本发明公开了一种等静压成型制氟碳阳极板的制备方法,将石油焦、沥青焦制成粉料,并与中间相碳微球按一定比例混合,进行热混干燥,按比例加入液态熔融煤沥青进行高温混捏,制得糊料;将糊料冷却,破碎压粉,装入橡胶模具中,密封抽真空,冷等静压成型制得生坯;将生坯置入不锈钢桶内,底部和侧部均以石英砂作填充料,顶部覆盖冶金焦粉作为保温隔料,放入带盖环式焙烧炉内,经缓慢升温至1200℃,保温20‑30h,降温、冷却后制得毛坯料;对毛坯料按照阳极板尺寸铣削精加工,再用环氧树脂进行高压浸渍‑固化处理,再经连续式推板窑在1000℃快速高温炭化,得到氟碳阳极板成品。本发明利用焦化副产品为原料,通过等静压成型工艺,一次焙烧即可制得具有结构致密、均匀性好、机械强度高、生产周期短的制氟碳阳极板毛坯料,再经浸树脂封孔处理,得到气孔率低、孔径小、耐电流密度高的制氟碳阳极板成品。
本发明涉及湿法冶金提钒方法领域,尤其是一种使钒渣钙化焙烧熟料酸性浸出流程高效,熟料中钒的浸出效果稳定的钒渣钙化熟料连续浸出提钒方法,包括如下步骤:a、将钙化焙烧熟料和浸出剂按质量比例1:1.5~1:4同时且连续加入到造浆搅拌槽内;b、在持续搅拌并混合均匀条件下,将混合浆料输入到快速浸出反应槽内并加酸浸出;c、将快速浸出反应槽内浸出的料浆输入到回转式连续浸出装置内,并持续加酸维持浆料pH恒定浸出;d、将回转式连续浸出装内持续流出的料浆进行固液分离,得到酸性含钒溶液和浸出残渣;e、洗涤步骤d所得的浸出残渣,得到洗涤滤液以及最终的提钒尾渣。本发明尤其适用于钒渣钙化熟料连续浸出提钒工艺之中。
本发明属于化工和冶金领域,具体涉及一种TiCl4除钒尾渣提取氧化钒的方法。针对现有除钒尾渣提取氧化钒多采用酸浸或钠化焙烧后提取,存在提取流程长、收率低、成本高等问题,本发明提供一种TiCl4除钒尾渣提取氧化钒的方法,包括以下步骤:a、取TiCl4除钒尾渣,用有机物浸出,得到含钒浸出液;b、将步骤a所得含钒浸出液抽真空,蒸发得到有机溶剂和含钒固体;c、将步骤b所得含钒固体置于500~800℃下氧化焙烧,得到五氧化二钒。本发明提取氧化钒的方法操作简单,流程短,收率高,钒收率达到90%以上,提取的氧化钒纯度在98%以上,能达到国标的纯度要求;同时,本发明的浸出液可循环使用,进一步节约生产成本,便于推广实施。
本发明公开了一种不锈钢双金属复合管及其制造方法,具有可提高不锈钢双金属复合管质量的优点。不锈钢双金属复合管的制造方法,包括下述步骤:①将不锈钢液与另一种金属液分别在两个熔炼炉中进行熔炼;②不锈钢液与另一种金属液熔清后进行去渣及脱氧处理;③先将外层材质金属液进行离心浇铸,待外层金属液浇铸到重量百分比为50%~67%之后随外层金属液加入玻璃渣保护剂;④待浇铸完外层金属液3~5分钟,外层金属液凝固之后浇铸内层材质金属液,直到结束,内外两层金属液在离心力作用下冷却凝固为不锈钢双金属复合管坯料。通过离心复合浇铸方式使内外两种金属实现冶金结合,大大提高了产品质量,尤其适合在高端钢材产品上推广使用。
