一种十字花科育苗基质,由以下重量百分比的原料均匀混合组成:脲醛树脂泡沫粒子60~75%,酒糟粉粒25~40%;所述酒糟粉粒的制备方法:在酒糟里添加VT-好氧发酵菌,VT-好氧发酵菌与酒糟的质量比为1:2000,采用大堆发酵7~10天,之后干燥粉碎,得到酒糟粉粒。本发明的脲醛树脂泡沫为粒状,除了脲醛树脂泡沫本身的孔隙外,脲醛树脂泡沫粒子之间存在大量孔隙,便与保水、透气、生根、出牙,同时减少脲醛树脂泡沫的使用量以及方便和酒糟粉粒均匀混合;使用酒糟粉粒代替草炭不但减少了酒糟固体废弃物的排放同时解决了对草炭的过度依赖,使可持续发展成为可能。
本发明涉及一种铸造用陶粒砂及其制备方法,其中,所述陶粒砂包括以下重量配比的化学组分:二氧化硅含量35‑65份,三氧化二铝含量30‑50份,氧化铁含量1‑10份,二氧化锰含量1‑4份,三氧化二铬含量2‑8份;方法包括:粉磨并检测原材料化学成分及其含量,再依次进行配料、制球、筛分、烧结和分级,得到成品。本发明制备的陶粒砂导热性和耐火度高,符合铸造用砂要求,可用于铸造铸型生产,替代硅砂、铬铁矿砂等,降低铸造行业固体废弃物排放量,提高铸件质量。
本发明提供一种蓄热块、其制备方法及蓄热温室大棚,属于农业设施设备技术领域。蓄热块由工业矿渣、固化粘结剂、比热增强剂及蓄热增强剂混合后,模压成型,制成球状或类球状的块体。一方面,回收利用了大量的工业矿渣,有效地降低了蓄热成本,降低固体废物处置成本。另一方面,将该蓄热块作为蓄热材料,无规则填充于温室大棚的蓄热墙体和/或框架中,相邻的蓄热块之间难以完全贴合,形成大量的不规则分布的孔道,大幅度提高了热量交换的面积,当温室大棚内的温度升高时,蓄热块快速地吸收温室大棚内的热量,并利用相变材料的蓄热原理,将热量储存于蓄热块中,而当温室大棚内温度降低时,储存于蓄热块中的热量被释放,调节温室大棚内的温度。
本发明公开了一种利用偏硼酸钾制备硼氢化钾的方法,先将偏硼酸钾加入到过量甲醇中,反应得到四甲氧基硼钾的溶液;蒸馏后得到四甲氧基硼钾固体;然后加入到氢化钠/白油分散体系中,搅拌,并升温至220℃~300℃,其中四甲氧基硼钾与氢化钠的摩尔比为1.08~1.10,反应的升温速度为8~12℃/min,反应60min~300min,得到硼氢化钾、甲醇钠/白油分散体系;反应结束后10℃/min降温至0℃;保温1~2h;萃取即得。本发明将废料偏硼酸钾转化为四甲氧基硼钾后,通过与氢化钠进行高温缩合反应得到硼氢化钾,可以实现偏硼酸钾的循环利用,稳定提高至80%以上。
本发明公开了一种具有油水分离功能的粉煤灰修饰材料的制备方法,其特征是以固体废弃物粉煤灰为表面修饰材料,仿生海洋贻贝足丝蛋白的生物黏附作用和荷叶效应,经多巴胺自聚合、粉煤灰黏附、疏水改性而制成的一种具有特殊润湿性油水分离材料。本发明所制备的油水分离材料对各种油/水混合物分离效率可达95%以上。本发明工艺原料低廉易得、工艺简便易操作且制备在室温下进行,产物具有良好的油水分离功能、耐受性和循环使用性,可在水面油污染、化工以及食品生产等领域得到应用。
