本发明属于液‑液萃取技术领域,具体涉及一种混合澄清槽。包括至少一个澄清槽,澄清槽包括一端设有混合室、潜室、另一端设有轻相小室、重相小室的澄清室;潜室位于混合室下方,轻相、重相从潜室进入混合室,搅拌为混合相并输送到澄清室;澄清室用于将混合相分离为轻相、重相,并分别送入轻相小室、重相小室,并从轻相小室、重相小室流出澄清槽;重相小室能够调节澄清室内的轻相、重相之间的界面高度;当混合澄清槽包括多个澄清槽时,每个澄清槽的潜室还能够分别与上一级澄清槽的重相小室、下一级澄清槽的轻相小室相连,这样可以扩展成多级的混合澄清槽。
提供一种红土镍矿湿法冶炼生产镍钴氢氧化物的方法,其特征在于,包括如下步骤:S1,加压浸出或常压浸出红土镍矿得到浸出矿浆;S2,对所述浸出矿浆进行预中和处理,控制终点pH值为1.1‑1.8;S3,对经过预中和处理的矿浆除铁铝,控制终点pH值为3.5‑4.2,过程中通入压缩空气;S4,对除铁铝之后的矿浆进行CCD洗涤;S5,对经过所述CCD洗涤的溢流进行深度除杂,控制终点pH值为4.8‑5.2,过程中通入压缩空气;以及S6,采用石灰乳对经过深度除杂的溢流进行沉淀,得到石膏‑氢氧化镍钴混合物,分离所述石膏‑氢氧化镍钴混合物,获得氢氧化镍钴产品。本发明将除铁铝置于CCD洗涤之前,省去除铁铝渣压滤工序;且利用石膏与氢氧化镍钴粒度差异显著,容易用固固分级装置进行分离,降低生产成本。
利用双面磨加工钕铁硼油泥废料制备再生烧结钕铁硼磁体的方法,属于烧结钕铁硼油泥废料的绿色回收和高效再利用技术领域。双面磨油泥蒸馏‑无机溶剂超声清洗‑有机溶剂超声清洗‑真空干燥‑掺杂纳米稀土氢化物粉末‑烧结。本发明具有流程短(以双面磨加工烧结钕铁硼油泥废料为原料直接得到烧结钕铁硼粉末进而制备烧结磁体)、高效(所制备磁体具有较好的磁性能)、环保(制备过程中不产生废酸、废液和废气)的特点,回收成本具有显著优势。
本发明提供了一种净化石煤酸浸液并回收铝、钾和铁的方法。所述方法包括:1)对石煤酸浸液进行冷却结晶,固液分离,得到明矾和分离液;2)调整步骤1)所述分离液的pH,然后调整氧化还原电位,反应后得到处理后溶液;3)加热步骤2)所述处理后溶液,控制溶液的pH和氧化还原电位,固液分离,得到铁沉淀物和分离液;4)对步骤3)所述铁沉淀物进行产品分离,得到铁产品和硫酸盐溶液,所述铁产品为氧化铁或氢氧化铁。本发明的方法净化了含钒溶液,有利于后续得到高纯的钒产品,而且得到了多种具有高附加值的产品,具有成本低、操作简单、清洁环保等优势。
本发明提供一种基于梯度功能阳极电解的高铜线路板废水处理方法,包括步骤:1)高铜废水进入梯度功能阳极电解槽进行电解,2)电解后废水进入诱导结晶沉淀槽,沉淀槽内放置有滤料,高铜废水在沉淀剂作用下发生诱导结晶;3)诱导结晶后的出水进入反渗透工序。本发明提出的方法,在梯度功能阳极电解和诱导结晶沉淀工序均对铜离子有回收作用,而且电解产物超细铜粉可用于贱金属浆料制备,附加值高;电解法对有机物有显著去除,结合第二步的诱导结晶,能够保证进入反渗透的有机物浓度较低,满足反渗透长期运行的要求。铜得到了回收,废水得到了净化,满足回用要求。
本发明涉及一种含铬废渣生产铬酸盐的方法。所述方法将经过预处理的含铬废渣在碱性溶液中与氧化剂反应,反应液经除杂后蒸发结晶,固液分离得到铬酸盐产品。本发明所指的含铬废渣主要为含氢氧化铬的废渣,具体指在冶金、化工、制药、轻工等工业过程中产生的工业含铬废料,其中铬的主要赋存状态为三价铬盐、氢氧化铬或其水合物。本发明工艺流程短,条件温和,设备腐蚀小,工艺成本低。本发明既实现了含铬废渣的循环再生,解决了环境污染,又开发了生产铬酸盐的新原料,创造了经济价值。
