内,搅拌得到银颗粒为20-30nm的纳米银/石墨烯溶液;(3)用去离子水离心清洗得到银/石墨烯纳米复合材料。本方法得到的纳米银/石墨烯复合材料,既有银颗粒的物理增强效应,也有石墨烯的化学增强效应,SERS活性很强。制备过程中采用鞣酸作为还原剂,绿色环保,制备过程简单,易于操作,有利于大范围推广使用。
本发明公开了一种用氩等离子体制备石墨烯铂纳米复合材料的方法,将氧化石墨烯放入烧杯中,然后加入氯铂酸,所得的混合物烘干后置于一个密闭容器中,容器接有石墨电极,电极连接一个交流电源,该电源能够产生电感耦合等离子体源,再往容器中先通入氩气,赶走空气,然后打开真空泵抽真空至3Pa左右,此时打开交流电源产生氩等离子体,将该等离子体流直接作用在烘干的粉末的表面28-32分钟,放电完毕后,将反应产物用去离子水或适当有机溶剂充分洗涤、过滤,干燥,制得石墨烯铂纳米复合材料。该方法不仅能有效制备分布均匀的石墨烯基铂纳米复合材料,还能使制备时间大为缩短,过程大为简化。
本发明公开了一种复合材料保温板及其制备方法,包括聚苯颗粒8~10份,水泥150~200份,粉煤灰20~30份,海泡石5~10份,纤维水镁石10~20份,粘合剂15~20份,抗裂纤维0.6~1份,固化剂1~2份,抗滑移剂0.4~0.6份,憎水剂0.5~0.7份,AES0.4~0.6份,水100~120份。方法包括将水泥、粉煤灰、海泡石、纤维水镁石、抗裂纤维、抗滑移剂、憎水剂按比例放入搅拌机搅拌,再加入粘合剂、固化剂、AES搅拌;投入聚苯颗粒制得保温砂浆;保温砂浆硬化后制得复合材料保温板成品。本发明的复合材料保温板具有优良的保温隔热性能,质量轻,防火性能优越;抗压、抗拉强度高。
本发明公开了一种硫属半导体/羧基化PPV电致发光复合材料的制备方法,是由半导体金属盐与羧基化PPV发生络合后再经水热反应得到的电致发光复合材料;所述半导体金属盐选自Zn、Cd、Pb或Bi的可溶性硝酸盐或卤化物;所述羧基化PPV为聚[2-甲氧基-5-(5′-羧基戊氧基)对苯乙炔]。本发明以羧基化PPV作为有机相,与无机半导体掺杂复合,二者以配位键相连接,使得无机粒子均匀分散,两相形成均一体系,提高了两相界面处的能量与电荷的传递,复合材料兼具聚合物的可加工性与半导体材料的光电性能,为大面积柔性显示、固态发光等领域提供稳定性好、发光效率高的新型电致发光材料。
本发明涉及一种具有剪切变硬和阻燃性能的复合材料及其制备方法。所述复合材料包含剪切变硬胶、阻燃纳米粒子、硫化剂的混合物经热处理得到的产物。所述方法包括以下步骤:将剪切变硬胶与阻燃纳米粒子混合均匀;再向混合物中加入硫化剂,并利用开式炼胶机进行混炼;将上述混合物进行热处理,得到复合材料。所述的多功能柔性材料,具有力学防护与阻燃性能,可以广泛应用于人体的各个身体部位,起到力学防护与阻燃的功能,保护使用者免受冲击与火焰的伤害。
本发明公开了一种复合材料缝隙波导天线的制备方法,包括以下步骤:首先将成型天线碳纤维织物预制体;然后经过化学气相沉积碳对织物进行定形,定形后对外形粗机加,再对其进致密,对外形精密加工后,对外形面进行保护后,再次循环致密,直至材料密度达到2.0‑2.3g/cm3,复合材料成型后,再对表面进行金属化。本发明方法可获得一种低密度、极低热膨胀系数、耐高温、抗热冲击的缝隙波导天线,重量比铝合金天线要低10‑20%,耐高温能力为1650℃,热膨胀系数为0.5‑3×10‑6/℃,同时由于耐高温,可以采用铝合金与碳纤维增强树脂基复合材料无法采用的CVD或者RMI方法进行深宽比腔体的金属化处理。
