为了改善WC‑Co硬质合金的硬度、耐磨性,制备了一种强流脉冲离子束辐照WC‑Co硬质合金。采用含90wt%WC、10wt%Co的WC‑Co硬质合金为原料,硬质合金内部的物相组成对硬质合金的性能有着重要影响,强流脉冲离子束辐照对硬质合金性能的提升主要表现在促进硬质合金内部的物相转变,使硬质合金内部的不稳定相向稳定相转变。强流脉冲离子束辐照的强度越大,物相转变进行的更容易,发生转变的不稳定相越多。所制得的强流脉冲离子束辐照WC‑Co硬质合金,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的WC‑Co硬质合金提供一种新的生产工艺。
本发明的目的是为了改善铜基粉末合金的硬度、耐磨性,设计了一种微波烧结碳纳米管增强铜基复合材料。采用CNTs和超细Cu粉为原料,所制得的微波烧结碳纳米管增强铜基复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,最佳烧结工艺为:烧结温度为1250℃,保温时间为60min,CNTs的最佳含量为3%。此时复合材料密度为9g/cm3,相对密度为99%,硬度为400,CNTs均匀分散在Cu基体中,起到增强相的作用。屈服强度和抗拉强度分别达到200MPa和400MPa,较纯Cu分别提高40%和60%,材料的伸长率<5%。本发明能够为制备高性能的碳纳米管增强铜基复合材料提供一种新的生产工艺。
一种原位铝基复合材料反应热压制备方法,其特征在于:将预定配比的反应物粉末均匀混合后在高强石墨模具中冷压实,放入真空热压炉中加热除气,升温至780-900℃烧结0.2-2小时,随后降温至560-620℃在50-150MPa压力下加压密化。本发明方法所获得热压锭的实际密度可达理论密度的98%以上。
本发明的一种碳化硅等级孔陶瓷的制备方法,属于材料技术领域。制备时,将SiC粉体、B4C粉体、CB粉体和淀粉粉体球磨混合,干燥研磨过筛;倒入溶有分散剂的水溶液中,搅拌均匀,配制混合粉体悬浮液,加入硼酸,尿素,氨水,氢氧化钾或异丙醇凝胶引发剂,搅拌均匀后,静置反应;加入流变性能调节剂,搅拌后进行高速球磨,制得用于自由直写成型技术的SiC陶瓷浆料;将SiC陶瓷浆料挤出,逐层沉积完成后,烘干去除水分,真空下高温烧结,制得碳化硅等级孔陶瓷。相应孔尺寸和孔隙率的可调控范围均远高于现有报道,且能够使得SiC陶瓷浆料具有相比于现有体系更高的粘弹性,更好的稳定性,经7天以上时间保存后,仍然能够从较细的喷嘴中高速挤出。
本发明涉及一种钛合金自润滑涂层及其制备方法,包括以下步骤:在钛合金基板上依次成型至少一层纯过渡金属箔层和多孔青铜层,在所述多孔青铜层的孔内填充固体润滑物,所述过渡金属选自VB和IB族元素中的一种或多种。本发明改善了钛合金表面耐磨性、难以润滑等表面缺陷。该材料可以大幅延长材料的耐磨损时间,降低材料表面摩擦系数。
为了改善Al合金的硬度、耐磨性,研制了一种50%Sip/6061Al复合材料。采用气雾化6061Al合金粉、Si粉为原料,所制得的50%Sip/6061Al复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,Si粉和6061Al合金粉末的球磨能够得到复合要求的50%Sip/6061Al复合粉体,Si颗粒镶嵌于6061Al合金基体中,并能够在复合粉体中均匀分布。断裂时Si相全部解理断裂,Sip/Al界面结合强度高。本发明能够为制备高性能的6061Al合金提供一种新的生产工艺。
