本发明公开了一种硫化铜矿生物堆浸系统封堆隔离的方法,操作步骤包括:在硫化铜矿生物堆浸过程中,根据堆浸系统的铁浸出量和产酸量,每浸出3~6层矿石后进行封堆隔离处理,在隔离层上再覆盖矿石进行生物堆浸;所述隔离层的平台部分采取“中和渣+土工膜”的封堆隔离方法处理,对于后续不再覆盖矿石的边坡铺上10~50cm中和渣后进行复垦,而对于后续将继续覆盖矿石的边坡暂不进行封堆隔离。本发明在有效控制堆浸系统中酸和铁浓度的同时,充分利用中和渣作为封堆隔离材料,大大提高了经济效益和环保效益。
本发明公开了一种硫化铜矿生物堆浸系统调控酸和铁的方法,在进行硫化铜矿生物堆浸时,当每层矿石铜浸出完全时,先铺一层石灰石颗粒,再在该层石灰石颗粒上面覆盖一层新矿石继续进行生物堆浸;当铜浸出再次完全后,再依次铺设石灰石颗粒层并覆盖新矿石,如此往复,进行硫化铜矿生物堆浸;所述石灰石颗粒的厚度为5cm~30cm,根据生物堆浸系统酸和铁浓度高于控制范围的程度来确定石灰石颗粒的厚度,当堆浸系统酸和铁浓度偏高较多时石灰石颗粒的厚度取大值,反之取小值;所述石灰石颗粒的粒径为1mm~20mm。本发明实现了在矿堆内调节铜矿堆浸系统的酸和铁平衡,将中和渣固定在矿堆内部,以大幅度减少中和渣量,明显提高经济效益和环境效益。
本发明公开了一种常压条件下在硫酸和硫酸铁溶液中高效氧化辉钼矿的方法,利用碘离子/碘单质化学催化特性,在常压条件下,在硫酸‑硫酸铁混合溶液中添加微量碘离子,可消除辉钼矿等含钼硫化矿物在常规酸浸过程中的遇到的钝化膜致密问题,在减少SO2烟气排放污染和同步分离铜钼的同时,实现钼精矿在湿法条件下的高效氧化,促使钼在酸浸渣中的高效富集。采用本发明制备方法,在催化氧化酸浸阶段可实现钼精矿的高效氧化以及铜钼分离;酸浸渣中,钼的氧化率大约98%,可直接外售或进入氨浸工序,效益可观。
本发明公开了一种碳质微细粒金矿的快速氧化方法,用于处理含有机碳0.5%‑8%、硫6%‑18%、微粒金占大多数且被硫化物包裹的难处理金矿,处理用水为含氯离子低于120mg/L的自来水,操作步骤是先配矿成含硫低于18%后进行湿式球磨至粒度‑0.038mm为90%‑95%;而后热压氧化;再把氧化后的矿浆从100℃在20~30min内快速冷却至60‑80℃后过滤、洗涤;最后将洗涤后的氧化矿浆用石灰调节至pH9.5‑10后在活性炭控制在40‑60g/L条件下进行碳浸氰化提金。该方法具有工艺流程短、处理快速、金的回收率高、成本低、适应性广的优点,可以减少甚至消除碳质金矿热压工艺中氯离子的“劫金”现象。
本发明公开了一种从低品位次生硫化铜矿中回收铜的方法,它采用浮选、堆浸、萃取、电积联合工艺,将低品位次生硫化铜矿经破碎与筛分,细粒级采用浮选法生产铜精矿,粗粒级采用堆浸—萃取—电积法生产阴极铜;与单一浮选工艺相比,该工艺因没有磨矿作业节省了占绝大部分磨矿所需的电耗和钢球成本,且经高压辊磨机处理后,矿石单体解离度高,有利于提高浮选时铜精矿品位;与单一堆浸工艺相比,该工艺矿石入堆粒度细、粉矿少、渗透性好,且经高压辊磨机处理后,矿石内部具有丰富的应力微裂纹,缩短了铜的浸出周期、提高了铜的浸出率。本发明具有操作简单、节能降耗、生产高效低成本、铜回收率高、环境友好、易工业化应用的特点,实现了铜的高效回收。