本发明提供了一种钨铜合金的制备方法,将电子束熔炼炉抽真空,利用电子枪组件向铜原料发射电子束,使铜液化并蒸发,形成铜蒸气;利用电子枪组件向钨原料发射电子束,使钨液化并蒸发,形成钨蒸气;钨蒸气与铜蒸气混合,得到铜钨混合蒸气,经过快速冷却降温后,铜钨混合蒸气凝固成为铜钨合金。还提供了一种钨铜合金的制备设备,包括电子束熔炼炉,所述电子束熔炼炉的顶部设置有电子枪组件,底部设置有原料放置机构,侧壁设置有进料机构,所述进料机构的出料端与原料放置机构相连。电子束熔炼本身具有提纯、精炼的作用,因此本发明的铜原料和钨原料可以是低成本的回收料,成本比只使用粉末冶金降低15%以上。
本发明属化工冶金领域,提供了一种钛精矿制备大孔二氧化钛的方法。本发明所要解决的技术问题是提供一种制备大孔二氧化钛的方法,包括以下步骤:a、钛精矿在700~850℃氧化焙烧,得氧化矿;b、氧化矿在500~700℃还原焙烧,得改性矿;c、改性矿分别酸浸、碱浸,洗涤后得大孔二氧化钛初品;d、将大孔二氧化钛初品进行煅烧,得到大孔二氧化钛成品。该方法具有工艺简单、效率高、成本低、产品质量好等优点。
本发明涉及一种氧化钒清洁生产及其中酸浸钒渣的回收方法,属于冶金领域。本发明提供一种氧化钒清洁生产方法,包括钙化焙烧、一次硫酸溶浸、过滤和洗涤工序、浸出液静置沉降工序,过滤、浸出液静置沉降后所得酸浸残渣固体采用下述方法进行回收利用,所述方法包括如下步骤:酸浸残渣进行硫酸二次溶浸;含钒尾渣返焙烧;含钒液体返回硫酸溶浸和洗涤工序;其中,所述酸浸残渣为一次硫酸溶浸后过滤所得的固体残渣和浸出液静置沉降后所得底流固体残渣。本发明方法既能得到高浓度浸出合格液产品,又能使含钒液体、酸浸钒渣、含钒尾渣得到循环利用,提高了钒的回收率,并降低了生产成本。
本发明公开了一种提高铁精矿球团产量的成形方法及铁精矿的加工方法,涉及冶金技术领域。该提高铁精矿球团产量的成形方法包括:将铁精矿、膨润土和除尘灰混合后加水进行造球,然后筛分出粒径为8‑16mm的生球,生球的含水量为7.5‑8.5%;将生球以160‑180mm的料层厚度进行布料后依次经过鼓风干燥段、抽风干燥段、预热一段和预热二段的进行升温,并在950‑1000℃的温度条件下进行焙烧;将焙烧后的球团进行冷却处理。该铁精矿的加工方法包括上述提高铁精矿球团产量的成形方法,二者均能够在球团生产过程中提高球团产量,促进经济效益。
本发明属于钒冶金技术领域,具体涉及钒渣两次转化成盐提钒的方法。本发明所要解决的技术问题是提供钒渣两次转化成盐提钒的方法。该方法为:a、将钒渣氧化焙烧,得第一次熟料,经第一次碳酸化浸出,得第一次浸出残渣和第一次浸出液;b、将第一次浸出残渣氧化成盐转化焙烧,得第二次熟料,经第二次碳酸化浸出,得第二次浸出残渣和第二次浸出液;c、调节第一次浸出液的pH值,结晶分离偏钒酸铵/偏钒酸钠后,母液作为浸出剂返回第二次碳酸化浸出循环利用;第二次浸出液作为浸出剂返回第一次碳酸化浸出循环利用。本发明方法不需外配成盐添加剂,能够降低浸出残渣中的钒含量,提高钒的转浸率,且钒转浸率波动小。