为了改善粉末冶金零件的硬度、耐磨性,设计了一种增强体增强316L不锈钢粉末冶金零件。采用316L气雾化不锈钢粉末,WC粉末,TiC粉末,NbC粉末,Al2O3粉末,Si3N4粉末为原料,经过配料、球磨、干燥、制粒、成形、球磨、压制、烧结工艺成功制备了具有优异力学性能的增强体增强316L不锈钢粉末冶金零件。其中,所研制的增强体增强316L不锈钢粉末冶金零件,可以有效提高不锈钢的强度,表现出优越的耐腐蚀性能,氮均匀渗透到不锈钢中,有利于形成高强度的高氮钢。所制得的增强体增强316L不锈钢粉末冶金零件,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的316L不锈钢粉末冶金零件提供一种新的生产工艺。
本发明涉及一种用于超临界水蒸发壁的多孔材料,其特征在于:所述多孔采用由单一奥氏体金属粉末烧结制成,所述多孔材料的平均孔径为2~10μm,孔隙率在10%到35%。本发明还涉及一种用于超临界水蒸发壁的多孔材料的制备方法。本发明制得的蒸发壁多孔材料具有极好的强度和刚度,能够满足蒸发壁和反应器的连接和装配要求,并且具有合适的孔径和流通量来确保完整水膜的形成同时又不会过度降低反应器内部的温度而造成热量大量损失。
本发明涉及一种锂离子电池用多元硫纳米碳纤维复合正极材料及制造方法,将纳米硫粒子均匀填充于纳米碳管中,形成硫纳米碳纤维,然后将重量百分数5-80%的硫纳米碳纤维与5-30%的纳米铁粉、5-30%的纳米锂盐、5-30%的纳米钒盐和5-30%的纳米磷酸盐混合成型。本发明制备的锂离子电池用多元硫纳米碳纤维复合正极材料容量大于150mAh/g,50次循环容量保持92%以上。
本发明公开了一种氮化硅声纳热成像绝缘条的制备方法及装置,涉及一种陶瓷技术领域,包括:球磨机,用于对物料进行球磨碾碎;烘干机,设置在所述球磨机输出端,用于对球磨后的物料进行烘干;破碎机,设置在所述烘干机输出端,用于对烘干物料进行破碎;分选机,设置在所述破碎机的输出端,用对破碎后的物料按照一定的尺寸进行分选;压机,设置在所述分选机的输出端,用于对得到的物料进行压制成型。本申请提出的是陶瓷领域的一种氮化硅声纳热成像绝缘条的制备方法,该方法在利用氮化硅绝缘条代替普通金属零件,声纳热成像传感器需要高强度和高绝缘性零件,所以氮化硅绝缘条很好的解决了这个问题。
为了改善粉末合金的硬度、耐磨性,设计了一种多次烧结制备的钨铜合金。采用CuW80合金为原料,所制得的多次烧结制备的钨铜合金,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,随着烧结次数的增加,钨颗粒逐渐增大并连接,铜相分布更加均匀,多次烧结未见新相。经过多次烧结后,试样孔隙率由最初的0.5%变为2.0%,增加的孔径主要分布在3μm范围内,0.01μm左右的孔隙也稍有增加。经9次烧结后,CuW80合金的显微硬度由HB210变化至HB195,合金密度由15.24g·cm‑3变为15.13g·cm‑3,降低了约1.2%,电导率由25.06mS/m降低至21.92mS/m。本发明能够为制备高性能的钨铜合金提供一种新的生产工艺。
为了改善铝基复合材料的硬度、耐磨性,设计了一种纳米SiCp/108Al复合材料。采用Al粉和纳米SiC颗粒为原料,所制得的纳米SiCp/108Al复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,纳米SiC颗粒的加入对108Al基体有着较强的增强作用,复合材料微观组织中晶粒明显细化,复合材料的组织较为致密,颗粒分布较为均匀,纳米SiC颗粒与108Al基体结合较好,性能达到最优。当纳米SiC颗粒体积分数过高时,出现明显的团聚现象,复合材料的组织中出现了较多孔洞缺陷,物理机械性能均降低,强化作用不明显。本发明能够为制备高性能的铝基复合材料提供一种新的生产工艺。