本发明公开了一种含砷含硫难处理金矿的热压回收方法,处理金矿含Au10?20g/t、硫4%?20%、铁20%?30%、砷0.5%?18%、碳酸盐5%?10%、铜≤0.8%,金80%以上被硫化物包裹;操作步骤:金矿经湿式球磨并调节浓度后预酸化;而后将矿浆热压氧化;进而将氧化后的矿浆浓密,溢流液返回预酸化工序;再将浓密底流加清水调浆至矿浆质量浓度25%?30%并控制液相中的Fe3+和硫酸浓度;随后加入硫脲进行酸性浸出,控制液相中的硫脲浓度为1‰?4.8‰,空气搅拌;最后经过滤洗涤、尾渣去尾矿库、贵液回收金、贫液补充硫脲后返回浸金前调浆。该方法具有金回收率高、流程短、生产成本低、生产处理无污染的优点。
本发明公开了一种铜电解液净化除杂的方法,先采用铋盐作为化学沉淀剂共沉淀脱除电解液中的砷、锑、铋并固液分离;而后利用氢氧化钠将所得固体沉淀物进行沉淀剂碱浸再生;再将所得除杂后液进行分段电积脱铜,脱铜操作采用不溶铅为阳极,不锈钢为阴极,脱铜后液返电解系统。该方法具有投资少、工艺简单、操作方便、脱杂效果好、无污染的特点,实现了开路铜电解液中砷、锑、铋等杂质的高效、低成本脱除,达到了铜回收和电解废液净化回用的目的。
本发明涉及一种涉及多晶硅的提纯,尤其是一种电泳辅助的太阳能级多晶硅提纯方法。其步骤为:将硅块放置于石墨坩埚中,开启中频炉感应加热至工业硅完全熔化;保持温度,加入造渣剂进行造渣除硼和金属杂质;造渣完成后,开启真空熔炼炉进行真空熔炼除磷和金属杂质;向硅液中施加直流电压,使金属杂质富集;最后进行定向凝固,得到6N级太阳能级多晶硅。本发明采用了造渣、真空熔炼和电泳相结合的方法进行除杂,成本低、环境友好且提纯效果明显。
本发明涉及废旧三元锂电池材料回收的技术领域,提供了一种废旧三元锂电池柔性气流脱粉方法。本方法的主要步骤包括:将废旧三元锂电池放入电池撕碎机中做初步撕碎,对挥发的气体做收尘处理,待电池撕碎后输送至风选振动机中做初步粉体分离以及隔膜风选,风选出的隔膜转移至隔膜料仓,筛选出的粉料进入物料粉仓,将筛选出的破碎料先经过磁选再进入二次破碎机,进行精破碎,最后进入气流脱粉机中进行柔性脱粉处理,分离出铜铝箔以及二次破碎粉料,二次粉料再输送至物料粉仓。本发明不需要对电池极片进行三次破碎以及研磨,避免了电池极片打卷产生的粉料夹带问题,并且能够柔性调节气流脱粉速度,提升电池脱粉效率。
本发明公开一种高纯碳酸钙稀土萃取皂化有机相的方法,按以下步骤进行:步骤一氨解,用氯化铵溶液溶解石灰;步骤二过滤氨解混合物,制备高纯碳酸钙用于皂化稀土萃取剂;步骤三碳化,通入步骤六皂化反应副产物二氧化碳,生成碳酸钙;步骤四过滤碳化混合液;步骤五干燥,制得高纯度碳酸钙;步骤六皂化,高纯度碳酸钙与含空负载酸性萃取剂的有机相发生皂化反应,澄清分相后,上层的有机相为皂化萃取剂。本发明工艺具有碳酸钙产品纯度高,Fe、Al、Si等杂质低,无酸不溶物,工艺简单,氯化铵循环利用等优点。使用此方法皂化与用液氨和液碱皂化一样,萃取剂均能达到理论的萃取能力,实现萃取分离的目的。
