本实用新型公开一种新型冶金杂质处理装置,采用的技术方案是,包括壳体、控制面板、挡板、推板、U型块、电动伸缩杆、支撑柱、销、支撑台、电机、引导板、传送装置、旋转块、第二齿轮、滚柱、粉碎块、第一齿轮。本装置通过旋转的电机带动滚柱旋转,带动粉碎快旋转粉碎冶金杂质,使成为颗粒状,两滚柱之间的距离可以较好地保证粉碎颗粒的大小,电动伸缩杆通过伸缩可以控制推板的运动,就可以控制进口的大小,控制流量,而且该装置设置为向下放料,可以较好的防止块料的堵塞问题。
一种提高萃取槽中有机相与水相分相速度的系统,其特征在于:包括依次串联的多级萃取槽,所述萃取槽设有混合室和澄清室;在混合室中设有通过搅拌输入能量使有机相由上游向下游顺流流动而水相由下游向上游逆流流动的搅拌桨;在至少一级萃取槽的澄清室中设有至少一块斜板,该斜板上下留有流体通道。本实用新型的系统简单、易行、经济、实用,可避免有机相的大量损失,并改善萃取分离的质量。
本实用新型公开了一种新型稀土溶解罐,包括溶解罐体及设置在溶解罐体顶部的进料口,溶解罐体的中部设置有搅拌轴,搅拌轴的表面固定有搅拌支架,搅拌轴的底部固定有翻转轴,翻转轴的外表面套装有翻转叶片,溶解罐体的两侧分别设置有溶解剂箱,溶解剂箱的顶部连接有高压水管,高压水管的另一端连接有高压喷头,高压喷头设置在溶解罐体的内表面,溶解罐体的底部连接有废液管,废液管的底部连接有卸料口;该种新型稀土溶解罐,在原有基础上,对溶解罐体的内部进行了改进,通过搅拌轴和翻转轴可是内部的稀土进行充分的搅拌,解决罐体底部稀土难搅拌的问题,提高搅拌的效率,通过高压喷头往内部添加溶解剂,加上充分的搅拌,使稀土溶解的更为充分。
一种新型鼓风浸出装置,包括浸出槽、出风管及进风管,所述浸出槽的侧面开设有一个出风管安装口;所述出风管穿过所述出风管安装口通入所述浸出槽内;所述出风管的两端密封;所述出风管伸入浸出槽的一端沿垂向上下两端均开设有一个出风口;所述出风管未伸入浸出槽的一端与所述进风管连接;所述浸出槽的底部固定安装有一个压缩空气分散器;所述出风管伸入所述浸出槽的一端通入所述压缩空气分散器内;所述空气分散器为长方形的箱体类结构;所述空气分散器的上下两个端面上均固定安装有一个空气分散块;所述出风管位于所述两个空气分散块之间。本实用新型结构简单,安装方便,可对浸出槽内的出风起到良好的分散效果,保证出风均匀,提高浸出效率。
本实用新型涉及电池回收设备技术领域,且公开了一种三元电池材料回收再利用设备,包括防废气污染装置和热处理装置,防废气污染装置位于热处理装置的上方,防废气污染装置设置有吸入装置、净化装置和散热装置,吸入装置包括吸风套、扇片安装板、吸风扇和导风管,吸风套的上表面固定连接扇片安装板,扇片安装板的内部设置有吸风扇,扇片安装板的上表面固定连接有连接管,导风管的下表面开设有第一通气孔,连接管的上表面固定连接在导风管下表面的第一通气孔处,导风管的右侧面中心处开设有第二通气孔,解决了由于热处理方法需要在高温条件下进行,电极残留的有机溶剂经过高温会产生有害气体对人体不利的问题。
本实用新型公开稀土冶炼高效工艺冷却系统,属于稀土冶炼技术领域,其包括驱动盒,所述驱动盒的顶部滑动安装有抖动杆,所述驱动盒内设置有带动所述抖动杆上下运动的抖动机构,所述抖动杆的顶部固定有位于驱动盒上方的冷却罐,所述冷却罐的顶部设置有进料口,所述冷却罐的两侧分别安装有进风口和出风口,驱动盒上的顶部安装有风机,风机与进风口之间连接有软管;本实用新型实现对稀土的抖动上抛,配合吹风散热,实现对稀土的的均匀冷却,避免稀土堆积在一块,提高冷却效率。