本发明公开了一种处理除铁铝后液的方法,所述除铁铝后液中含有氯化镍和氯化钴,所述方法包括:(1)将除铁铝后液与第一氢氧化钙溶液进行混合,以便得到镍钴沉淀后矿浆;(2)将所述镍钴沉淀后矿浆进行浓密处理,以便得到沉镍钴溢流和沉镍钴浓密矿浆,并将所述沉镍钴浓密矿浆的一部分进行压滤,以便得到氢氧化镍钴滤饼;(3)将所述沉镍钴浓密矿浆的另一部分与第二氢氧化钙进行混合,以便得到混合矿浆,并将所述混合矿浆返回步骤(1)替代所述第一氢氧化钙溶液与所述除铁铝后液进行混合。采用该方法可以显著提高沉镍钴浓密矿浆的沉降性能,从而可以得到含水率低的氢氧化镍钴产品。
本发明公开了一种浓密机储矿量的在线检测方法,该方法包括:根据压力传感器所测到的一组压强值p,来拟合浓密机底部压强分布曲线,并以此获得浓密机底部任意点的稳态等效干矿高度函数;根据每一压力传感器与溢流水面的距离及其安装处距浓密机中心轴线的水平距离之间的关系式,对浓密机底部任意点的稳态等效干矿高度函数进行变换,获得变换后的浓密机底部任意点的稳态等效干矿高度函数;利用变换后的浓密机底部任意点的稳态等效干矿高度函数沿浓密机径向进行积分运算,来计算整个浓密机内的储矿量。通过采用本发明公开的方法,节省了长期人工取样的成本,降低了设备负荷过载造成的压耙等生产事故发生的几率,提高浓密机运行效率。
一种镍钼矿选冶尾矿微晶玻璃及其制备方法。以镍钼矿选冶尾矿为主要原料,以硅石或石英砂(SiO2)、石灰石或方解石(CaCO3)、纯碱(Na2CO3)、氧化铝(Al2O3)、碳酸钾(K2CO3)、氧化镁(MgO)、氟化钙(CaF2)为辅助原料;制备方法:将镍钼矿选冶尾矿和辅助原料粉碎过20目筛,在混料机中混合均匀得到基础配合料,1450~1550℃温度范围内熔融均化、澄清得到合格玻璃液;然后玻璃液通过浇注成型或水淬形成基础玻璃板或粒料;最后,基础玻璃板或粒料装入模具后经晶化热处理,即可得到镍钼矿选冶尾矿微晶玻璃。本发明制备工艺操作过程简单,既拓展了镍钼矿选冶尾矿的资源化综合利用途径,又减轻了尾矿对环境的污染。
本发明公开了一种离心萃取器,包括有电机、导流体总成、转鼓和外壳,所述的导流体总成包括有导流体,所述导流体为中心对称的结构体,该导流体内设置有隔板并将导流体分隔成入口腔和出口腔,所述隔板内设置有以导流体的旋转轴线为中心作中心对称分布的多个轻相导流孔,该轻相导流孔的入口端与入口腔的中心附近连通,轻相导流孔的出口端穿出导流体外并与轻相出口连通,所述的隔板上设置有连通入口腔和出口腔的多个第一重相导流孔,该多个第一重相导流孔以导流体的旋转轴线为中心作中心对称分布。本发明具有结构设计合理,整体动平衡性便于精准加工,且动平衡性好,导流体在高速运转时振动少,两相分离界面控制稳定,萃取分离效果好,同时本发明还适用于一些难分离的物料高速萃取分离。
本发明把稀土分离中多组分三出口或多出口工艺的设计方法引入到单一纯产品分离段,建立了二元三出口或多出口工艺的设计方法。从而在一套分离工艺过程中,同时获得某一种元素或两种元素的多种规格的产品,中间出口可以在一定范围内,根据市场需求随时调整产品结构,同时通过中间出口的设立,可增大设备生产能力,降低单位产品单耗,或在不改变处理量时,获得更高纯度的产品。本发明的设备投资少,工艺简洁灵活,既适合用于稀土分离工艺的设计,也能用于现有工艺的技术改造。
本发明公开了从硫酸镁溶液中回收镁的方法,包括以下步骤:浓缩硫酸镁溶液,得到镁离子浓度达到70~85g/l的浓缩的硫酸镁溶液;将浓缩的硫酸镁溶液与氨水混合,以得到含有氢氧化镁沉淀的硫酸镁溶液;过滤含有氢氧化镁沉淀的硫酸镁溶液,分别得到氢氧化镁沉淀和滤液;和用氢氧化钙和/或氧化钙对所述滤液进行苛化,得到含有氢氧化镁沉淀和硫酸钙的浆液,并生成氨。根据本发明从硫酸镁溶液中回收镁的方法,能够高效地从硫酸镁溶液中回收氢氧化镁。