本发明公开了一种高效回收废旧铝基铅合金不溶阳极的方法,包括如下步骤:S1、将废旧铝基铅合金阳极破碎,干燥后,置于惰性气体保护的高温超重力装置中加热至250‑650℃,经100‑1000G的重量加速度分离后得到含铅粗铝和铅合金;S2、将步骤S1中得到的含铅粗铝置于醋酸溶液中酸洗1‑24h后取出,得到醋酸铅溶液和粗铝;S3、步骤S2得到的粗铝经水洗后得到金属铝。本方法处理流程简单,节能高效,对环境友好,可得到金属铝和铅合金。
本发明公开了一种湿法提铜过程中高铁电积贫液的处理方法,其工艺路线是将湿法提铜过程中的高酸高铁电积贫液采用旋流电积进行三段电积脱铜,随后采用离子交换、石灰乳中和和清水解析工艺,以直接高效回收电积贫液中的铜,实现对电积贫液中铜离子的深度回收和酸铁分离。本发明可大幅降低湿法提铜过程中高铁电积贫液处理时的环保处理成本,避免电积贫液中的铁离子返回堆浸系统而产生恶性循环,最终实现电积贫液的低成本、高效处理。
本发明提供一种从含铜酸性废水中回收铜、铁并产出石膏的方法,该方法不仅能够有效地回收含铜酸性废水中有价金属铜,而且能够充分利用含铜酸性废水中铁和硫酸根,以较低的成本生产氢氧化铁和石膏,同时避免或减小由此带来的资源浪费和环境影响。
本发明提供了一种从电池黑粉料回收有价金属并除有机的连续化生产方法,以电池黑粉为原料,所述原料电池黑粉中镍钴锰含量为25%~30%,钙含量小于2%,二氧化硅含量小于3%,铜含量小于3.5%,Fe含量6.5%,铝含量小于1%,有机物含量为3~5%,采用包括浸出、除铜、除铁铝、除有机、控制反应温度,控制反应PH,佐以水洗工艺,得到不含有机物的粗制镍钴锰可溶盐,本发明工艺简单,成本低,适合大规模生产。
本发明公开了一种稀土矿浸出母液连续处理系统,包括依序连接的母液池、第一除杂罐、除杂浓密机、第一沉淀罐和沉淀浓密机,还包括用于供应除杂剂、沉淀剂和絮凝剂的添加剂供应装置;所述第一除杂罐包括一个罐体,罐体的顶部安装有搅拌装置;所述罐体设置有进液口和溢流口,所述进液口设置在罐体侧壁的底部,所述溢流口设置在罐体侧壁的顶部;所述进液口连接有进液管;所述进液管中间安装有管道混合器,所述罐体的侧壁还设置有至少一个注液口;所述添加剂供应装置连接至所述管道混合器和注液口。本发明采用多个点位分散式注入除杂剂,避免过量除杂剂反应造成稀土损失率增加的缺陷,提高稀土回收率。本发明还公开了一种稀土矿浸出母液连续处理方法。
本发明涉及一种高硫高铁含砷难处理金精矿耦合提金工艺,按如下步骤与条件进行:生物氧化,调浆加入9K无铁的培养基和高耐酸耐砷菌种的浸矿微生物,然后进行两级生物氧化,控制温度和氧化时间;浓密洗涤,对第二级生物氧化矿浆进行浓密洗涤,逆流洗涤3~4级,向氧化液溢流石灰乳进行中和反应;浮选,加入木质素磺酸钠、黄药进行浮选;氰化,向浮选金精矿加入石灰乳、氰化钠和活性炭,控制氰化pH值、炭密度、氰化时间,得载金炭和氰化渣,载金炭入载金炭精炼系统提金。它可避免未氧化部分硫化物进入氰化系统,消除氰根和硫氰根进入生物氧化工段对未氧化部分含金硫化物的回收,具有生产成本低、投资小、设备简单、工艺简约耦合,生物氧化运行稳定、金综合回收率高、对环境友好等优点,适于高硫高铁含砷难处理金精矿提金应用。
