本发明公开了一种晶须增韧碳化钨-钴基硬质合金材料及其制备工艺,它是采用粉末冶金技术,以碳化钨-钴为基体,通过添加碳化钛晶须,通过一定工艺,从而制得碳化钨-钴基硬质合金材料。其特点是:(1)利用粉末冶金工艺烧结,可以制备出不同形状的产品。(2)硬度高、抗压强度优良、韧性好。碳化钛晶须在保证碳化钨-钴硬质合金强度的前提下,提高了材料的韧性。碳化钛晶须的加入也能够代替钴作为基体的粘结相,使得材料的性能得到提高。(3)制备工艺简单,成本低。本发明的碳化钨-钴基硬质合金材料可以应用于机械、冶金、矿山、精密仪器、军事等行业,用于制造各种刀片、凿岩球齿等磨具材料,也能够满足新型刀具材料的需求。
一种烧结NdFeB磁体,包括Nd:18.2wt%、Pr:6.0wt%、Tb:1.4wt%、Al:0.25wt%、Cu:0.10wt%、Co:1.00wt%、Ga:0.09wt%、B:0.96wt%、Ag:0.05~0.11wt%、Si:0.09wt%、La:0.07wt%、Eu:0.06wt%、In:0.08wt%、Zn:1.3wt%、Sn:0.9wt%,其余为Fe和不可除去的杂质。该种烧结NdFeB磁体具有较高的磁能积和矫顽力。并且其制备方法能够有效地排除影响烧结NdFeB磁体磁能积和矫顽力的因素,从而对于烧结NdFeB磁体的质量有着积极的推动作用。
本发明公开了一种提升YAG基透明陶瓷掺杂离子固溶度的方法,YAG基透明陶瓷组分满足下式:(RexY1‑x)3(CryAl1‑y‑z)5O12,式中0≤x≤0.08,0≤y≤0.05,‑0.028≤z≤0.020,Re为Ce、Nd、Ho的一种;采用控制YAG组分中Y3+和Al3+离子之间化学计量比的方式,实现掺杂离子在YAG晶格中格位占据方式的调控,在不影响透明陶瓷光学质量的前提下,提升YAG透明陶瓷中掺杂离子固溶度。该方法工艺简单,所制备的透明陶瓷光学性能优异,其1064nm透过率可达84.6%,无组分偏析,无晶内以及晶间气孔,可用作固体激光器增益介质。
本发明公开了一种由高氢含量粉末制备的钕铁硼永磁体及其制备工艺,合金的质量百分比为(PrNd)30.0Fe67.4AlCu0.5Co0.6B,由包含下述主要步骤的方法制备而成:以纯度≥99.90%(PrNd)合金、Fe、Al、Cu、Co、B的质量百分比配料,在真空保护下熔炼,对甩带薄片采用不同的氢破碎加气流磨工艺进行制得不同氢含量及粉末粒度的粉体,然后采用相同的压型及烧结工艺制备钕铁硼磁体。采用该制备方法由高氢含量粉末为基体生产的钕铁硼具有较好的磁性能。本发明,有利于回收利用高氢含量的钕铁硼粉料,减少废品率,降低其成本,提高企业的经济效益,且工艺过程适于批量化生产。
本发明公开了一种用于高速列车受电弓的碳铜复合材料及其制备方法,所述碳铜复合材料包括低密度炭炭复合材料,所述低密度炭炭复合材料化学气相沉积有氮化硼界面层,碳碳复合材料、氮化硼界面层气相渗钛形成碳化钛和氮化钛的混合界面层,之后再气相渗铜形成铜相;氮化硼界面层有良好的力学性能且氮化硼界面层抗氧化能力强,可以有效的增强制品的抗氧化能力;TiN较TiC抗氧化能力强,TiC硬度较TiN高,TiN和TiC混合界面层结合了二者的优点,有利于提高材料的综合性能;TiC和TiN混合界面层与铜相润湿性较好,通过界面层以解决碳铜结合性差的问题。
一种替代牙骨的医用多孔钽材料及其制备方法,由钽粉与聚乙烯醇、碳酸氢钠混合成混合粉末,再将所述混合粉末压制到有机泡沫体中成型、脱脂、烧结、冷却和热处理制得的;所述压制成型采用的压力为50~100Mpa,形成的医用多孔钽材料孔隙直径为30~50μm,孔隙度介于30~38%。本发明多孔钽制备方法采用了纯物理模压法,使得最终多孔钽材料中杂质的含量极低,有效地提高了生物相容性和生物安全性;经过测试其杂质含量可低于0.2%、密度可达10.34~11.67g/cm3,孔隙度可达30~38%,孔隙直径可达30~50μm;弹性模量可达4.5~6.0Gpa、弯曲强度可达120~130Mpa、抗压强度可达100~140Mpa,本发明多孔钽非常适合用于替代牙骨的医用植入材料。