本发明提供一种利用电解锰渣制备建筑材料的方法,它包括以下步骤:(1)预处理:在电解锰渣中掺和添加剂,加水充分搅拌,露天反应1~7天,所述的添加剂为:石灰、石膏与高岭土的混合料。(2)在经过预处理后电解锰渣中,再添加水泥、沙石粗集料、沙石细集料及及选择组分引气剂,加水混合均匀,形成混合料;(3)将混合料装入模具,在压力成型机上振动加压成型,脱模;(4)砖坯自然养护14~28天后,即可制得电解锰渣建筑材料成品。该技术工艺方法简单,产品质量高,生产成本低,具有良好的社会、经济和环境效益。
一种低品质红土镍矿综合利用生产镍铁的方法,属于红土矿综合利用技术领域。红土镍矿原矿经过焙烧、破碎、筛分、磨矿后加入焦粉或者煤粉,按照一定比例与粘结剂混合,混合后的物料经过冷压制块,再将冷压块进行养护以提高强度。达到一定强度的红土镍矿冷压块与焦碳按一定比例加入竖炉中,同时向竖炉中鼓入热风和氧气。红土镍矿冷压块在竖炉内被还原,生成铁水、煤气和熔渣。铁水经过脱硫、脱磷后用于生产镍铁合金钢或不锈钢;煤气经过除尘净化后作为竖炉空气预热的燃料或者并入煤气管网;熔渣经过水淬后作为水泥的原料出售。优点在于,工艺流程简单,处理能力强,对红土镍矿的综合利用率高,能够提取红土镍矿中的铁、镍、钴等多种元素。
本发明涉及一种钒渣加压浸出清洁生产钒酸钠铬酸钠的方法,该方法包括以下步骤:(1)配料:将钒渣与NaOH溶液混合,得到反应物料;(2)反应:钒渣在NaOH溶液中与氧化性气体在高压下进行氧化反应,反应后得到含NaOH、Na3VO4、Na2CrO4及水溶性杂质组分的溶液及富铁尾渣的固液混合料浆;(3)固液分离;(4)除杂;(5)钒酸钠结晶;(6)铬酸钠结晶。该方法易于操作且安全性好;操作温度大大低于传统提钒工艺温度,能耗小,且实现钒铬高效共提,钒铬提取率均高于95%。
本发明涉及一种工业上粗制氢氧化钴浆化洗涤的方法,采用一段压滤+一段浆化洗涤+二段压滤+二段浆化洗涤+三段压滤等相关浆化洗涤工艺基本流程,通过优化氢氧化钴浆化洗涤工艺,采用“沉钴前液+生产新水”两段混合浆化洗涤模式,取代传统单段生产新水浆化洗涤工艺,即在使用生产新水对氢氧化钴浆化洗涤之前,创造性另新增使用一段沉钴前液对氢氧化钴进行预浆化处理,使氢氧化钴产品中过量的氧化镁固体颗粒继续进行沉钴化学反应,促使氧化镁中镁由固体转移至溶液中,从而实现氢氧化钴产品深度除镁的目的,大大改善了粗制氢氧化钴浆化洗涤效果,最大程度降低了氢氧化钴产品中镁杂质含量,进一步有效地提高了粗制氢氧化钴产品钴品位。
本发明涉及一种从含镍钴锰的电池中间料液中分离镍钴锰的方法,所述方法包括如下步骤:(1)对所述料液进行化学除杂,得到水相1和含铁铝渣;(2)将步骤(1)得到的水相1使用萃取剂A进行锰萃取,得到锰负载有机相和水相2;(3)将步骤(2)得到的水相2使用萃取剂B进行镍萃取,得到镍负载有机相和水相3;(4)将步骤(3)得到的水相3使用萃取剂C进行钴萃取,得到钴负载有机相和水相4;(5)对步骤(4)得到的水相4进行硫酸钠晶体富集分离,得到硫酸钠产品,废水经过处理后达标排放,其中,所述镍萃取中使用的萃取剂B包括一种羧酸萃取剂。通过本发明提供的方法,可以将含镍钴锰的电池中间料液中的镍钴锰实现分离萃取回收,且萃取剂B对镍的萃取高效,酸碱耗量少,运行成本低。