本发明公开了一种黄铁矿包裹的精金矿的渣型控制处理方法,包括如下步骤:(1)将黄铁矿包裹的精金矿制得酸化矿浆;(2)将上述酸化矿浆加入CuSO4后进行热压预氧化,得氧化矿浆;(3)将上述氧化矿浆进行浓密洗涤,得底流氧化渣和溢流酸液;(4)将上述底流氧化渣进行调碱氰化;(5)将部分上述溢流酸液用针铁矿法进行沉铁和去除部分硫酸根;(6)将步骤(5)所得物料进行浓密得到底流和溢流液;(7)将上述溢流液返回步骤(1)中参与酸化处理;(8)将部分步骤(6)中所得的底流中的晶种返回步骤(5)进行针铁矿法沉铁,步骤(6)中其余的底流洗涤后堆至尾矿库;(9)将步骤(3)的底流氧化渣进行氰化浸出。
本发明涉及一种用含铜污泥生产铜精矿的方法,依次按如下工艺步骤与条件进行:间断加酸,控制整个反应过程溶液的pH值为约2.5,反应约100min,得到搅拌酸浸渣浆;向搅拌酸浸渣浆硫化钠溶液,搅拌约15min,得到硫化沉铜渣浆;按每立方米硫化沉铜渣浆加入捕收剂丁基黄药约12g及丁铵黑药约13g后搅拌3min,再加入起泡剂2#油5g,继续搅拌2min后粗选6min,得到铜粗精矿和粗选尾渣浆;接着分别将铜粗精矿精选5min,得到铜精矿和中矿1,再按每立方米粗选尾渣浆加入捕收剂丁基黄药5g及丁铵黑药5g后搅拌扫选,得到中矿2和扫选尾渣浆;加入石灰乳对扫选尾渣浆中和,搅拌50min且控制终点pH值为8,反应结束后固液分离,得滤液与滤饼。它具有生产线与工艺流程简约、生产总成本低、投资小见效快、能耗低、铜回收率高等优点。
本发明提供了一种从含钴废渣回收钴的连续化生产方法,以含钴废渣为原料,所述原料含钴废渣中钴含量为25%~30%,钙含量小于2%,二氧化硅含量小于3%,铜含量小于3.5%,Fe含量6.5%,铝含量小于1%,采用包括浸出、除铜、除铁铝、控制反应温度,控制反应PH,佐以水洗工艺,得到粗制钴盐溶液,还可以同时回收铜、铁,实现钴冶炼废渣的综合处治,本发明工艺简单,适合大规模生产。
本发明涉及一种含锌氰化贫液处理方法,包括如下工艺步骤与条件:硫化酸化反应,先向含锌氰化贫液加入可溶性硫化物,再加入浓硫酸进行酸化反应,调节溶液pH值,加入PAM,静置沉降,固液分离Ⅰ,分出沉渣Ⅰ、尾气和上清液,沉渣Ⅰ输往锌冶炼企业综合回收利用;中和沉淀,先向第一步产生的上清液加入碱,调节pH值至9.0~11.5进行中和沉淀,再固液分离Ⅱ,分出沉渣Ⅱ和尾水,沉渣Ⅱ与氰化尾渣一并处理,尾水返回氰化系统回用,尾气回收,通过负压将第一步产生的尾气送至吸收塔内,添加碱液,分出吸收液和排空净化气,吸收液返回中和沉淀,它具有高效去除氰化贫液中的Zn、Cu、Fe等金属、高效回收氰化物、有毒有害气体吸收处理、综合回收沉渣中Zn与Cu、工艺流程短、操作简单安全、易于实施等优点,适于黄金冶炼行业含锌氰化贫液的处理应用。
本发明公开了一种银电解液后液处理方法,先把银电解后液作为银电积液进入旋流电积系统进行第一次电积,再将低银液加入金属铜置换出粗银粉,随后将脱银液作为铜电积母液进入旋流电积系统进行第二次电积,最后把低铜液一部分返回银造液系统,其余的低铜液送环保车间处理。本发明一种银电解液后液处理方法具有工艺简单、操作方便、成本低的特点,可实现银电解后液中银、铜等有价金属的高效、低成本、高回收率直接回收。