本实用新型公开了一种贵金属废水的回收装置,包括调节反应池,在所述调节反应池上设有计量罐,所述调节反应池与电极氧化池对应连接,所述电极氧化池与混凝反应池对应连接,所述混凝反应池与沉淀池对应连接,所述沉淀池通过提升泵与计量罐对应连通。本实用新型具有结构简单,处理效果明显,运行成本低廉,回收贵金属的优点。
一种提高离子型稀土浸取率和尾矿安全性的方法,其要点是根据离子型稀土矿的特点,一是在按工艺步骤中稀土原矿和近中性铵盐浸矿剂的比例浸取大部分稀土后补加酸性硫酸盐浸矿剂使难浸稀土得以浸出,而不是在一开始就将浸矿剂pH调到4以下;二是在酸性浸矿剂浸取后再分别用水和石灰乳水溶液护理尾矿,中和矿体中残留的酸,并使吸附的过量铵转入溶液,减少尾矿中铵的残留,提高铵的回收利用率。采用本发明技术可以使稀土提取效率提高2-30%,与矿中难交换组分含量有关,降低铵消耗20%左右和尾矿中的稀土和铵残留50%以上,降低矿山尾水中的稀土、铵、铀和钍含量70%以上。保证尾水为中性,减少了尾矿膨化导致的滑坡风险。
本发明公开了一种尾矿库原地浸出集液采矿技术,利用尾矿库原有的防渗层,在其下部布置巷道,并对巷道进行锚喷支护和防渗措施,在需处理的尾矿中间断性地输入注入溶浸液,使其自然氧化反应,与矿物进行置换,浸出液顺锚杆钻孔流入集液巷道,在每个集液巷道的尽头用一根管道并联,再利用巷道坡度高度差使浸出液自流到水冶厂进行水洗提炼出所需的矿物。本发明成本低、维修量少、管理简单,浸出设施少,对于推动尾矿重新利用、缓解我国资源紧张局面具有积极的作用,本发明适用于大型易堆浸采矿的尾矿库;对堆场地址的选择不在受限制,浸出液能及时回收出来,投资见效快,生产成本低,投资少。
一种化学沉淀法制备超细仲钨酸铵的方法,包括以下步骤:(1)用分析天平称取黄钨酸倒入去离子水中,用玻璃棒将其搅拌成稀糊状,放入超声波振荡器中处理;(2)将装有钨酸稀泥的烧杯放入低温恒温槽中低温恒温均热处理;(3)将氨水沿着玻璃棒缓缓倒入黄钨酸中,搅拌至完全反应,静置待固液分离后用吸管吸走上清液,获得固体粉末,用2%的稀氨水清洗固体粉末一遍,再用去离子水清洗固体粉末三遍,获得纯净的白色粉末;(4)将白色粉末放入真空干燥箱中加热烘干,获得干燥的白色粉末。本发明方法具有工艺简洁,能制备粒经小于10微米的仲钨酸铵粉末。本发明方法所需实验设备和试剂简单、废气废水零排放、能耗低和速度快等优点。
一种La‑Nd轻稀土预分离三出口萃取分离工艺,属于溶剂萃取分离稀土技术。本发明采用预分离萃取法,对La‑Nd轻稀土料液首先进行LaCePr/CePrNd预分离,用较少的萃取槽级数将La‑Nd轻稀土分为两部分LaCePr和CePrNd。然后进行LaCe/CePr预分离,和CePr/Nd分馏萃取。这两个萃取的出口水相LaCe和CePr为共同原料进入La/Ce/Pr三出口工艺。LaCe/CePr预分离的出口负载有机相流入CePr/Nd分馏萃取,作CePr/Nd分馏萃取的萃取有机相。本发明工艺减少了萃取设备的总体积,减少了萃取剂和稀土金属的存槽量,减少酸碱消耗及废水排放量,利于生产的绿色环保。
本发明提供一种用伯胺萃取剂从低含量稀土溶液中萃取回收稀土的方法,在离子吸附型稀土矿山,有大量的低浓度稀土废水和浸出液,从这些溶液中回收稀土目前仍然是以沉淀法和吸附法为主。采用两级逆流萃取和相比1:25可以使使萃余液中的稀土总浓度下降到0.5mg/L以下,而铝、镁、钙等离子的浓度基本没多少减小,可以用于配制浸矿剂溶液。萃取有机相用氯化物反萃可以得到稀土含量高而铝含量低的稀土富集溶液,采用沉淀法即可得到低铝含量的稀土产品。本发明可高效地从低浓度稀土溶液中富集稀土并与大部分的铝等杂质分离。