本发明属于改性再生聚苯乙烯技术领域,尤其涉及再生聚苯乙烯改性复合材料及其制备方法。所述复合材料由下述组分按重量份制备而成:再生聚苯乙烯100份,润滑剂3‑6份,改性木粉15‑35份,聚丙烯蜡2‑3份,抗氧剂0.3‑0.8份,所述的改性木粉是经过质量百分比为5%的异氰酸聚亚甲基聚亚苯基酯水溶液喷洒处理后的木粉,且木粉含水率小于2wt%。本发明制备的再生聚苯乙烯改性复合材料力学性能优良,且对挤出机没有特殊要求,不需要锥双挤出机,可以采用普通双螺杆挤出机进行挤出造粒。
一种QLED器件、复合材料及其应用,属于发光二极管领域。复合材料包括混匀的载体和功能性物质,且功能性物质以能够在载体内形成网络状结构的量存在。其中,载体包括基体树脂;其中,功能性物质包括吸水树脂和导热材料。该复合材料具有高散热性能,且能够吸水并保水,从而可以用于多个具有此需求的环境。
本发明提供了一种耐磨耐热聚烯烃复合材料及其制备方法,由以下质量份的原料组成:树脂基体100份、硅藻土5~45份、偶联剂0.1~0.5份、抗氧剂0.1~0.5份、热稳定剂0.2~1份以及润滑剂0.2~1份。本发明制备的聚烯烃复合材料具有耐磨、耐热以及尺寸稳定等特点,在传统工程塑料改性的基础上赋予了材料一定的功能性。此外本发明所涉及的复合材料制备所需设备及工艺简单,可直接规模化生产。
本发明公开了一种低线性热膨胀系数的抗静电免喷涂聚丙烯复合材料及其制备方法,其由聚丙烯、矿物填充、增韧剂、功能助剂、金属颜料、偶联剂、抗氧剂、润滑剂、光稳剂,经混合、挤出制备而成。所述的功能助剂是由硅灰石晶须与甘油单硬脂酰酯按混质量比为1:1~4:1复配而成。本发明利用聚丙烯和矿物填充、增韧剂复配,保证了复合材料的强度、刚性、韧性,另外通过添加功能助剂提高了材料的结晶速度和结晶度,降低产品的后收缩性,缩短了产品成型周期,同时在材料内部形成导电网络,使材料具体一定导电性能,改善材料的表面抗静电性,使改性后的聚丙烯复合材料可广泛用于免喷涂类产品。
本发明公开了一种隔音降噪聚烯烃复合材料,由以下组分按重量份制备而成:40‑82份聚烯烃,5‑20份增韧剂,0‑20份无机填充,10‑15份改性蒙脱土,3‑5份相容剂,0.2‑0.5份其他助剂。一种隔音降噪聚烯烃复合材料的制备方法,包括以下步骤:(1)改性蒙脱土的制备;(2)将聚烯烃40‑82份,增韧剂5‑20份,无机填充0‑20份,相容剂3‑5份,其他助剂0.2‑0.5份加入高混机进行混合5‑15min;(3)将步骤(2)混合均匀的物料加入双螺杆挤出机,同时在双螺杆挤出机侧喂料口加入改性蒙脱土10‑15份,一起熔融共混挤出,得到隔音降噪聚烯烃复合材料。
本发明公开一种刺状纳米二氧化锰/石墨烯复合材料在含抗生素的废水处理中的应用,将刺状纳米二氧化锰/石墨烯复合材料作为催化剂,均匀分散在含抗生素的废水中,再加入过一硫酸盐作为氧化剂,降解反应20‑30min,过滤去除催化剂即可。本发明采用廉价的无机盐与有机溶剂为原料,以相对低温的溶液反应方法为工艺,整体具有操作简单、合成方便、产量丰富等优点。制得的刺状纳米二氧化锰/石墨烯复合材料,在参与催化反应前后,通过FT‑IR、XRD光谱图对比无明显变化,说明本发明制得的催化剂具有良好的稳定性。