本发明公开一种难处理金精矿与铜冶炼渣联合生物堆浸综合回收金和铜的工艺,该工艺首先将铜冶炼渣破碎,然后将低品位难处理金精矿裹覆于铜冶炼渣表面,矿粒固化后筑堆,矿堆经酸处理后进行生物堆浸,浸出液循环喷淋,富铜液利用常规萃取、电积工艺回收铜。堆浸渣经体系转型至碱性体系之后进行堆浸氰化提金,浸出液用常规炭吸附工艺回收金,该工艺可同时回收金、铜,设备简易、投资少、能耗低、成本低、易于实施。
本发明涉及一种铜矿酸性萃余液减量化和资源化的处理方法,它包括铁粉还原,预氧化处理+深度除杂+精密过滤+隔膜电解,即向装有酸性萃余液的反应器中加入氧化剂进行预氧化处理,去除水质中的有机质和残留的萃取剂,再向氧化后液加入铁粉进行常规铁粉还原,得产品铜和氧化预处理后的溶液;对氧化预处理后的溶液进行初步固液分离后加入重金属深度去除剂,去除残留重金属,得深度除杂后的滤液;将深度除杂后的滤液泵入电解槽用隔膜分隔成的阴极室,将纯水或稀硫酸倒入用同一隔膜分隔成的阳极室,持续向阴极室和阳极室内的电解液充入氮气进行精密过滤,得精密过滤的滤液;将精密过滤的滤液在上述电解槽通电进行隔膜电解,从阴极得到产品铁,阳极得到硫酸溶液。它具有工艺流程简洁,设备结构简单,投资少,减量化和资源化俱佳等优点。
本发明涉及萃取药剂提纯技术领域,尤其涉及一种高效分离主金属与杂质金属离子的萃取药剂提纯工艺。其技术方案包括以下加工步骤:步骤一:酯化反应:将壬基苯酚投入酯化反应釜中,升温至反应温度后添加乙酸酐,保温3h,降温,开启喷射泵,蒸出乙酸,获得壬基酚乙酯;步骤二:重排反应:将壬基酚乙酯和三氯化铝、四氯乙烯投入重排反应釜,获得氯化氢并将氯化氢集中收集待用;步骤三:水解反应:将收集的氯化氢打入,进行水解反应;步骤四:精馏提纯。本发明萃取提纯工艺复杂,多级反应处理,提高产物纯度,从而提高金属获得率,合成率高,对反应后产物回收利用,提高利用效果,有利于环保,且减少制备提纯成本,适合推广使用。
本发明公开了一种次生硫化铜矿生物堆浸的方法,在次生硫化铜矿筑堆后先利用矿山酸性废水或萃余液喷湿布菌,使微生物在矿石表面快速生长,实现次生硫化铜矿的快速浸出;随后的浸出过程分两个阶段:第一阶段利用浸出液萃取后的萃余液进行连续喷淋,酸浓度控制5~15g/L,总铁浓度控制5~15g/L,不需特别控制氧化还原电位;当铜浸出率达40~50%时进入第二阶段,该阶段浸出过程利用矿山酸性废水或矿山酸性废水与萃余液的混合液进行间歇喷淋,控制酸浓度3~6g/L、总铁浓度3~6g/L、氧化还原电位600~700mV。本发明在实现铜高效浸出的同时还可有效抑制黄铁矿的氧化,工艺参数控制简单,生产成本低,经济效益和环境效益显著。
本发明涉及一种去除金属硅中杂质磷和硼的方法,该方法包括以下步骤:将硅块装入中频感应炉石墨坩埚中加热熔化;向硅液中投入造渣剂,继续加热使造渣剂完全熔化;将带有通气孔道的石墨棒预热,待预热充分后将通气棒插入到硅液中,通气搅拌;待反应完全后,保温静置;将硅液倒入带加热功能的结晶器中凝固;待硅锭冷却后,去除硅锭表面渣块;将硅锭破碎、磨粉,对硅粉进行酸洗、清洗和烘干,得到提纯后的低磷、硼多晶硅。该方法除磷、硼效果好,降低了提纯多晶硅的成本。