针对现有浸矿菌株在低温环境下氧化活性低、生长繁殖速度慢等问题,本发明提供了一株耐低温菌,该菌株可以在10℃时生长繁殖速度快,氧化亚铁的速率可以达到1.27g/L·d。该菌株可用于从含铁或硫化物的矿石中回收铀、铜等金属,也可用于污水处理。
本发明涉及一种萃取色层分离净化钴溶液的方法,其步骤如下:(1)首先把P507萃淋树脂装入萃取色层柱中;(2)然后P507萃淋树脂柱用钴溶液淋洗进行加料;(3)对萃取钴的P507萃淋树脂柱进行淋洗;(4)再用酸淋洗液把P507萃淋树脂柱中的钴淋洗到淋洗液水相中;(5)最后用色层树脂再生溶液进行淋洗、再生;进行上述所有操作的温度在10-40摄氏度之间。用本发明的方法进行钴回收,钴回收率大于95%,产品质量高、稳定,最终产品金属钴的纯度达到4N以上。
本发明公开了一种基于AHM‑熵权‑VIKOR模型的废线路板利用处置技术综合评价方法。该方法首先建立完善废线路板利用处置技术综合评价指标体系,全面考虑技术性能、资源能源、经济效益、环境影响、社会健康五个影响方面;其次,确定指标的核算方法并进行数据收集处理;再次,利用AHM确定指标的主观权重;然后,利用熵权法确定指标的客观权重,并进一步得到指标的主客观综合权重;最后,通过VIKOR评价不同废线路板利用处置技术的综合表现。本发明能够全面客观地评价废线路板利用处置技术的优劣情况,有助于废线路板利用处置行业的技术筛选升级。本发明适用于对废线路板利用处置技术进行综合评价。
本发明涉及废脱硝催化剂回收利用领域,公开了一种废脱硝催化剂的处理方法、钛钨粉和脱硝催化剂及其制备方法。所述废脱硝催化剂的处理方法包括以下步骤:1)将废脱硝催化剂进行粉碎处理,得到粉碎后的物料;2)在pH为4以下的条件下,在溶剂存在下,将粉碎后的物料与氟化物进行接触。该处理方法简便高效,选择性强,且仅需一步反应即可同时去除多种杂质。所得钛钨粉中主成分钛钨之外的杂质含量极低,品质优良。
本发明提供了一种亚微米级氧化钪的制备方法。该方法包括:将第一羧酸萃取剂‑有机溶剂混合溶液和氨水进行第一皂化反应,得到第一水‑油乳液;采用第一水‑油乳液对含钪离子溶液进行萃取处理,得到钪负载有机相;将第二羧酸萃取剂‑有机溶剂混合溶液与氢氧化钠水溶液进行第二皂化反应,得到第二水‑油乳液;其中氢氧化钠水溶液相对于第二羧酸萃取剂‑有机溶剂混合溶液过量添加;将钪负载有机相与第二水‑油乳液进行沉淀反应,得到氢氧化钪沉淀;将氢氧化钪沉淀进行煅烧,得到亚微米级氧化钪。上述方法能够有效控制氢氧化钪微颗粒的尺寸和形态,进而得到了亚微米级的氧化钪粉末。
本发明提供了一种含氢氧化稀土和稀土碳酸盐的稀土复合化合物及其制备方法。该稀土复合化合物含氢氧化稀土和稀土碳酸盐,且以稀土氧化物的摩尔量计,氢氧化稀土占稀土复合化合物中稀土总量的摩尔比例为30%~95%,其余为稀土碳酸盐。通过向稀土盐溶液同时或先后分步加入包含钙和/或镁碱性化合物的第一沉淀剂和包含铵、钠、钾中至少一种元素的碳酸盐和/或碳酸氢盐的第二沉淀剂,然后在稀土盐溶液中的稀土沉淀后进行固液分离,以获得稀土复合化合物。获得的稀土复合化合物中稀土含量高,过滤性能好,易被酸溶解,减少了溶解酸的用量。
本发明公开了从粉煤灰中溶出铝的方法,包括:将所述粉煤灰与盐酸混合进行常压溶出处理,以便得到第一浆液;将所述第一浆液进行浓密分离处理,以便得到浓缩浆液和第一含铝溶液;将所述浓缩浆液与盐酸混合进行加压溶出处理,以便得到第二浆液;将所述第二浆液进行固液分离处理,以便得到第二含铝溶液;以及将所述第一含铝溶液和所述第二含铝溶液合并。采用该方法可以获得较高的铝溶出率,同时可以显著降低加压设备的数量或规格从而大幅降低基建投资,提高项目的经济效益。