本发明公开了一种工业危险废弃物等离子熔融固化处理装置,包括原料干燥与输送装置、熔融装置、等离子喷枪、热交换器和烟气处理装置;原料干燥与输送装置的出口与熔融装置的入口连接,熔融装置上安装有等离子喷枪,熔融装置的出口与热交换器的入口连接,热交换器的出口与烟气处理装置的入口连接。本发明通过原料干燥与输送装置、熔融装置、等离子喷枪、热交换器、烟气处理装置的配合,实现了快速处理废弃物,克服了传统固废处理装置效率较低的难题;通过设置等离子喷枪,确保了平稳进行固化反应,弥补了传统固废处理装置稳定性差的缺陷;通过设置热交换器和烟气处理装置,满足了排放要求,解决了传统固废处理装置污染较重的问题。
本申请涉及一种复合再生轻集料预拌混凝土及其制备方法。现有的多相复合轻集料混凝土在应用中会产生资源浪费、不环保,(列如:陶粒颗粒、聚苯颗粒等),而且保温效果较差。本申请提供一种复合再生轻集料预拌混凝土,包括:水泥100~350份、粉煤灰30~150份、干沙/炉渣工业废渣100~250份、胶粉1~16份和固废聚氨酯泡沫塑料25~70份。在应用中保温性能较好,轻质、抗压强度较高,防火性能优良,整个混凝土的制备过程也较为简单。同时解决了固废聚氨酯泡沫塑料掩埋、焚烧社会处理问题,将固废聚氨酯泡沫塑料回收利用;既有效的减少环境污染又保护了生态平衡,并且降低了生产成本。
本实用新型提供一种永固紫离心母液资源化处理系统,属于永固紫生产技术领域。依次设置邻二氯苯蒸馏釜、沉渣池、永固紫打浆罐及永固紫过滤洗涤装置,永固紫离心母液首先被送入邻二氯苯蒸馏釜中,蒸馏并回收邻二氯苯。釜底残渣则排入沉渣池中,冷却静置分层。位于沉渣池底层的固体渣被送入永固紫打浆罐,加入邻二氯苯,控制温度,打浆。然后在永固紫过滤洗涤装置中,依次经过压滤、邻二氯苯洗涤、拉开粉洗涤与热水洗涤,进行精制,回收永固紫。该永固紫离心母液资源化处理系统,资源化回收利用了永固紫离心母液中的邻二氯苯组分和永固紫组分,从而降低外排固体废弃物的总量,提高永固紫的单位产率。
本发明属于陶瓷材料领域,涉及一种利用粉煤灰、电石渣制备的气孔率可调的多孔陶瓷及制备方法。本发明以工业固废粉煤灰、电石渣为原料,添加少量高岭土和钾长石作为烧结助剂,经压制烧结,得到多孔陶瓷。当添加总量为10%的高岭土和钾长石时,固废掺比可高达90%,大大提高了工业固废,尤其是粉煤灰、电石渣在配料中的比例,实现以废治废资源化综合利用、拓展循环经济产业链的目的。所得多孔陶瓷的总气孔率为30%‑52%,体积密度为1.2g/cm3‑1.8g/cm3,吸水率为20%‑40%,压碎强度为0.2MPa‑14MPa,可用于过滤,保温,隔音等方面。
本发明涉及一种利用转移氢化法由氧化苦参碱制备苦参碱的方法,属于天然药物化学技术领域。该方法是先向氧化苦参碱的极性溶液中加入氢源和催化剂,于40℃‑100℃回流5小时‑48小时;减压浓缩至50℃热测相对密度为1.02‑1.06;浓缩液采用极性2.0‑4.5的不溶于水的有机溶剂进行萃取;萃取液经蒸发、结晶、离心分离、干燥,得到白色晶体苦参碱。本发明工艺方法操作简便,成本低廉,适合工业化生产;可以避免产生金属还原法带来的固体废弃物对环境造成的污染,环保效益显著;采用固体催化剂,反应后易于从反应体系中分离;采用本发明适用的氢源,反应中除了目标产物,其它产物都是气体,随时从体系中溢出,提高反应效率。