本发明涉及一种制取硫酸锌晶体装置,尤其涉及一种废旧锂电池锌片制备硫酸锌晶体装置。本发明要解决的技术问题是提供一种废旧锂电池锌片制备硫酸锌晶体装置。为了解决上述技术问题,本发明提供了这样一种废旧锂电池锌片制备硫酸锌晶体装置,包括有实验架、电子称、烧杯、酒精灯、吸附装置等;实验架内底部设置有电子称和吸附装置,吸附装置设置在电子称的右侧,电子称上设置有烧杯,吸附装置内设置有酒精灯。本发明达到了均匀蒸发硫酸锌溶液,能够加速硫酸锌晶体的析出,能够吸附异味,减少异味弥散于空气中而污染空间环境,旋转设备运行的更加稳定,防止硫酸锌在蒸发时液滴飞溅,便于制取更加纯净的硫酸锌晶体,回收利用率高的效果。
三出口满载分馏萃取分离稀土的工艺方法,是以P507为稀土萃取剂;在三出口分馏萃取分离工艺中设有以N235为萃酸剂、仲辛醇为N235有机相调节剂的萃酸段;以pH值1~4的易萃稀土组分溶液为洗涤液;通过N235的萃酸作用,从而消除氢离子的副作用,既保证了稀土分离系数不会降低,又保证了三出口分馏萃取体系中稀土的萃取量不低于稀土的皂化量。与现有三出口分馏萃取工艺相比,能大幅降低稀土分离工艺中的酸碱消耗,其中碱性试剂消耗量可下降32%~54%,盐酸的消耗量可下降9%~19%;稀土萃取分离工艺中的废水排放量大幅减少,稀土分离绿色化程度大幅提高;萃取槽级数可减少25%~33%,稀土萃取分离工艺总投资下降;分离成本显著下降。
本发明公开了一种基于即时学习的稀土萃取过程药剂量优化设定方法。该方法包括:针对由于机理模型和实际萃取过程不匹配等原因,导致机理模型得到的药剂量设定值并不是最优工作点的问题,首先建立以综合经济效益最大为目标的稀土萃取过程的优化模型,并利用数据驱动方法,对模型的关键参数进行预测;然后,运用智能优化算法进行最优药剂量求解,得到理论最优药剂量;最后,运用即时学习的思想,在理论最优药剂量附近进行局部在线建模,并对该局部模型进行优化求解得到最优的药剂量补偿值,即新的稀土萃取过程药剂量优化设定,如果经济效益增量大于设定阈值,则将该设定值施加到实际生产中,不断迭代该算法,既保证了萃取过程稳定性,又可进一步提高稀土萃取生产的效率和经济效益。
本发明涉及一种从钙和镁杂质含量高的酸性原料体系中分离得到镍和钴的工艺,特别涉及一种从钙和镁杂质含量高的酸性原料体系中全程萃取分离得到镍和钴的工艺。本发明采用的技术主要有P204除杂工艺线,P507捞钴工艺线,P507捞镁工艺线的特别的顺序并结合各种技术参数,本发明的工艺比较适合但不局限于红土镍矿或其它镍钴原料经硫酸浸出的综合制成的低含钴、高含钙、高含镁、高含镍的硫酸、盐酸、硝酸体系全萃取净化及萃取分离镍钴工艺方法。所得到的镍和钴产品的纯度高。
本发明公开一种环烷酸萃取有机相的稀土皂化工艺,以氢氧根型强碱性苯乙烯阴离子交换树脂为助剂,来实现环烷酸萃取有机相的稀土皂化。在皂化反应器中,依次加入含有环烷酸及添加剂的煤油或磺化煤油溶液、氯化稀土水溶液和氢氧根型强碱性苯乙烯阴离子交换树脂;室温下充分搅拌反应完毕后静置分层。上层为稀土皂化环烷酸有机相,中层为水相,下层为固态的强碱性苯乙烯阴离子交换树脂相;放出水相和强碱性苯乙烯阴离子交换树脂相,获得皂化率为60%~90%的稀土皂化环烷酸有机相。本发明具有提高稀土产品纯度、降低生产成本、节省能量等优点。
一种从钨酸钠溶液中除锡的方法,包括以下步骤:(1)先在含锡的钨酸钠溶液中加入氧化剂,同时缓慢滴加酸来调节钨酸钠溶液的碱度,维持温度在30~60℃,反应20~60min;(2)再在步骤(1)的溶液中按先后顺序分别加入可溶性铁盐和碱,所述的可溶性铁盐中铁与锡的质量比为30~100:1,维持温度在30~100℃,反应30~90min,制备得到含氢氧化铁沉淀的固液混合物;(3)制备得到的固液混合物用去离子水过滤3~5次,去除氢氧化铁沉淀,最后将滤液经过硫化、调酸、萃取、结晶得到锡含量小于2ppm的仲钨酸铵产品。本发明提供的方法能够去除钨酸钠溶液中高含量的锡,同时也不会造成钨损失。