本发明属于有色金属加工技术领域,公开了一种基于交联改性的烧结氢化钛制备TiC增强钛基复合材料的方法及其制备的复合材料,具体为将羟基化处理的氢化钛与碳源交联反应制备复合粉末并高温烧结原位生成TiC增强钛基复合材料。本发明方法制备得到的复合材料为尺寸为1‑50μm的TiC均匀分布于Ti基体中,烧结块体致密度大于等于99%;其拉伸塑性可达8%,抗拉强度可达570MPa,磨损体积相比纯钛降低19%。本发明方法解决了现有技术以氢化钛为原料制备的钛基复合材料力学性能差的问题,并降低了其制备成本,所得性能优异的TiC增强钛基复合材料可应用于航空航天、装甲车、兵器、船舶、汽车等领域高强耐磨结构件的制备中。
本发明公开了一种免清洗混合集成电路焊接方法,该方法是采用不含助焊剂的全固态预制合金焊料片取代原先的膏状焊料,在充满氮气且温度可控的环境下,采用两种不同熔点的合金焊料分步进行芯片、基片电路、基座的相互焊接,不会对基座、基片电路和芯片造成污染,产品焊接后可直接进行键合、封装,实现免清洗焊接。本方法产品焊接后可直接进行键合、封装,避免焊接后的清洗、清洗剂的使用和排放,节省时间提高效率。采用这种工艺焊接的产品,焊接强度较膏状焊料更高,产品能经受恒定加速度试验不脱落,远高于国家军用标准规定的要求;适用于焊接面为可焊金属介质的外壳、基片电路和带背面金属化半导体芯片、无源元件的混合集成电路的组装焊接。
活塞式钛金属丝网笼及其制作方法,用于钛笼融合术中。常用的钛笼侧壁的通孔较大,其内放置的颗粒状碎骨粒径较大,不利于植入的颗粒骨与人体椎体骨组织紧密接触。而且钛笼两端未设置阻隔,使放入的颗粒骨容易从钛笼的空腔两端掉出,增加了钛笼临床应用的风险。活塞式钛金属丝网笼的钛金属笼体的侧壁上均布有形状为圆形或平行四边形的第一通孔,活塞状帽形体的帽盖上布满孔径为0.5-1.0mm的第二通孔,钛金属丝无纺布或钛金属丝编织布缠绕并烧结在钛金属笼体的外壁上构成钛金属丝网笼体,钛金属丝网笼体的内外表面上涂覆羟基磷灰石层,并在其内腔中放置两个活塞状帽形体。方法是:烧结温度为1200-1400℃,烧结时间为1-2h,真空度为1×10-3Pa。
本发明公开了一种原位合成碳化钛增强钛基多孔材料制备方法,其采用粉末冶金造孔剂技术,使用尿素、碳粉和钛粉通过配料混合、压制成型和烧结处理步骤来制备多孔钛基复合材料,使用尿素作为造孔剂,采用无水乙醇作为粘结剂,使得所得钛基多孔材料成分容易控制,同时也有原料成本低廉的优点,并且采用两段式烧结过程,来减少能源的消耗,降低制备成本,增加效益;此外,本发明方法还通过原位合成碳化钛增强钛基多孔材料制备方法制备出的多孔钛基复合材料具有高强度,综合力学性能优的多孔钛基复合材料,使其具有较强的抗腐蚀性能,延长了多孔钛基复合材料的耐用时间,为污水净化,生物植入材料等提供了一种新的技术途径,具有非常好的应用前景。
一种纳米陶瓷内部三维微细通道的加工方法,涉及一种纳米陶瓷内部三维微细通道的加工方法。本发明是为了解决在陶瓷材料上获得密闭的三维微细通道困难的技术问题。本发明:一、制备纳米陶瓷坯体结构;二、纳米陶瓷坯体结构表面抛光;三、纳米陶瓷坯体结构烘干处理;四、蚀刻制作掩模板;五、喷涂;六、真空塑封;七、冷等静压;八、脱脂处理;九、烧结强化。本发明提出了微细通道形状及精度的控制方法,解决了传统陶瓷微细通道难加工的问题,本发明制备的三维微细通道的宽度可以达到500微米~100纳米。本发明应用于在纳米陶瓷内部加工三维微细通道。