本发明涉及化工废品无公害处理领域,尤其涉及一种油污泥环保处理工艺。该工艺是将污油泥定量送入稀释池,加入一定量的水稀释、搅拌、加热至60℃后自流进均质池,在均质池再加热至80℃后进入卧螺机分离出油水混合物及固体污泥,固体污泥通过凉晒后出厂可用来铺路或烧砖。油水混合物进入油水分离器,分出油和水,油相进入集油池,再用泵输送至集油罐,水相进入集水池,用泵输送至带式压榨过滤机进一步净化水,净化后的水直接自流进消防水池以便循环使用。该工艺具有操作简便、环境无公害、原油提取率高等优点,并且分离出污泥和水相能够得到二次利用,具有一定经济效益的同时还达到了环保的目的。
本发明属于催化吸附领域,公开了一种类固相法制备NaX分子筛的方法,使用固体原料为起始物种,研磨后加入极少量碱溶液晶化,得到的样品经洗涤、干燥后得到NaX分子筛,固体原料包括硅源、铝源和晶种。本发明提供了一种制备NaX分子筛的方法,主要解决了传统合成工艺路线长、模板剂用量多、用水量多、合成周期长的问题,此方法工艺简单,只需要简单研磨,晶化,洗涤,干燥四步;不需要制备导向剂,不需要多步加料和搅拌,不需要模板剂,不需要陈化制备初始凝胶,合成效率高且不产生大量废水,为合成NaX分子筛提供了一种简便、经济、环保的新方法。
本发明涉及的一种以固体废弃物为原料制备ZSM‑5分子筛的方法,尤其涉及一种利用粉煤灰制备ZSM‑5分子筛的方法。本发明不涉及强碱及高温熔融过程,工艺路线短,操作简单,不外加硅源,利用粉煤灰为原料直接制备ZSM‑5分子筛,从源头降低了经济成本,具有广阔的应用前景。本发明以粉煤灰为原料,包括煤气化工段及燃煤电厂排放的粉煤灰,经酸处理后的固体物无需专门提取硅和铝元素,也无需除碳,作为原料直接制备得到ZSM‑5分子筛。本发明中碳的存在起到了扩孔和扩大比表面积的效果,合成后的ZSM‑5孔容、比表面积较常规除碳的工艺相对较大。
本发明公开了一种6‑乙硫基‑3‑庚烯‑2‑酮的合成方法,属于化学合成技术领域,包括以下步骤:以3﹣乙硫基丁醛和丙酮为原料,在溶剂和催化剂存在下一步反应得到6﹣乙硫基﹣3庚烯﹣2酮,所述催化剂为两性固体氨基酸催化剂;本发明原料转化率>98%,产物选择性≥85%;本发明采用的两性固体氨基酸催化剂,与已报道的含氮有机碱和酸性化合物的组合式催化剂相比,性能更稳定;本发明使用固体氨基酸催化剂,在反应结束后,可通过简单过滤方式进行回收,降低了生产成本,减少了三废排放量;本发明在后处理阶段,通过蒸馏回收溶剂和丙酮后,得到粗产品,后处理简单,溶剂和原料回收利用。
工艺流程简述 将二辛基氯化锡加入水解反应釜内,从高位槽加入正庚烷,蒸汽加热至 65℃,开始滴加10%浓度的碱溶液,大约3小时加完;静置分层,上层转至二次反应釜中,下层分离出的水相加入固体离子膜烧碱,反复套用,多次套用在水相中产生氯化钠固体,将水相离心,分离出氯化钠的固体。再滴加碱溶液在二次反应釜 50℃反应2小时,结束后静置、分层;转至蒸馏釜,蒸出正庚烷(98℃)后,离心,在离心过程中水洗。滤饼经烘干、粉碎、计量、包装为产品。离心废水送至污水处理装置处理。反应涉及的方程式为(以二辛基氯化锡计反应转化率99.9%,收率为99.6%):