本发明提供了一种同时控制液固比和浸洗完成液浓度的逆流串级浸洗方法及系统,所述方法在现有的逆流串级浸洗方法的基础上将逆流串级浸洗过程中当前批第n级浸洗得到的浸洗液分为两部分:第一浸洗液和第二浸洗液,所述第一浸洗液用作后一批第n‑1级浸洗的部分浸洗剂,所述第二浸洗液用作后一批第n级浸洗的部分浸洗剂;其中,n为正整数,且n不大于所述逆流串级浸洗的浸洗级数,当n为1时,所述第一浸洗液为浸洗完成液,用于逆流串级浸出的物料为待浸洗物料。所述方法和系统能够同时调控浸洗过程中的液固比和浸洗完成液的浓度,并且操作简单,工业实施难度小,适用范围广。
本发明公开了一种从铜渣中分离有价金属的方法,包括:(1)将铜渣与粘结剂进行第一混合造球,得到铜渣球团;(2)将铜渣球团进行干燥处理;(3)将经过干燥处理的铜渣球团进行氧化焙烧处理,以便将铜渣中的铁橄榄石转化为氧化铁;(4)将经过氧化焙烧的铜渣球团与含有还原剂、添加剂和粘结剂的混合料进行第二混合造球,得到球团物料;(5)将球团物料进行还原焙烧,以便得到还原后的球团以及含有氧化锌和氧化铅的烟气;(6)将还原后的球团进行破碎,得到含有金属铁粉和尾渣的混合物;以及(7)将含有金属铁粉和尾渣的混合物进行磁选,分别得到金属铁粉和尾渣。该方法可以有效从铜渣中分离出铁、锌和铅,并且得到的金属铁品位较高。
本发明提供了一种废旧锂离子电池正极材料中金属组分的混酸浸出及回收方法,将废料粗碎、干燥处理,用含有还原剂的混合酸进行预浸出,得到的预分离渣球磨后进行一次、二次浸出,将一次浸出液、二次浸出液与预浸出液混合并调整pH、抽滤得到氢氧化铝和含钴含锂余液,含钴含锂余液在高温下调整pH、抽滤得到氢氧化钴和含锂余液,含锂余液高温浓缩,加入饱和碳酸钠溶液,得到高纯碳酸锂,铝箔回收;本工艺采用混合酸浸出剂,浸出效率高,可逐步获得高纯金属铝、氢氧化铝、氢氧化钴、高纯碳酸锂(纯度达99.9%),实现了废旧锂离子电池中高值金属的高效回收、整体回收、协同回收,具有良好的应用前景。
本发明提供一种含铜矿石的溶浸处理方法,其中包括以下步骤:(1)采用硫酸铵作为固相反应物,与经粉碎磨细后的含铜矿石充分混合后焙烧;(2)将上述固相反应的产物转至热水中搅拌浸取后过滤;(3)根据矿石成分对滤液进行分离提纯。上述方法在常压以及较低反应温度下,用硫酸铵作为反应物,使之与矿石中所含的铜等金属进行固相反应,然后通过清水将铜转移(溶浸)至溶液中,便于进一步的分离精制,并最终获得目的产物。矿石溶出反应过程分解出的氨以及溶出浸取液分离后剩留的硫酸铵溶液,将分别进行回收并循环使用,从而形成系统内原辅料的自循环,使硫酸铵的损耗降到最低限度。相对于原有处理方法,本发明的含铜矿石的溶浸处理方法具有环境污染小,能耗低,生产成本大大降低的优点。
本发明公开了一种拜尔赤泥水泥速凝剂,其原料重量配比为:拜尔赤泥烧结熟料∶萘磺酸甲醛缩聚物(FDN)∶三乙醇胺(TEA)∶拜尔赤泥∶粉煤灰∶外加剂=47~55%∶6~12%∶0.5~1.2%∶15~20%∶10~15%∶5~15%。所述的外加剂是指半水石膏和/或石灰。该速凝剂按照下列方法制备,先将拜尔赤泥烘干制备成拜尔赤泥烧结孰料,再按重量比例称取各原料组份,将称好的各原料组份混合、破碎、粉磨,过200目筛,包装,制成拜耳赤泥水泥速凝剂。本发明的凝结时间不仅能符合国家建材现行标准,而且降低了水泥速凝剂的生产成本,使试件28d抗压强度比未添加拜尔赤泥水泥速凝剂的时间强度提高至85%以上,为氧化铝行业拜尔赤泥综合利用探索出了又一可行之路。
中冶有色为您提供最新的北京北京有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!