一种通过碳热还原从退役锂离子电池黑粉中回收碳酸锂的方法,涉及一种从退役锂离子电池中回收碳酸锂的方法。本发明是要解决现有的退役锂离子电池黑粉中正极和负极材料难分离且锂资源回收困难的技术问题。本发明再生成本低、易操作、回收的碳酸锂纯度高达99%,锂离子回收率达到85%以上,回收过程中不产生二次污染。本发明可以在不放电,不拆解分离的条件下直接将退役锂离子电池破碎筛分后得到黑粉,并从中最大程度地从退役锂离子电池中回收锂,同时步骤一中第一次抽滤的滤渣中的镍钴锰可以制备前驱体或定向回收,充分做到资源高效回收。
一种用NaY分子筛从低浓度稀土溶液中回收稀土的方法,包括以下步骤:(1)称取一定量的NaY分子筛,加入到稀土溶液中,NaY分子筛与稀土溶液中稀土离子的质量比为12:1-14:1,在吸附温度为25-45℃、pH为3-5、振荡吸附时间为50-70min条件下吸附;(2)用稀酸或者NaCl溶液解吸步骤(1)中吸附有稀土离子的NaY分子筛,稀酸溶液的浓度在1-5mol/L,所得的稀土解吸液用沉淀法回收稀土。本发明对稀土离子镧、钇、钆的吸附率均可达到96%以上,解吸率在95%以上,再生性好,回收率高,对环境无污染。
本发明提供了一种SO2浸出钴的方法和系统,所述方法是将SO2气体分三种路径同时导入,第一种路径是将SO2气体导入加压吸附罐中,第二种路径是将SO2气体导入初级吸附塔中,第三种路径是将SO2气体导入浸出槽中,利用SO2气体与水反应生成H2SO3,再利用H2SO3将Fe3+离子还原为Fe2+离子,进一步利用Fe2+离子浸出钴;所述系统包括加压吸附罐、初级吸附塔、混合槽和浸出槽。本发明提供的SO2浸出钴的方法和系统,将SO2气体分三种路径同时导入,能够将SO2气体利用率提高15%以上,同时将萃余液中大量的Fe3+还原为Fe2+,使钴浸出率提高3%以上,同时避免了SO2气体逸出对环境造成污染。
一种重稀土TmYbLu富集物萃取分离工艺,属于溶剂萃取分离稀土工艺技术。本发明工艺为:重稀土TmYbLu富集物料液首先进入预分萃取段,出口水相是TmYb,预分萃取段的负载TmYbLu出口有机相流入TmYb/YbLu预分萃取分离工艺。预分萃取段和TmYb/YbLu预分萃取分离工艺共同构成为粗分离的预分工艺。以预分萃取段的含TmYb出口水相,和TmYb/YbLu预分萃取分离工艺的含Tm富Yb出口水相及其负载YbLu出口有机相,共同作为细分工艺高纯Tm/高纯Yb/高纯Lu高纯三出口工艺的原料。高纯三出口工艺能够获得高纯Tm、高纯Yb和高纯Lu产品。本发明与传统分离工艺相比,减少了所用萃取槽总容积和萃取剂及稀土金属存槽量,减少化工材料酸碱消耗及废水排放,利于绿色环保,工业上该工艺的生产控制性能更好,具有显著进步。
二进三出分馏萃取分组分离二种混合稀土的方法,用于同时处理2种稀土原料、获取3种产品。二进料口–洗涤段三出口分馏萃取体系由萃取段、萃洗段、前洗涤段和后洗涤段构成。稀土皂化有机相从第1级进入分馏萃取体系;第一种稀土料液从萃取段与萃洗段的交界处进入;第二种稀土料液从萃洗段和前洗涤段的交界处进入;洗涤液从最后一级进入。第1级萃余水相为第一个出口;最后1级负载有机相为第二个出口;前洗涤段与后洗涤段交界级萃余水相为第三出口。二进三出P507分馏萃取Nd/Sm~Dy/Ho分组分离轻稀土矿和中钇富铕稀土矿,与现有稀土分馏萃取工艺相比较,皂化碱的消耗量下降7%~42%、洗涤酸的消耗量下降8%~45%、萃取槽级数下降52%~67%。