本发明公开一种改性纳米纤维素增强聚丙烯微发泡复合材料及其制备方法,由96‑98wt%聚丙烯复合材料和余量的化学发泡剂组成;其中所述的聚丙烯复合材料由以下组分组成:聚丙烯、改性纳米纤维、相容剂、抗氧剂、润滑剂、其他助剂;所述改性纳米纤维由纳米纤维素、改性剂与催化剂反应制得。与聚丙烯树脂熔融共混,纳米粒子均匀的分散在基体中,形成三维网状结构,限制分子链的运动,提高熔体的黏度,从而有效提高基体的熔体强度。在注塑过程中加入发泡剂,发泡剂均匀的扩散在熔体中,受热分解以纳米纤维素为成核点,形成致密的泡核,较高的熔体强度有效束缚泡核的长大定型,从而形成均匀细腻的聚丙烯微发泡材料。
本发明属于玻璃纤维复合材料技术领域,具体涉及一种耐腐蚀玻璃纤维复合材料;复合材料中包括以下成分:酚醛环氧型乙烯基酯树酯、凯拉夫纤维、羟甲基纤维素、水镁石、邻苯二甲酸二异壬酯、偶联剂、引发剂、抗氧化剂和玻璃纤维。玻璃纤维由以下原料:氧化硅、氧化铝、氧化镁、氧化钙、氧化锂、氧化铁和二氧化钛;经过烧制拉丝成型得到。玻璃纤维和凯拉夫纤维还经过等离子表面处理,各种材料复合挤出得到的该型材料具有良好的加工特性和机械特性,并且耐腐蚀性得到了提高,可以广泛应用于汽车和电子行业的生产制造中。
本发明公开了一种高抗氦离子辐照性能的W‑Nb复合材料及其制备方法,其中高抗氦离子辐照性能的W‑Nb复合材料是由Nb掺杂W粉末组成,复合材料中各元素的组成按质量百分比构成如下:Nb 15%,余量为W。与纯钨样品对比,添加Nb在一定程度上改善了钨基材料的抗辐照性能。Nb具有高熔点,不会与W形成低熔点共融相或金属间化合物,同时Nb对碳、氧、氮等杂质的亲和力较高,会与这些杂质反应生成氧化物、碳化物等,这些氧化物、碳化物等分布在晶界处可以细化W的晶粒。同时Nb的氧化物比W的更稳定,形成的键能更低,有利于防止W氧化。另外,Nb与W可以形成无限固溶溶体,使钨基材料形成固溶强化。
本发明涉及一种改性阻燃聚丙烯复合材料及其制备方法,由聚丙烯60-90份、膨胀型阻燃剂10-30份、有机蒙脱土1-10份、十六烷基三甲基溴化铵0.2-5份制备而成。其制备方法是先将十六烷基三甲基溴化铵与有机蒙脱土聚合插层反应得改性纳米蒙脱土,再将改性纳米蒙脱土与聚丙烯、膨胀型阻燃剂进行混合、挤出、造粒制得聚丙烯复合材料。本发明创新的应用CTAB来改性OMMT,并通过OMMT与IFR协同阻燃的作用来制备高力学性能和高阻燃性能的复合材料。
本发明提供一种增强聚碳酸酯复合材料及其制备方法,增强聚碳酸酯复合材料由PC树脂32.5-60份、ABS树脂8-28份、BDP树脂8-12份、增韧剂9-15份、玻璃纤维10-15份、抗氧剂0.2-1份、润滑剂0.5-1份组成。本发明方法制得的增强聚碳酸酯复合材料,提高材料的冲击强度与流动性能;通过RHCM模具可以获得良好的表面高光镜面效果,其成型收缩率为0.25-0.35%,密度<1.28g/cm3,降低了材料的重量,从而能替代现有电视机前框材料,满足当代电视机窄边框和超薄的要求。