一种镀Cu短碳纤维增强Cu基复合材料,通过粉末冶金制备了短碳纤维增强Cu基复合材料以提高Cu基复合材料的密度、硬度及电导率等性能。采用380℃灼烧30min为较佳的碳纤维除胶工艺;与超声分散和磁力搅拌相比,采用电动搅拌时短碳纤维分散性好,且化学镀Cu镀层均匀致密。随着镀Cu短碳纤维含量的增加,复合材料的密度和电导率呈现下降的趋势,硬度呈现先提高后降低的趋势,其中在镀Cu短碳纤维含量达12.5%时,Cu基复合材料硬度值最高;镀Cu的短碳纤维Cu基复合材料的物理性能优于未镀Cu的短碳纤维复合材料。
可溶性镁基合金材料,包括以下质量份数的组分:80%~95%的Mg、3%~19%的Al、0.5%~3%的Zn、0.1%~1%的Mn和0.1%~1%的Co,以上各组分质量份数之和为100%。本发明的可溶性镁基合金材料采用将镁粉、铝粉、锌粉、锰粉和钴粉进行混匀、冷压和烧结的方法制备,可用于在水平井分段压裂技术中制备压裂球,在在常温3%KCl溶液中的溶解速率为10~40mg·cm-2·h-1,能承受的压力为60~110MPa,超出现有技术水平;本发明制备可溶性镁基合金材料的工艺简单,解决了现有的压裂球制备成本高及工作效率低的问题。
一种碳化钛金属陶瓷烧结同时与结构钢焊接方法,其Al、Ti在粘结相中按重量比计,含量为3~15份;调节硬质相TiC按体积比计,含量为50~75份,工艺中烧结阶段:清洁结构钢表面;将金属陶瓷粉末压坯直接放在结构钢的清洁表面;对金属陶瓷排粘:在300~600℃情况下去除成型剂;烧结保温:以10℃~15℃/min的速度升到烧结温度,保温,实现金属陶瓷烧结的同时与结构钢焊接成一体;以15℃~20℃/min的速度冷却;调质处理。它生产效率高、焊接强度高、不需专门焊接设备。
本发明涉及制备光学材料的烧结用坩埚领域,尤其涉及一种制备MgF2棒状晶体的多棒孔坩埚烧结装置,其特征在于,包括底盘、晶体载体、钟罩、内加热器、外加热器、内保温筒和外保温筒,该晶体载体是一个有效直径和高度分别为400~600mm的大型多棒孔石墨坩埚,晶体载体居中设置在安装支架上,晶体载体中心开有一个直径Φ80~120mm的芯孔,芯孔内设有内加热器,晶体载体上设有多个盲底圆柱孔,该盲底圆柱孔的直径与多种规格的电子枪坩埚直径一致。与现有技术相比,本发明的优点是:可依据各种电子枪坩埚或埚衬尺寸设计,大批量制备多晶MgF2棒状晶体,采用内外共同加热技术,彻底解决了MgF2镀膜的飞溅、崩点这一世界性难题。
一种制备YAG纳米粉及透明陶瓷的碳酸氢铵共 沉淀法,属于含稀土氧化物透明制品精细陶瓷制备技术领域, 是以AlCl3和 YCl3混合盐溶液与 NH4HCO3溶液反应生成先驱沉淀物 0.3Y2 (CO3) 3·nH2O·NH4AlO(OH)HCO3,为常压、反向滴定;用 Al+3为0.08~0.3M浓度的混合 盐溶液向0.8~3M浓度 NH4HCO3中滴定时,每1升 NH4HCO3溶液的滴定速度为1~6ml/min;终点pH值9~10, 反应 温度为4~20℃; 在900℃~1200℃流动氧气氛下煅烧2小时 1~2次,得到YAG纳米粉;配入重量比0.2~1wt%的含Si 有机酯或SiO2溶胶,在树脂内衬 球磨罐中湿磨,球磨介质为无水乙醇,加入量为YAG纳米粉 重量的50~200wt%,球磨粉经60℃烘干,150~230MPa冷等 静压压制成生坯,而后在1600℃~1800℃温度下真空炉中烧 结,真空度高于1×10-3Pa, 得到相对密度≥99.1%,在可见光区域透光率为60~75%, 在红外光区域内透光率接近80%的YAG透明陶瓷。