本发明属于陶瓷材料领域,涉及一种利用粉煤灰制备的贯通气孔多孔陶瓷及其制备方法。本发明以工业固废粉煤灰为原料,以碳粉为造孔剂,添加少量的高岭土和钾长石作为烧结助剂,经球磨混合,干压成型,高温烧结得到多孔陶瓷。本发明所述方法固废掺比最高可达90%,其中,当碳粉掺比5%时粉煤灰的掺比可达90%,大大提高了工业固废粉煤灰在配料中的比例,达到以废治废资源化综合利用、拓展循环经济产业链的目的。所得多孔陶瓷的总气孔率为38%‑56%,体积密度为1.1g/cm3‑1.6g/cm3,吸水率为24%‑50%,可用于高温烟气、污水等的过滤,拓宽了工业固废再利用制品的应用领域。
一种海绵城市污水处理系统,该系统包括第一输送装置、分离装置、沉砂池、氧化池、微过滤器,所述沉砂池内侧靠上部的位置水平安装有格栅板,以将沉砂池分层格栅室、沉降室,第一输送装置右端与格栅室连通,第一输送装置左端与分离装置连通,分离装置以将筛上物再次分离,本实用新型中,将污水依次经过沉砂池、氧化池、微过滤器,将固体垃圾与污水分离,并将污水净化为浇灌用水,并通过第一输送装置将固体垃圾干燥,再由分离装置将固体垃圾中的塑料垃圾分离,其余固体垃圾回填绿地,将污水变废为宝,并将污水中的各类物质循环利用,利用分离装置将固体垃圾中的塑料垃圾分离,避免了固体垃圾回填绿地后的二次污染。
本发明属于微晶玻璃制备和工业固体废弃物资源化利用技术领域,具体公开了一种以硅锰渣为原料的微晶玻璃及其制备方法。本发明提供的微晶玻璃制备方法,包括以下步骤:将硅锰合金冶炼渣,即硅锰渣,进行破碎粉磨,然后干压成型,得到玻璃生胚;将所述玻璃生胚进行“一步法”热处理,完成核化晶化,得到微晶玻璃。本发明利用了硅锰合金制备过程中产生的熔融状态的废渣,省去了微晶玻璃制备过程中熔融玻璃液的步骤,工艺简单、硅锰渣利用率高、能耗成本低;且制备出的微晶玻璃具有良好的力学性能和耐腐蚀性能。
本发明公开了一种便于更换且具有自润滑轮缘的车轮,涉及起重机械,因车轮偏斜等因素,造成起重机啃轨运行,尤其是运行机构工作级别较高时,轮缘寿命远低于车轮踏面寿命,使得车轮因轮缘磨损而过早报废,本发明采用轮缘可更换的结构形式,无论是单轮缘车轮还是双轮缘车轮,每侧轮缘分成几段圆弧,用螺栓将轮缘固定在车轮本体上,在轮缘摩擦面镶嵌一定比例固体润滑剂,以此改善轮缘与钢轨侧面所构成的摩擦副的润滑条件,延长轮缘与钢轨的使用寿命,减小起重机运行的摩擦阻力,当轮缘磨损达到报废程度时,可在不拆卸车轮组的情况下,更换轮缘,轮缘材料采用高强度耐磨板,省去热处理制造工序,轮缘与车轮本体分开制造,使得车轮本体采用膜锻成为可能。
本发明涉及无机非金属材料技术领域,公开了一种微晶玻璃用组合物、微晶玻璃及其制备方法。所述微晶玻璃用组合物包括煤气化粗渣、化学污泥、杂盐。本发明充分利用煤化工企业排放的固体废弃物制备出一种新型微晶玻璃,制备原料全部来自工业废渣,并且制备得到微晶玻璃抗弯强度较高、吸水率低。
本发明涉及一种生化腐植酸荔枝专用肥及其制备方法,含生化腐植酸荔枝专用追肥为液体肥料,液体肥料的成分包括尿素、磷酸钾、磷酸一铵、硝酸钾、含微量元素生化腐植酸上清液,按重量百分比其原料组分的比例为:尿素10-12%,磷酸钾30-34%,磷酸一铵3-5%,硝酸钾8-12%,含微量元素生化腐植酸上清液41-46%。本发明的有益效果在于:追肥含有生化腐植酸等多种活性基因,可疏松土壤,增强土壤通气,刺激荔枝树生理代谢,促进荔枝树根系生长,增强荔枝树的抗逆能力,减少病虫害,提高肥料吸收效率与果实品质;利用固体废弃物糠醛渣发酵产生有机肥,提取含生化腐植酸上清液,变废为宝,增加产品附加值,减少了环境的污染。