本发明公开了一种含钙钒渣的生产及其浸出提钒方法,属于重金属钒冶金技术领域。本发明为现有技术铁水生产含钒浸出液的工序繁多、转炉提钒的钒氧化率低、能耗大等问题,提供了一种转炉铁水加石灰生产含钙钒渣及浸出方法,包括:铁水兑入转炉后,加入冷却剂、石灰和CaF2,采用顶吹氧气底吹氮气进行吹炼;吹炼结束后,将钒渣留于转炉内,将底吹气体切换为氧气,制得含钙钒渣;含钙钒渣经酸浸,得浸出液。本申请将钙化焙烧和转炉提钒结合,能够减少铁水生产含钒浸出液的工序数量,同时钒渣无需冷却后再焙烧,减少了能源消耗,且显著提高了提高钒的氧化率和浸出率。
本发明公开了一种优化铁精矿球团粒径的成形方法及铁精矿的加工方法,涉及冶金技术领域。该优化铁精矿球团粒径的成形方法包括:将铁精矿、膨润土和除尘灰混合后加水进行造球,然后筛分出粒径为8‑16mm的生球,生球的含水量为7‑8%;将生球进行布料后依次经过鼓风干燥段、抽风干燥段、预热一段和预热二段的进行升温,并在1150‑1250℃的温度条件下进行焙烧;将焙烧后的球团进行冷却处理。该铁精矿的加工方法包括上述优化铁精矿球团粒径的成形方法,二者均在铁精矿球团的成形过程中能够显著增加8‑16mm粒级球团的成球率。
本发明公开了一种制备钒铬钛合金的方法,属于有色金属合金制备领域,目的在于解决目前仅采用真空电弧熔炼难以控制或降低钒铬钛合金中氧含量的问题。本发明中,首先利用真空电子束熔炼擅长于金属纯化的特点,获得经过脱氧纯化的金属钒锭;再利用真空电子束熔炼的冶金过程不易引入杂质的优势,制备合金自耗电极;最后充分发挥真空电弧熔炼技术在合金化方面的优势,最终获得成分较均匀、氧含量较低的钒铬钛合金铸锭。基于制备方法的改进,可获得化学成分更优异的钒铬钛合金铸锭,为后续的铸锭开坯、型材制备提供了更大的工艺参数选择空间。
本发明涉及一种从低品位含镓、铁的原料中回收镓和铁的方法,其包括:a)含镓生铁的制备;浇铸阳极板:将所述步骤a)得到的含镓生铁浇铸成含镓阳极板;c)电解分离镓铁:将所述步骤b)得到的含镓阳极板电解制取电解铁粉和含镓阳极泥;d)含镓阳极泥焙烧、酸浸除铁:将所述步骤c)得到的含镓阳极泥焙烧酸浸;e)镓的萃取:将步骤d)得到的酸浸过滤液来得到富镓有机相萃余液;f)反萃取:将步骤e)得到的萃余液反萃取,得到镓反萃取液;g)中和水解除杂:将步骤f)得到的反萃取液的Ga3+与Fe2+、Ti3+、Al3+、Cu2+、Zn2+、Mn2+分离,生成沉淀;h)、碱溶:将步骤g)得到的反萃液加碱碱化。本发明的方法简单、成本低,能高效的回收冶金固体废弃物中的有价元素镓、铁。
本发明涉及高钙高磷钒渣深度提钒的方法,属于钒的湿法冶金技术领域。本发明解决的技术问题是高钙高磷钒渣提钒过程钒损失大、钒产品质量不合格率高。本发明公开了高钙高磷钒渣深度提钒的方法,将焙烧熟料进行第一次酸浸,一次浸出液中加入除磷剂进行除磷,一次浸出残渣进行第二次酸浸,二次浸出液加入除磷剂除磷后返回第一次酸浸用于循环浸出焙烧熟料,二次浸出残渣返烧结综合利用。本发明可有效降低高钙高磷钒渣提钒过程钒损失,同时对浸出液中磷进行去除,实现废水循环,具有方法工艺操作简单、易产业化的优点。