一种以含油污泥为粘结剂制备无机多孔材料并回收油的系统及方法,属于多孔材料制备及含油污泥资源回收利用领域。本发明首先将含油污泥与无机矿物质混合后,经机械烘焙挤压装置挤压后,得到固体颗粒和水/油混合物;固体颗粒经脱脂和烧结得到多孔材料,过程中产生大量的有机气体,气体经收集后实现再利用;水/油混合物经水/油分离单元后实现水和油的分离,获得原油,实现原油的回收;水经循环回到含水率调节单元,或经废水处理单元后回到含水率调节单元。本发明所述的系统及方法不仅获得了可利用的多孔材料,同时能有效解决含油污泥的污染问题,能有效利用含油污泥中的固相和有机组分,还能回收部分原油,实现了含油污泥的无害化和资源化。
本发明公开了一种大尺寸电路密封空洞率的控制方法,属于电路密封工艺技术领域。该方法是在大尺寸电路封装过程中,采用垫片和弹簧夹对装配结构进行夹紧固定,包括:(1)准备封装原材料以对封装原材料进行预处理:所述封装原材料包括盖板和管壳;对所述管壳的预处理为依次进行的预烘焙和清洗处理,对盖板的预处理为清洗处理;(2)通过预装配形成装配结构,所述装配结构包括盖板、焊料环和管壳,所述垫片置于管壳下方,通过弹簧夹和垫片实现对所述装配结构的夹紧固定;(3)低温烧结封盖。本发明同时采用多个弹簧夹对管壳、盖板施压,从而使焊料均匀的浸润管壳焊封区,控制空洞率在20%以下。
为了改善粉末冶金零件的硬度、耐磨性,设计了一种汽车用粉末冶金不锈钢零件。采用316L气雾化不锈钢粉末为原料,经过配料、球磨、干燥、制粒、成形、球磨工艺成功制备了具有优异力学性能的汽车用粉末冶金不锈钢零件。其中,所研制的粉末冶金视镜底座各项性能指标均已达到进口件的相应的要求,可投入批量生产,实现了该零件国产化大批量生产。所研制产品具有一般不锈钢材料的金属颜色,具有表面光泽、致密无毛刺,其粗糙度均匀且美观,表明均已达到进口件的外观质量水平。所制得的汽车用粉末冶金不锈钢零件,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的汽车用粉末冶金不锈钢零件提供一种新的生产工艺。
为了改善再生WC‑Co硬质合金的硬度、耐磨性,制备了一种含Y2O3的再生WC‑8Co硬质合金。采用锌熔法回收的WC‑Co复合粉末为原料,Y2O3的添加能够显著提高硬质合金的硬度及抗弯强度,其能够提升硬质合金力学性能的机理是能够在烧结过程中抑制晶粒的长大及异常生长。Y2O3的添加能使YG8硬质合金的抗弯强度从1780MPa提高到了2120MPa。二次球磨工艺能够制得混合更为均匀的复合粉末。两种制备工艺的结合是所制得的硬质合金具有优异力学性能的关键。所制得的含Y2O3的再生WC‑8Co硬质合金,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的WC‑Co硬质合金提供一种新的生产工艺。
一种纳米增韧钕铁硼磁性材料及制备方法,其主要机制是在钕铁硼主相晶界上形成纳米复合物晶界相,实现无重稀土掺杂制备高矫顽力M、H档及添加少量重稀土制备SH档等稀土永磁材料。其中纳米材料采用等离子电弧法制备,粒径为5-80nm,其主要成分为Al、Cu、Cr、Co、Fe、Zn等金属元素及各种稀土元素。首先采用SC-HD工艺制备钕铁硼主相,其稀土含量Pr-Nd:经熔炼、氢破后,产品粒度由气流磨磨至3.5μm左右,在氩气保护氛围中,采用喷气式复合添加纳米添加剂,实现纳米添加剂均匀吸附于钕铁硼主相。在烧结过程中,纳米粉与主相形成了晶界,大幅度提高了钕铁硼的矫顽力,同时由于产品晶体成分均匀,机械加工性能也得到良好的提升,可以应用于更广泛的领域。同时该工艺过程简单,成本较低,适合于批量化生产。