本发明提供一种高岭土改性聚己内酯复合材料,是由聚己内酯与改性高岭土、聚己内酯接枝马来酸酐及抗氧化剂通过混合、熔融挤出制备而成。本发明通过引用改性高岭土及聚己内酯接枝马来酸酐改善聚己内酯的力学性能,大大提高了复合材料的强度及耐热性,使得制备得到的复合材料同时兼具很好的强度、韧性、耐热性等性能。
本发明公开了一种复合材料电力线杆及其制备方法,复合材料电力线杆由内而外包括第一至十一柱体结构。第一柱体结构沿轴向方向环向缠绕;第二柱体结构沿轴向方向倾斜缠绕且倾斜度不大于10度;第三柱体结构沿轴向方向倾斜缠绕且倾斜度为45度;第四柱体结构沿平行于轴向方向缠绕;第五、六、七柱体结构的缠绕方式分别与第三、二、一柱体结构的缠绕方式相同。第八柱体结构采用复合毡不带树脂且零搭接沿平行于轴向方向缠绕;第九柱体结构采用方格布零搭接沿平行于轴向方向缠绕;第十柱体结构采用短切毡零搭接沿平行于轴向方向缠绕;第十一柱体结构采用聚酯薄膜50%搭接沿平行于轴向方向缠绕。本发明还涉及该复合材料电力线杆的制备方法。
本发明公开了一种利用断键策略制备纳米复合材料的方法及其在催化CO2炔基化反应中的应用,是对ZIF‑8进行处理使其在保持结构特征的前提下出现断键,然后将其作为载体负载Au12Ag32纳米团簇,获得Au12Ag32/ZIF‑8(300℃)纳米复合材料。本发明通过断键策略解决了Au12Ag32纳米团簇无法通过常规的物理吸附与ZIF‑8复合的问题。该纳米复合材料的制备合成条件温和,不需要其他添加剂,可用于催化末端炔羰基化反应,有效利用转换CO2,具有较高的活性和稳定性,同时催化剂可循环利用五次,活性保持不变,具有很好的实用性。
本发明属于钠离子电池负极材料技术领域,公开了双模板法合成的三维碳基复合材料及其制备方法和应用;所述制备方法为将硬模板、碳源、硼酸均匀分散于溶剂中,搅拌6~24h后,去除溶剂,获得前驱体材料;将前驱体材料与金属镁研磨混匀后,于500~700℃的温度下烧结0.5~4h,去除硬模板,获得三维碳基复合材料。本发明以硬模板作为孔模板,为后续碳源形成多孔碳提供前提条件,以硼酸作为硼源和辅助造孔模板,通过烧结处理使得碳源在硬模板上形成多孔碳材料,同时氧化硼在烧结条件下与镁作用后,在碳源形成的多孔碳材料中产生中孔结构,进而为Na+的嵌入提供了良好的环境,获得三维碳基复合材料。
本发明公开了一种超高阻燃、物理发泡挤出聚丙烯复合材料及制备方法,由以下重量组分制得:高熔体强度聚丙烯66‑87份、填充改性剂2‑5份、聚硼硅氧烷0.5‑2份、阻燃剂3‑10份、阻燃协效剂1‑3份、相容剂0.5‑2份、物理发泡剂6‑12份、润滑剂0.1‑0.3份、光稳剂0.1‑0.3份、成核剂0.05‑0.3份、抗氧剂0.2‑0.6份。通过使用高熔体强度聚丙烯、聚硼硅氧烷(自制)、阻燃剂及阻燃协效剂等原料并结合特殊的制备工艺可制备出超高阻燃、物理发泡挤出聚丙烯复合材料,发泡后的复合材料表观密度为0.04‑0.1g/cm3,发泡数量达到107‑109个/cm3,泡孔直径达到30‑60微米,有90%的泡孔直径可达30‑50微米水平,阻燃性能可达UL‑V0等级,可广泛应用到汽车、家电、包装等各个领域。