本发明属于冶金化工,具体涉及利用刚玉渣和氯化废酸制备氢氧化铝的方法。本发明所要解决的技术问题是提供利用刚玉渣和氯化废酸制备氢氧化铝的方法,包括以下步骤:a、将刚玉渣与钠化剂进行焙烧,焙烧后浸出,固液分离得到液体;b、对步骤a所得液体进行除杂,固液分离得到液体;c、将步骤b所得液体与氯化废酸混合至混合体系pH为6~10进行反应,固液分离,洗涤、干燥固体,即得氢氧化铝。本发明方法将两个副产物变成有用的工业原料制备了氢氧化铝,同时该方法具有操作简单、成本低、资源合理利用等优点。
本发明公开了一种切削不锈钢及其冶炼控制方法,属于冶金生产工艺技术领域。提供一种硫化物形态良好,加工性能优良的易切削不锈钢及其冶炼控制方法。所述的易切削不锈钢为包含有下述重量份组分的熔炼和硫化物变性处理连铸坯,C≤0.15%,Si≤1.0%,Mn≤1.25%,P≤0.06%,S≥0.15%,Cr>12.0~14.0%,Ni≤0.60%,Mo≤0.60%,余量为Fe及不可避免的杂质,连铸坯中经变性处理后的硫化物形态以占比超过80%的Ⅰ类硫化物为主。所述的冶炼控制方法包括钢水的电炉熔炼、钢液的AOD冶炼、硫化物形态调整的LF熔炼以及钢坯的连铸几道工序,不锈钢钢水的电炉熔炼按C占0.08~0.15%,Si≤1.0%,Mn≤1.25%,P≤0.060%,S≥0.15%,Ni≤0.6%,Mo≤0.6%,Cr占12.0~14.0%,Si≤0.5%,Mn/S=3.0~5.0,Al≤0.02%的含量进行控制。
本发明公开了一种含钛无机絮凝剂的制取方法,涉及化学技术领域中无机絮凝剂的制取方法技术领域。以钒钛磁铁矿作为基础原料,将磁选获得的铁精矿在电炉还原熔炼中加入钠或钾盐添加剂,得到铁水和含钛炉渣,其中:钒、铁经还原进入铁水,而在熔炼高温条件下,硅、铝杂质与钠或钾盐添加剂形成可溶于稀酸的钠的硅铝酸盐,并与钛及钙镁杂质留在含钛炉渣中;然后,针对含钛炉渣采用湿法冶金法提取含钛炉渣中的硅、铝和铁,作为制取无机高分子絮凝剂的原料。本发明在铁精矿电炉熔炼时加入钠盐添加剂,大幅提高了熔炼炉渣中硅、铝酸解浸出率,既为无机絮凝剂的制取提供了原料,又解决了含钛炉渣富钛降杂的关键技术问题。
本发明属于钢铁冶金领域,涉及到对钢水进行处理的方法,特别是一种板坯连铸普碳钢钢水处理方法,为了达到稳定控制钢水夹杂物状态,改善该类钢种连铸钢水的可浇性,保证连铸产品的质量的发明目的,本发明钢水处理方法采用的技术方案是:A、钢水出钢作业:经初炼炉熔炼的钢水,出钢时加入硅铁、硅锰合金,出钢时加入CaO含量>90%的渣料;B、氩站吹氩定氧,喂铝线;C、LF精炼:钢水在精炼炉中加入精炼渣、铝粒加热,定氧,喂铝线,出站定氧,控制钢水温度,即得板坯连铸普碳钢钢水。本发明通过改进出钢合金化方法、造渣控制工艺,解决了板坯连铸普碳钢钢水可浇性差的问题,提高了该类钢钢水的洁净度,保证了连铸生产稳定顺行、经济效益。
本发明属于冶金技术领域,特别涉及一种镍铁合金制备工艺。本发明所要解决的技术问题是提供一种生产效率高、流程短、能耗低、以普通煤为还原剂、炉料不易结块的镍铁合金制备工艺。本发明的技术方案包括以下步骤:A.含氧化镍原料、煤粉和熔剂混合后,压制成球团;B.球团还原得到金属化球团;C.金属化球团熔炼得到粗镍铁合金;D.粗镍铁合金经过精炼得到精制镍铁合金。本发明在原料内配煤粉造球,反应面积增大,动力学条件改善,有利于还原过程进行。还原时间短,能耗低;并且球团炉料不粘结炉衬,粉尘少、有用元素回收率高。