为了改善不锈钢粉末冶金零件的硬度、耐磨性,设计了一种凝胶离心成型制备的TiC‑316L复合材料。采用316L气雾化不锈钢粉末为原料,经过配料、球磨、干燥、制粒、成形、球磨、凝胶离心工艺成功制备了具有优异力学性能的凝胶离心成型制备的TiC‑316L复合材料。其中,所研制的凝胶离心成型制备的TiC‑316L复合材料,强度高于普通压制成型的坯体,并且坯体具有机加工性,经真空脱胶烧结,1380℃保温1h可制备出316L‑TiC合金管,烧结体收缩均匀无变形。所制得的凝胶离心成型制备的TiC‑316L复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的TiC‑316L复合材料提供一种新的生产工艺。
为了改善粉末合金的硬度、耐磨性,设计了一种放电等离子烧结制备的钛基磷酸三钙陶瓷复合材料。采用硝酸钙,磷酸铵,氨水,钛粉为原料,所制得的放电等离子烧结制备的钛基磷酸三钙陶瓷复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,Ti/α‑TCP复合材料的抗压强度随钛含量增加而提高。在Ti/α‑TCP复合材料的高温烧结过程中,Ti与α‑TCP发生化学反应,温度越高,反应越复杂,在70Ti/α‑TCP中添加钛网作为骨架制备70Ti/α‑TCP/钛网复合材料,抗压强度提高,在烧结温度为870℃时抗压强度为632MPa。且具有优异的生物活性,可作为骨替换材料。本发明能够为制备高性能的钛基磷酸三钙陶瓷复合材料提供一种新的生产工艺。
为了改善粉末合金的硬度、耐磨性,设计了一种Ni基+WC等离子喷焊涂层。采用38CrMoAI,Ni45粉末,Ni55粉末,WC粉末为原料,所制得的Ni基+WC等离子喷焊涂层,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,Ni55喷焊层的显微硬度明显高于Ni45喷焊层,Ni45喷焊层的硬度不会对其他零部件产生过大的磨损,其热膨胀系数也居中,且与基体的热膨胀系数很接近,能有效减少热应力的产生,其热导率属于居中水平,保证了一定的导热性能。强化层硬度、热物性参数等综合性能良好,达到了对柴油发动机缸套内壁进行强化的效果。本发明能够为制备高性能的等离子喷焊涂层提供一种新的生产工艺。
本发明属于陶瓷新材料技术领域,具体涉及一种生物石墨烯碳化硅材料及其制备方法,原料包括碳化硅粉体、生物石墨烯和工具液;方法包括物料准备、制备生物石墨烯碳化硅生料、三轮调浆液磨、干燥消杀、烧结等步骤。本发明制备的生物石墨烯碳化硅材料重点解决目前国内外单层、双层、多层和少层石墨烯无法熔容在碳化硅烧结工艺中的问题。
本发明涉及一种磷酸铁锂和磷酸钒锂复合正极材料及其制造方法,复合正极材料由纳米钒源化合物、纳米磷源化合物、纳米锂源化合物和纳米铁源化合物为原料,纳米钒源化合物、纳米磷源化合物、纳米锂源化合物和纳米铁源化合物按照钒、磷、锂、铁元素摩尔比为1∶1-1.5∶1-2∶1-1.5的比例混合。本发明制得的磷酸铁锂和磷酸钒锂复合正极材料,其电化学性能好,加工性能优良,制造方法工艺和反应设备简单,条件容易控制。
为了改善钛合金的硬度,耐磨性,设计了一种Ti‑3Al‑5Mo‑4.5V合金。采用Ti粉、Mo粉和Al‑V中间合金粉为原料,所制得的Ti‑3Al‑5Mo‑4.5V合金,其硬度,致密化程度,抗弯强度都得到大幅提升。其中,Ti‑3Al‑5Mo‑4.5V合金,在高温变形时呈现典型的加工硬化及流变软化特征,流变应力随应变速率提高而增大,随变形温度提高而降低,变形后的组织为细小的等轴组织。本发明能够为制备高性能的Ti‑3Al‑5Mo‑4.5V合金提供一种新的生产工艺。
中冶有色为您提供最新的辽宁有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!