本发明公开了一种混合发泡防火保温材料的制备方法,包括混合发泡防火保温板,其特征在于:所述混合发泡防火保温板用无机胶凝材料、均布增强短切纤维、固体保温颗粒、固化剂、活性剂、发泡剂按一定比例连续输送到喷涂系统,喷涂到履带模上,并通过预热方式输送。该发明用料独特,用廉价的膨胀珍珠岩、玻化微珠、保温板废料破碎保温颗粒与无机胶凝材料、均布增强短切纤维喷涂共混发泡,能有效降低材料成本;优化材料性能的膨胀珍珠岩、玻化微珠、保温板废料破碎保温颗粒与无机胶凝材料、均布增强短切纤维喷涂共混发泡有很好的亲和力。
本发明涉及固体废弃物处理和资源化利用领域,尤其涉及一种以煤气化细渣制备碳/沸石复合物的方法及其应用,该方法为以煤气化细渣为原料,采用碱溶出的方法直接加热5‑10小时,具体为将煤气化细渣与氢氧化钠水溶液按比例混合,在一定温度下搅拌、过滤、洗涤、干燥得到碳/沸石复合物;本发明制备方法简单独特,能降低能耗、减轻污染,所制碳/沸石复合物对染料废水中结晶紫的去除效果显著等优点。
本发明公开了一种含生化腐植酸液体氮肥及其制备方法。含生化腐植酸液体氮肥是以自制的生化腐植酸浓缩液为溶剂,添加硝酸铵与尿素在一定温度下化学反应制备而成,其中,各物质的质量百分比为:硝酸铵42~47%,尿素30~37%,生化腐植酸浓缩液16~28%。本发明的有益效果在于:提高肥效,减少肥料流失和环境污染;具有较好的节能降耗效果;安全性好,运输成本低;含有生化腐植酸,将糠醛渣等农作物秸秆经过微生物发酵制取的生化腐植酸,具有官能团渗透力强、水溶性好、易被植物吸收等;产品制备过程充分循环再利用了固体废弃物糠醛渣,解决了糠醛产业的固体废弃物大量堆积造成的环境问题。
本发明公开了一种利用煤气化渣在无烧碱条件下合成ZSM‑5分子筛的方法,包括球磨‑筛分‑配料‑晶化‑洗涤‑干燥‑煅烧等步骤。本发明利用煤气化渣在无烧碱条件下合成ZSM‑5分子筛的方法,在不添加NaOH的情况下,采用固体废弃物煤气化渣为原料,配以硅酸钠、气相二氧化硅、模板剂以及适量的水,通过一步水热法合成ZSM‑5分子筛。本发明过程简单、工艺成熟稳定易于工业化;不需碱熔,能耗小;不使用烧碱、不需酸洗,低成本低污染,所得ZSM‑5分子筛特征峰明显,晶体结构完整,性能优异。利用本发明不仅可以解决煤气化渣带来的环境污染问题,在解决固体废弃物的同时制备了高附加值材料,具有显著地经济价值和工业化前景。
一种硅酸钙绝热材料的制备方法,包括以下步骤:1)原料预处理;2)计量;3)混合搅拌;4)一次静态水热合成;5)压滤成型;6)干燥,得到硅酸钙绝热材料制品。本发明制得的硅酸钙绝热材料,在扫描电镜下可以看到纤维状的晶体生长良好,相互缠绕,存在很多孔洞,制品抗折强度大于0.3 MPa,1000℃线收缩率仅0.36%,导热系数为0.046 W/(m·K),可作为一种高档保温隔热材料,在化工、电力、矿业、冶金、石油、窑业、建筑等产业得到广泛应用,硅酸钙绝热材料以石英尾砂、锆渣或硅藻土固体废料为原料进行生产,既能解决固体废弃物严重污染环境问题,又能充分利用这些廉价原料,从而大幅降低硅酸钙绝热材料的生产成本。