本发明涉及一种去除电解金属铬中杂质元素的工艺,属于元素提纯技术领域。其将电解金属铬粉碎压饼,加热后即得到除杂后的铬粉;或将电解金属铬粉碎后添加碳元素粉末/锡元素粉末压饼加热后即得到除杂后的铬粉。本发明在一定时间和条件内进行真空状态下加热,通过此工艺O含量可降至300ppm以下;S含量可降至10ppm以下;N含量可降至20ppm以下。
本发明所述亚氧化钛‑金属复合球形或类球形粉末,由球形微粒或类球形微粒形成,成分为亚氧化钛和金属M,所述亚氧化钛为TiO、Ti3O5、Ti4O7、Ti5O9、Ti6O11、Ti7O13、Ti8O15、Ti9O17中的至少一种,M为Co、Mo、Ni、Al、Cu、Pb、Ti、Nb、Fe、Zn、Sn中的至少一种,其中亚氧化钛的质量百分数为50%~90%,金属M的质量百分数为10%~50%。本发明提供了三种上述亚氧化钛‑金属复合球形或类球形粉末的制备方法。本发明提供亚氧化钛‑金属复合球形或类球形粉末可实现通过冷、热喷涂和3D打印在金属基体表面凃覆含亚氧化钛的涂层材料,能获得低成本、高性能的电极材料。
本发明公开了一种基于TiCN‑MxC‑Co的涂层喷涂和3D打印金属陶瓷材料及其制备方法,金属陶瓷材料为球形粉末,组分组成以质量百分比计包括:TiCN‑MxC‑Co和选自Ni、Mo和Fe中的至少一种,TiCN的含量为20~94%,MxC的含量为1~40%,Co和选自Ni、Mo和Fe中的至少一种的含量为5~40%;碳化物MxC为WC、MoC、Mo2C、TaC、Cr3C2、NbC、VC和ZrC中的至少一种。通过混料干燥、球形化粉末、烧结处理制取。粉末球形化可以采用滚筒球化、射频等离子球化或喷雾造粒球化等方法进行。本发明提供的金属陶瓷材料,用作涂层材料提高了涂层与基体间的结合力,用作3D打印材料,可提高3D打印产品的质量。
一种Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷结构式为:Tb3Al5-xSiyTizO12,其中,y+z=x,x、y和z的取值范围为0.01≤x≤0.06,0≤y≤0.06,0≤z≤0.06。其制备方法是:按Tb3Al5-xSiyTizO12组份配好原料,加入0.3wt%~0.7wt%的正硅酸乙酯经球磨、烘干、过筛、压片后,施以150MPa以上冷等静压力压制成坯体,预烧去除有机成分后,放入烧结炉中烧结得到Tb3Al5-xSiyTizO12透明陶瓷。本发明在可见-近红外波段具有较高的光学透过率并保持原基质TAG较高的Verdet常数,具有制备工艺简单、成本低及制备周期短等优点。
本发明涉及一种多孔钴钛合金材料及其制备方法,特别涉及一种医用植入多孔钴钛合金材料及其制备方法,属于医用多孔合金材料领域。本发明公开了一种医用植入多孔钴钛合金材料,所述多孔钴钛合金材料中钴与钛的原子数之比为1~8,弹性模量为1.8~5GPa,孔径为50~240?μm,孔隙度为30~70%,密度为2.5~4.5?g/cm3。发明还公开了上述多孔钴钛合金材料的制备方法。所述医用植入多孔钴钛合金材料的弹性模量更接近于人体骨骼的弹性模量,且制备方法中不掺加有毒物质。
本发明公开了一种基于(Ti,Me)CN‑TiCN‑MxC‑Co的金属陶瓷材料及其制备方法,金属陶瓷材料为球形粉末,组分组成以质量百分比计包括:(Ti,Me)CN‑TiCN‑MxC‑Co和选自Ni、Mo和Fe中的至少一种,(Ti,Me)CN和TiCN的混合粉末含量为1~49%,MxC的含量为41~70%,Co和选自Ni、Mo和Fe中的至少一种的含量为10~29%;Me为W、Mo、Ta、V、Cr、Nb和Zr中的至少一种,MxC为WC、MoC、Mo2C、TaC、Cr3C2、NbC、VC和ZrC中的至少一种。通过混料干燥、球形化粉末、烧结处理制取。粉末球形化可以采用滚筒球化、射频等离子球化或喷雾造粒球化等方法进行。本发明提供的金属陶瓷材料,用作涂层材料提高了涂层与基体间的结合力,用作3D打印材料,可提高3D打印产品的质量。