本发明公开了一种具有重金属元素富集功能的工业废水样品采集装置,安装在样品瓶上,包括富集采样管、蠕动泵、进样管和废液瓶,进样管绕置在蠕动泵上,进样管的两端分别伸入样品瓶和废液瓶中,富集采样管由填充管、螯合树脂填充物和接头组成,填充管内填充螯合树脂填充物,填充管的两端安装接头,富集采样管通过其两端的接头接入进样管靠近废液瓶的位置。本发明还公开了相应的采集方法。本发明具有如下优点:能够有效实现重金属元素的富集采样,提高了元素分析的检出限;重金属元素的富集倍数可根据用户需要来调整;采集过程简单,易于操作;富集采样管可重复使用,成本低;该采集方法和火焰原子吸收测量配合,元素分析快速高效。
本发明公开了一种铜电积过程抑制阳极污染和酸雾生成的方法,先选取阻隔布制成一定大小的阻隔布矩形套袋和布条;而后将铜电积阳极板套入阻隔布矩形套袋中,用阻隔布条系紧后制成套袋阳极板;再将套袋阳极板与阴极板等间隔的放置于电积槽中进行铜电积。本发明一种铜电积过程抑制阳极污染和酸雾生成的方法具有操作方便、成本低的特点,可解决阳极溶解污染阴极并导致阴极铜铅超标的问题,能显著减少电积车间酸雾的生产,优化作业环境,具有明显的经济效益和环境效益。
本发明提供一种提高铜回收率的稀释萃取工艺,含铜溶液两级逆流萃取系统中,一级萃取的萃余液经过适当比例稀释后,再进行第二级萃取,萃余液利用隔油槽回收有机相,然后经石灰中和后达标外排。该工艺具有工艺流程简单、与现有工艺匹配性好、无需增加设备投资、不增加生产运行成本、不影响萃取工艺技术指标、可以有效提高铜的萃取回收率、减少铜的损失等优点。该工艺还可推广应用于含铜物料高酸浸出液萃取铜,含铜高酸浸出液循环浸出,定期开路出部分高铜高酸的浸出液,进行适当稀释后萃取铜,达到高酸浸出提高铜浸出率、低酸萃取提高铜萃取率的效果,可避免高酸浸出液石灰中和-萃取工艺带来的铜损失、石膏渣量大、铜萃取工艺不顺畅等问题,具有较好的推广应用前景。
本发明涉及一种高碳难处理金矿的处理工艺,按如下步骤与条件进行:预酸化,对金精矿调浆,加入硫酸进行预酸化,预酸化槽为三槽串联,连接各槽间的溜槽上安装泡沫隔离装置,1号槽酸化过程中通空气、添煤油,2、3号槽添2#油,通空气,控制酸化终点pH值,每槽酸化时间0.5‑1h,槽内搅拌线速度4‑5m/s;从溜槽处隔板分离隔离出部泡沫搜集至储槽压滤‑装袋,得高碳金矿和下部矿浆;热压氧化,下部矿浆入高压釜进行热压氧化,控制温度、氧分压、液固和反应时间;液固分离,将热压氧化下部矿浆进行液固分离,得氧化渣和氧化液;碳浸氰化,向氧化渣加入石灰,调节pH值,加入活性碳,进行CIL提金,它能有效地回收酸化槽内气泡,氰化金和金的综合回收率,具有工艺简约、易于操作、对环境友好等优点。
中冶有色为您提供最新的福建龙岩有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!