本发明公开了一种四氧化三钴-稀土矿复合材料的制备方法,包括以下步骤:步骤一,制备纳米四氧化三钴:将乙二醇、水混合溶液加入到磁力搅拌器中,随后加入乙酸钴、聚乙烯醇,启动磁力搅拌器,搅拌转速为115‑125r/min,搅拌时间为25‑35min,随后送入反应釜中,在温度155‑255℃下,水热反应35‑45min,随后冷却至室温,随后再离心,洗涤,置于干燥箱进行干燥,干燥18‑24h,将干燥后产物置于加热炉中进行加热,即得纳米四氧化三钴。本发明的一种四氧化三钴-稀土矿复合材料的制备方法,制备出复合材料应用在超级电容器上,提高比电容,此外工艺简明,制备成本低。
本发明公开了一种高性能聚丙烯复合材料的制备方法,涉及聚丙烯材料领域,包括以下步骤:(1)石墨烯粉体的制备;(2)聚丙烯粉体的制备;(3)石墨烯粉体和聚丙烯的分散混合;(4)二氧化碳超临界浸润;(5)聚丙烯‑石墨烯粒料的制备;(6)聚丙烯‑马来酸酐粒料的制备;(7)高性能聚丙烯复合材料的制备;本发明制备方法通过使用超临界二氧化碳浸润到石墨烯之间,提高石墨烯在聚丙烯中的均匀分散性,通过马来酸酐和成核剂与聚丙烯共混改善聚丙烯的柔韧性和相容性,共混熔融制得的聚丙烯复合材料具有良好的机械力学性能和热稳定性。
本发明提供了一种氮锌共掺杂碳包覆氧化亚硅复合材料及其制备方法和应用。其制备方法为:将氧化亚硅溶于有机溶剂中形成溶液A;将可溶性锌盐溶于有机溶剂中形成溶液B;将含氮杂环类有机化合物溶于有机溶剂中形成溶液C;将溶液B加入到溶液A中并静置;然后除去上层液,将剩余溶液与溶液C混合进行水热反应;反应后干燥并在惰性气体氛围下煅烧获得氮锌共掺杂碳包覆氧化亚硅复合材料。本发明氮锌共掺杂碳包覆氧化亚硅复合材料的制备方法操作简单、对环境无污染;具有高克容量、高导电性、高首效和更加稳定的循环性能,在高比能电池及后端电动车、储能电站领域具有广阔的应用前景。
本发明涉及一种耐油耐候性能良好的ABS复合材料及其制备,由以下重量份的组分制成:ABS为100份‑120份;SEBS为10份‑16份;相容剂为0.1份‑0.3份;无机填料为10份‑20份;耐候母粒为4份‑8份。SEBS是苯乙烯‑丁二烯‑苯乙烯嵌段共聚物(SBS)经过加氢改性反应得到的一种弹性体,它的作用有二:①它具有良好的耐油性,对油类物质的耐抗性很好,提升了ABS复合材料的耐油性。②它具有高度饱和的结构,有很好的耐候性,也提升了ABS复合材料的耐候性。
本发明公开了一种利用强磁场手段制备聚合物‑碳纳米复合材料取向薄膜的方法,其制备方法包括如下步骤:(1)将石墨烯分散液和π共轭聚合物分散液混合后,在超声条件下分散均匀得到混合物料;(2)将混合物料旋涂在硅片上得到湿膜,将涂覆有湿膜的硅片放置到磁场中,使湿膜所在的平面与磁场的方向平行;(3)步骤(2)处理得到的湿膜进行退火处理后,得到聚合物‑碳纳米复合材料取向薄膜。本发明将湿膜放置在强磁场中时,保证湿膜所在的平面与磁场的方向平行,从而在磁场的作用下,制备得到聚合物‑碳纳米复合材料取向薄膜。通过掺杂石墨烯使薄膜在平行磁场方向的迁移率显著提高,且平行磁场方向的迁移率远远大于垂直磁场方向的迁移率。
中冶有色为您提供最新的安徽合肥有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!