本发明涉及一种金属陶瓷涂层及其制备方法,包括金属陶瓷外层以及位于所述金属陶瓷外层和基体之间的过渡层,所述金属陶瓷外层包括金属合金粘结相和弥散分布在所述金属合金粘结相中作为陶瓷增强相的硼化物颗粒,所述过渡层由镍基自熔合金粉末制成。
本发明公开一种石墨烯改性的绿光透明陶瓷材料及其制备方法和应用,属于LED照明荧光陶瓷领域。该绿光透明陶瓷的化学组成为石墨烯‑Y3‑x‑yAl5O12:xCe3+,yLu3+,其中0.0001≤x≤0.1,0.01≤y≤2.9;以绿色荧光陶瓷材料的总重量计,石墨烯的质量百分数小于0.5wt%但不为0。其具有热导率高、散热性好、发光波长在490~540nm范围内可控等特点,适用作LED的封装材料。
本发明公开了碳化硼微粉提纯方法、碳化硼陶瓷及碳化硼陶瓷的制备方法。碳化硼微粉提纯方法,以市售W3.5系列的碳化硼微粉原料为基础进行均化研磨、真空热处理提纯、二次研磨,将碳化硼浆料采用喷雾造粒的方式进行烘干制粉。碳化硼陶瓷由以下成分构成,碳化硼微粉、液体炭黑、亚微米氮化铝微粉、钛酸酯偶联剂、水溶性酚醛树脂、水溶性丙烯酸胶、聚乙二醇、甘油、去离子水、晶须型多壁碳纳米管、Ti‑‑Si‑C三元MAX相微粉。碳化硼陶瓷制备方法,按组分称重后进行高速球磨制浆、喷雾造粒、生坯压制、无压烧成。解决了现有技术中碳化硼微粉纯度不高的问题,同时实现了碳化硼陶瓷的无压烧结制备。
本发明公开了一种钢丝绳短切成弯扭纤维丝的应用,具体为钢丝绳短切成弯扭纤维丝压制后烧结成金属多孔材料制作为机械结构零件直接实现多孔刚性减振的应用;根据使用条件的不同该钢丝绳短切成弯扭纤维丝压制后烧结成金属多孔材料的孔隙率可调,孔隙率范围主要介于20%~75%,损耗因子介于0.01~0.06之间,将烧结弯扭纤维丝金属多孔材料加工成零件应用于机械结构进行刚性减振弯扭纤维丝多孔材料孔隙率介于20%~50%,损耗因子介于0.01~0.04之间。本发明的金属多孔材料能够直接加工成承载结构零件,实现机械系统多孔轻质刚性减振。
本发明公开了一种球形铜铬合金粉工艺用高纯净电极的制备方法,包括以下步骤:S1、配碳混料,S2、烧结脱气,S3、破碎制粉,S4、铜铬混料,S5、冷等静压,S6、棒料合金化,S7、机械加工。本发明采用粉末冶金工艺制备铜铬合金电极,气体含量低,夹杂少,电极均匀、一致性好,且制备的电极棒料与EIGA、PREP用需要的电极尺寸足够接近,因此车削量极少,可有效提升原材料的利用率。
本发明提供了一种金属陶瓷刀具,所述金属陶瓷刀具的组成及重量百分比含量分别为:TiCN30-60wt%,TiB5-15wt%,VC0-3wt%,MoC10-20wt%,Ni0-10wt%,Cu0.5-5wt%,WC0-15wt%,Al2O35-30wt%,TaC0-10wt%。本发明还提供了的所述金属陶瓷刀具的制备方法。本发明提供的金属陶瓷刀具中,通过对组分的种类和含量进行适当选择,使得本发明的金属陶瓷刀具中硬质相和粘结相之间既能在界面形成元素的相互扩散,又不发生剧烈的化学反应,防止生成脆性相和恶化界面性能,从而保证本发明提供的金属陶瓷刀具的整体性能和使用寿命均得到有效提高,应用领域得到大大拓展。
一种多孔钽医用植入材料的制备方法,采用泡沫浸渍法烧结而成,用有机粘结剂与分散剂配制成的溶液和钽粉制成钽粉浆料,并浇注于有机泡沫体中,浸渍直至有机泡沫体孔隙注满钽粉浆料,然后干燥除去浇注有钽粉浆料的有机泡沫体中的分散剂,在惰性气体保护气氛下脱脂处理以除去有机粘结剂和有机泡沫体,真空下烧结制得多孔烧结体、冷却,再真空下退火及常规后处理制得多孔钽;所述热处理是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至800~900℃、保温240~480min,再以2~5℃/min冷至400℃、保温120~300min,然后随炉冷却至室温。本发明制得的多孔钽材料不仅生物相容性、安全性好,而且力学性能特别强度高,非常适合用于替代人体承重部位的骨组织。