本发明涉及用普鲁士蓝胶体纳米粒子(PB-CNP)从低浓度稀土溶液中回收稀土的方法。首先合成稳定的PB-CNP胶体溶液,并装入由渗析膜所制成的袋子中,将这种装有PB-CNP悬浮液的透析袋与稀土料液(pH值4~7)接触,稀土离子透过膜孔与PB-CNP接触而被吸附。用稀酸溶液可将稀土从吸附有稀土离子的PB-CNP悬浮液中解吸出来,进而达到回收稀土的目的。也可将PB-CNP悬浮液和待处理稀土料液分别置于膜组件的膜两侧不同通道逆流而行,达到高效富集效果。本发明具有工艺简单、稀土负载量大和稀土回收率高等优点,可广泛用于稀土矿山、分离厂的稀土料液,尤其是低浓度稀土废水中稀土离子的完全脱除和回收,具有广泛的应用前景。
一种含硫化砷物料的处理工艺包括三个主要步骤:原料浆化、氧压酸浸、还原分离。原料浆化的液固质量比为3:1~10:1,在80~100℃浆化2~4小时;在90~180℃,0.1~3.0MPa,100~3000r/min的条件下进行氧压浸出2~4小时;含砷浸出液中经二氧化硫、硫代硫酸钠或亚硫酸盐进行还原和分离后,再经二次浆化和分离得到三氧化二砷产品。本发明浸出渣含砷小于5%,砷的回收率大于80%;在浆化过程中加入了表面活性剂,使氧化反应更彻底;采用带排气系统的真空浆化槽,可防止废气溢出,有利于操作环境的改善。本发明工艺流程短,具有环保、经济、节能和资源高效利用等优势。
一种预分离萃取对轻稀土矿和中钇离子稀土矿联合分离的方法,属于溶剂萃取分离稀土技术;采用预分离萃取法,利用轻稀土矿的中重稀土配分很低远小于中钇离子稀土矿的中重稀土配分,以及轻稀土矿的La-Nd轻稀土中Ce含量比中钇离子稀土矿的La-Nd轻稀土中Ce含量高很多的特点,将轻稀土矿萃取分离过程的负载有机相用于中钇离子稀土矿萃取分离,形成联合分离轻稀土矿和中钇离子稀土矿的工艺方法。这方法既可以减少轻稀土矿萃取分离工艺的萃取设备;又可以减少中钇离子稀土矿萃取分离的皂化有机相,以减少有机皂化的碱消耗及废水的排放。本发明方法依次包括四步骤,与传统工艺比较,工艺处理能力增大、萃取设备体积减少、存槽萃取剂物料下降、酸碱消耗降低。
一种从盐酸介质中采用草酸及其盐直接沉淀稀土生产低氯根细颗粒稀土化合物的新方法。其主要特点是加料反应沉淀稀土的过程是在超声波辅助下进行的,并经后续陈化结晶和过滤洗涤得到相应的低氯根含量的草酸稀土,经煅烧得到相应的稀土氧化物产品。该方法简单易行、适应面广、可以减少洗涤水用量、得到氯根含量低于50ppm的高纯稀土产品,可用于各种单一稀土和稀土共沉物的生产。
醋酸镧的制备方法与系统,一种醋酸镧的制备方法,包括以下步骤:用硝酸将碳酸镧溶解成硝酸镧料液,溶解完全后通过调节pH值和温度进行水解除杂;将获得的硝酸镧料液进行过滤净化;以碳铵为转化剂,将过滤净化好的硝酸镧料液转化为精制碳酸镧,再经醋酸转型结晶出醋酸镧,过滤后进行干燥得到醋酸镧产品。根据本发明制得的醋酸镧产品纯度高,稀土纯度> 99.99%。非稀土杂质低,普遍非稀土杂质< 10ppm。Cl-< 10ppm,SO42-< 10ppm。
一种Nd/Sm~Dy/Ho分组分离中钇富铕矿的工艺方法,以P507为稀土萃取剂,以中钇富铕矿为原料,第三出口设于二进三出分馏萃取体系的萃洗段,在洗涤段和反萃段之间设有以N235为萃酸剂、TBP为破乳剂的萃酸段;通过N235的萃酸作用消除氢离子的副作用。与现有中钇富铕矿Nd/Sm~Dy/Ho分组分离工艺相比,能大幅度降低稀土分离工艺过程的酸碱消耗,其中碱性试剂消耗量下降58.2%~64.5%,盐酸的消耗量下降22.7%~34.2%;稀土萃取分离工艺过程的废水排放量大幅度减少,稀土分离的绿色化程度大幅度提高;萃取槽级数可减少12.7%~22.2%,稀土萃取分离工艺的总投资下降;重稀土产品的质量有提高。
中冶有色为您提供最新的江西南昌有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!