本发明涉及一种利用泰乐菌素药渣的方法,尤其是涉及一种利用泰乐菌素药渣生产酵母培养物的方法,其特征在于:该方法包括如下步骤:a.酵母菌种子的制备、b.降解菌种子的制备、c.将上述步骤a制备的生产酵母培养物的酵母菌种子和上述步骤b制备的降解药渣泰乐菌素的降解菌种子分别按质量比为1~5%和5~10%的接种量接入固体药渣培养基中,搅拌均匀后压实,28~32℃厌氧培养20~25天,即微生物固体厌氧发酵生产酵母培养物结束、d.将上述步骤c发酵产物在50~70℃下干燥,粉碎后即为酵母培养物;本发明生产成本低、制备工艺简单独特、使泰乐菌素废弃药渣得以高值化利用、有效避免泰乐菌素废弃药渣不合理利用对环境造成的危害。
本申请实施例提供一种粉煤灰基无机纤维及其制备方法,涉及无机纤维制备技术领域。粉煤灰基无机纤维主要是由生料熔融、拉丝形成,生料包括粉煤灰、石英砂和添加剂,生料的化学成分中,SiO2和Al2O3的质量之和占生料总质量的60%~80%,Al2O3的质量大于CaO和MgO的质量之和,CaO的质量占生料总质量的5%~14%,MgO的质量占生料总质量的3%~10%,Na2O和K2O的质量之和占生料总质量的1%~6%。制备方法是将生料混合熔融,制成熟料液,然后进行淬灭得到熟料;将熟料进行拉丝。粉煤灰基无机纤维及其制备方法,制得的无机纤维强度高,应用广泛,实现粉煤灰等固体废弃物的绿色高值化利用。
本发明涉及一种合成PPTA用溶剂体系回收循环利用的方法,先利用水洗将NMP、氯化钙从PPTA聚合物中分离出来,加入Ca(OH)2进行中和,然后经过滤除去固体不溶物,采取部分萃取‑精馏的方法先将部分中和母液与三氯甲烷(或二氯甲烷)注入萃取塔,将萃余相通过汽提、冷凝分离后的水用于树脂洗涤、萃取剂循环利用,汽提分离后的CaCl2干燥分离出售,含NMP的萃取相通过精馏后萃取剂循环利用,NMP输送至混合器中与未进行萃取的部分中和母液进行混合,最后通过精馏提纯获得合成PPTA用溶剂体系,具有降低能耗和废水处理压力,节省原料成本,溶剂体系中的CaCl2与NMP得到高效回收循环利用的优点。
本发明公开了一种利用煤气化工艺尾气与电石渣协同固化电解锰渣重金属的方法,电解锰渣的主要成分为硫化物,包括硫酸锰、硫酸氨及硫酸钙,电石渣的主要成分为二氧化硅和氢氧化钙,煤气化工艺尾气中主要成分为CO2。电解锰渣中的重金属成分硫酸锰溶解形成Mn2+,Mn2+被煤气化工艺尾气中的CO2盐化生成碳酸锰;而电石渣为盐化提供OH‑和Ca2+,碱性环境下能够使重金属碳酸盐沉降,同时Ca2+被CO2盐化生成的碳酸钙也能包覆固体废物碳酸锰,阻止锰进一步浸出。本发明以电解锰渣为主要原料,利用电石渣提供Ca离子和较高的pH,利用煤气化工艺尾气的高温和较高浓度CO2,在水溶液中加速盐化固定重金属,以实现对电解锰及电石渣进行有效处理,达到以废止废、变废为宝的目的。
中冶有色为您提供最新的宁夏银川有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!