替代人体承重骨组织的医用多孔钽材料的制备方法,将聚乙醇水溶液与钽粉配成浆料,采用震动加压将所述浆料注入有机泡沫体中,再经干燥、脱脂、烧结、冷却和热处理步骤制得医用多孔钽材料;所述聚乙烯醇水溶液的质量浓度为2~8%,所述震动频率为20~80次/分钟;所述烧结步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min。本发明制得的多孔钽非常适合用于替代承重骨组织的医用植入材料,同时保证了生物相容性与力学性能。
本发明涉及钐钴磁铁加工技术领域,目的在于提供一种钐钴磁铁的高安全性加工工艺,能有效的提高钐钴磁铁的成品率和加工速度。一种钐钴磁铁的高安全性加工工艺,包括以下步骤:A、熔炼:将钐、钴、铜、铁、锆和铝按质量比20:35:12:20:3:0.5加入真空感应炉内进行熔炼;B、制粉;C、磁场成型;D、烧结;E、机加工;本发明能有效的提高钐钴磁铁的成品率和加工速度。
本发明提供一种高强度的耐磨无磁硬质合金及其制备方法。所述包括无磁不锈钢和无磁硬质粉末层,无磁不锈钢外表面通过等离子热喷涂与无磁硬质粉末层固定连接。本无磁硬质合金通过无磁硬质合金粉涂在与物理磁性能上低于目前市场上无磁不锈钢,用该方法制备的粉末粘结相与硬质相分布较为均匀,团聚密度高,流动性好,可满足离子热喷涂工艺的要求;使用该粉末可制备出涂层致密、结合强度高的无磁硬质合金涂层解决了大体积的WC‑Ni系无磁硬质合金模具由于模具体积大,模具内外的碳含量不易控制的均匀,在实际生产中,粘结相元素扩散等因素难以控制,从而导致生产困难的问题。
本发明提供了一种超薄钽电容器阳极钽芯,包括箔片和钽层,所述箔片为片状结构,所述箔片的至少一个侧面上设置有钽层,所述钽层与箔片连成一体。本发明采用箔片和钽层结合的结构使阳极钽芯可以做成任意形状的薄片状,采用印刷工艺制备阳极钽芯,大大减小了阳极钽芯的厚度,对阳极钽芯进行低温干燥处理、去粘合剂处理、高温烧结后使薄片状的阳极钽芯满足设计要求,阳极钽芯最小厚度可达到几十个微米,使最终制成的钽电容器的厚度大大缩小,更适合现代元器件对薄型化的需求。
本发明涉及一种具有核壳结构的锌镁合金的制备方法,属于医用生物材料制备及应用的技术领域,针对单质锌力学性能差、体内降解过程中生物活性低,结合镁的合适降解速率及镁锌相的良好力学性能,采用锌、镁为原料,通过配粉、球磨混粉、放电等离子烧结,制成具有合适降解速率与力学性能良好的核壳结构的锌镁合金。同时,核壳结构的锌镁合金块体经过SBF溶液浸泡试验后可得到具有表面开孔核壳结构的锌镁合金,这些开孔结构有利于骨细胞粘附增殖,促进骨骼生长。核壳结构的锌镁合金块体,致密度达到98.5%,抗压强度约为215MPa,抗弯强度为85MPa,弯曲模量为6.0GPa,与人体皮质骨骼各项性能相匹配,满足骨科植入物的性能要求。
本发明公开了一种金属粉末和金属烧结网复合滤芯,为圆管状结构,包括从外至内依次烧结而成的金属网层和金属粉末层,所述金属网层包括外侧席型网、内侧席型网和若干平织网,所述外侧席型网和内侧席型网结构一致,所述外侧席型网和内侧席型网按照纹路垂直交叉叠加设置,所述内侧席型网的内表面与金属粉末层之间设置有若干平织网。其生产方法为步骤1)排列金属层;步骤2)烧结金属层;步骤3)制备悬浮液浆料;步骤4)制备金属粉末层;步骤5)半成品烧结;步骤6)压制成品。本发明具有过滤阻力小,流体通量高,再生能力强和使用周期长等优点,特别适合石油化工等需要连续作业的生产工艺过程中持续使用。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!