本发明涉及钒铬冶金领域,尤其是一种有效实现钒铬渣中钒、铬资源清洁、高效的回收利用的从钒铬渣中分离钒与铬的方法,包括如下步骤:a、将钒铬渣粉与纯碱、铝盐混合后制备成钒铬渣球团;b、将所述的钒铬渣球团焙烧,获得熟料球团;c、将熟料球团水浸,浸出浆料固液分离,获得钒铬溶液和残渣;d、加入氧化钙沉钒50~120min,获得粗钒酸钙和铬溶液;e、获得精钒酸钙和含钒、铬洗水;所述含钒、铬洗水用于焙烧熟料的浸出;f、铬溶液采用碳化法制备重铬酸钠,副产碳酸氢钠作为钠化添加剂用于钒铬渣焙烧。本发明尤其适用于从钒铬渣中分离钒与铬的工艺之中。
本发明公开了一种有机物除钒泥浆节能资源化利用方法及装置,涉及混合冶金技术领域,利用流态化技术和喷雾冷凝技术,解决现有有机物除钒泥浆处理方法能耗高,泥浆中含有大量的钒,未能实现钒的资源化利用的问题。本发明采用的技术方案是:先将有机物除钒泥浆,喷入喷雾冷凝器与来自氯化生产的高温TiCl4蒸汽接触实现固液分离,得到精制尾渣和液态TiCl4,低温TiCl4蒸汽进入冷凝系统;然后,停止喷雾冷凝器的供料,精制尾渣导入沸腾炉焙烧,焙烧烟气进入旋风收尘器和尾气处理系统处理,焙烧合格后得到钒渣产品。本发明充分利用氯化生产的余热,低能耗;连续处理有机物除钒泥浆及其中间产物,高效率;钒渣可回收利用,实现资源化利用。
本发明涉及冶金化工领域,公开了一种从四氯化钛精制尾渣中分离钒钛的方法。该方法包括:(1)将四氯化钛精制尾渣在100‑300℃下焙烧5‑30min,得到焙烧渣;(2)向步骤(1)中得到的焙烧渣中加水进行搅拌浸出,然后进行固液分离,得到含钒浸出液和浸出残渣;(3)向步骤(2)中得到的含钒浸出液中加入TiO2晶种,进行静置,然后过滤得到含钒净化液和滤渣,其中,所述TiO2晶种与所述含钒浸出液中的钛元素的重量比为(0.001‑0.05):1。本发明所述的方法实现了四氯化钛精制尾渣中钒钛的选择性分离。
本发明公开了一种钒钛磁铁矿提钒工艺,属于冶金领域。本发明提供了一种钒浸出率高、焙烧条件温和、浸出剂用量小、绿色环保的钒钛磁铁矿提钒工艺:将钒钛磁铁矿、钠盐、粘结剂和水溶性淀粉混合,加水,进行造球,得球团,然后进行氧化焙烧,冷却,得钠化氧化球团,再与水混合,置于湿式球磨机中球磨,然后与pH=0.3~0.5的稀硫酸混合浸出,固液分离。本发明采用有机粘结剂,同时加入水溶性淀粉,通过对球团的性质进行改进,降低了焙烧温度、减少氧化时间和能耗,并能提高钒的氧化和钠化转化率,并且采用球磨后再浸出,可使提钒浸出液的钒浸出率达90%以上,大幅降低了浸出剂的用量。
本发明涉及一种钛精矿球团的生产方法,属于钢铁冶金领域。本发明所解决的技术问题是提供一种新的钛精矿球团的生产方法,使钛精矿球团氧化固结,生产强度高、含硫量低、粒度均匀的熟球。该方法包括如下步骤:A、配料:按重量百分比称取钛精矿60%‑80%、铁氧化物20%‑40%;外配膨润土1.0‑1.5%的膨润土;B、造球;C、干燥:生球干燥;D、预热、焙烧;E、冷却,自然冷却即得钛精矿球团。本发明主要是利用铁氧化物在高温焙烧时的晶间固结机理,同时这种添加剂对钛渣的品位不造成影响,可以得到粒度均匀的熟球团,从而在电炉冶炼时稳定电炉内的反应速度,减少高级能源的消耗,同时这种球团由于在焙烧时具有脱硫作用,为钛精矿球团的生产提供一种全新的方法。
本发明公开了涉及钒湿法冶金技术领域,尤其是一种用于钒渣中钒的提取方法,其包括如下步骤:a、检测沉钒后溶液的特性吸收波长λ以及对应的吸光度值A;b、将原料钒渣与原料钠盐或钙盐均匀混合;c、将得到的第一混合物料加入焙烧炉中进行高温焙烧;d、将经过步骤c焙烧后的物料放入湿磨机中进行研磨,得到沉钒前溶液;e、在沉钒前溶液中加入硫酸、硫酸铵,得到沉钒过程溶液,对样品沉钒过程溶液过滤后,采用紫外可见分光光度计对样品沉钒过程溶液进行波长扫描,测到特性吸收波长λ对应的吸光度值A1;f、对比吸光度值A1与吸光度值A的大小。本发明提供了一种方便判断沉钒终点的钒渣中钒的提取方法。
本发明公开了一种有机物精制除钒尾渣热装钠化工艺,属于冶金技术领域。本发明为充分利用有机物精制除钒尾渣中的钒和余热,降低能源消耗和生产成本,提供了一种有机物精制除钒尾渣热装钠化工艺,包括:将150℃~350℃的有机物精制除钒尾渣和钠化剂装入回转窑中,装料完毕,通入空气,650℃~700℃进行焙烧,焙烧完毕,得钠化焙烧熟料。本发明方法避免了精制尾渣中钒的挥发,保护环境的同时,实现了钒资源的最大化利用;利用精制尾渣中的活性炭燃烧产生的热供给自身反应,降低能源消耗,大幅降低生产成本。
本发明涉及钒的湿法冶金技术领域,公开了一种利用高磷高钙钒渣制备五氧化二钒和浸出液回收利用的方法。该方法包括:(1)将高磷高钙钒渣和低磷低钙钒渣混合磨细得到混合钒渣;(2)将混合钒渣焙烧磨细得到磨细后的焙烧熟料;(3)将磨细后的焙烧熟料加入浸出母液中,加入抑磷剂,进行一次浸出,过滤洗涤得到残渣,将滤液和洗涤滤液混合得到含钒浸出液,向含钒浸出液中加入铵盐进行沉钒煅烧得到五氧化二钒;(4)将残渣加入水中二次浸出得到二次浸出料浆,调节pH值,过滤洗涤得到提钒尾渣,将滤液和洗涤滤液混合得到二次浸出液,将二次浸出液作为浸出母液返回步骤(3)中循环使用。本方法能够提高钒的收率,得到的五氧化二钒产品质量较好。
本发明涉及铁酸钙的制备方法,属于冶金技术领域,本发明所要解决的技术问题是提供一种铁酸钙的制备方法,该方法包括如下步骤:(a)取石膏、硫铁矿和铁补充剂,混合得到混合物料;其中,按摩尔比石膏中硫酸钙:硫铁矿中二硫化亚铁:铁补充剂中铁元素=1:0.1~2.5:0~2,并且按摩尔比混合物料中钙元素:铁元素=1:1~2.5,所述石膏的含水率小于10wt%,所述硫铁矿的含水率为0.1~15wt%;(b)于保护气氛下将混合物料进行焙烧,焙烧温度为900~1500℃,焙烧时间为0.1~4h,焙烧完毕,冷却得到铁酸钙;其中,所述保护气氛为惰性气氛、还原性气氛或氧气含量小于5wt%的氧化性气氛。
中冶有色为您提供最新的四川有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!